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GENERALIZATIONS OF CHUNG-FELLER THEOREMS

BY

JUN MA AND YEONG-NAN YEH1

Abstract

In this paper, we develop a method to find Chung-Feller

extensions for three kinds of different rooted lattice paths and

prove Chung-Feller theorems for such lattice paths. In particu-

lar, we compute a generating function S(z) of a sequence formed

by rooted lattice paths. We give combinatorial interpretations to

the function of Chung-Feller type S(z)−yS(yz)
1−y

for the generating

function S(z). Using our method, we first prove Chung-Feller the-

orems of up-down type for three kinds of rooted lattice paths. Our

results are generalizations of the classical Chung-Feller theorem of

up-down type for Dyck paths. We also find Motzkin paths have

Chung-Feller properties of up-down type. Then we prove Chung-

Feller theorems of left-right type for two among three kinds of

rooted lattice paths. Chung-Feller theorem of left-right type for

Motzkin paths is a special case of our theorems. We also show that

Dyck paths have Chung-Feller phenomenons of left-right type. By

the main theorems in this paper, many new Chung-Feller theorems

for rooted lattice paths are derived.

1. Introduction

Let Z denote the set of integers and [m] := {1, 2, . . . ,m}. An m-Dyck

path D in the plane Z×Z is a sequence of vectors (x1, y1)(x2, y2) · · · (x2m, y2m)

in the set {(1,−1), (1, 1)} such that
∑2m

i=1 yi = 0. We call vectors (1, 1) and

(1,−1) up- and down-steps respectively. Then the path D has 2m steps.
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Clearly,
∑2m

i=1 xi = 2m. We say that the semilength of the path D is m.

Let a0 = 0, b0 = 0, ai =
∑i

j=1 xj and bi =
∑i

j=1 yj for every i ∈ [2m].

Then the m-Dyck path D is a sequence of points (a0, b0)(a1, b1) · · · (a2m, b2m)

in the plane Z × Z. For every i ∈ [2m], we say that a step (xi, yi) in

the path D is nonpositive if bi ≤ 0. A Catalan path of semilength m is

an m-Dyck path which has no nonpositive up-steps. The number of such

paths is the m-th Catalan number cm = 1
m+1

(2m
m

)

. The generating function

C(z) :=
∑

m≥0 cmzm satisfies the functional equation C(z) = 1+zC(z)2 and

C(z) = 1−
√

1−4z
2z

explicitly. We state the classical Chung-Feller theorem [2]

as follows.

For every 0 ≤ r ≤ m, the number of m-Dyck paths with r nonpositive

up-steps is equal to cm and independent on r.

Since the line y = 0 partitions a Dyck path into two parts of up and

down, we say that the classical Chung-Feller theorem is of up-down type. The

classical Chung-Feller Theorem was proved by MacMahon [8]. Chung and

Feller reproved this theorem by using analytic method in [2]. Narayana [10]

showed the Chung-Feller Theorem by combinatorial methods. Mohanty’s

book [9] devotes an entire section to exploring the Chung-Feller theorem.

Eu, Liu and Yeh [3] proved the Chung-Feller Theorem by using the Taylor

expansions of generating functions and gave a refinement of this theorem. In

[4], Eu, Fu and Yeh gave a strengthening of the Chung-Feller Theorem and

a weighted version for Schröder paths. Chen [1] revisited the Chung-Feller

Theorem by establishing a bijection.

An m-Motzkin path M is a sequence of vectors (x1, y1)(x2, y2) · · · (xm+1,

ym+1) in the set {(1,−1), (1, 1), (1, 0)} such that
∑m+1

i=1 yi = 1. We call the

vector (1, 0) level-step. Thus, the path M has m+1 steps. We also call m+1

the length of M since
∑m+1

i=1 xi = m + 1. Let a0 = 0, b0 = 0, We view the

m-Motzkin path M as a sequence of points (a0, b0)(a1, b1) · · · (am+1, bm+1) in

the plane Z×Z, where ai =
∑i

j=1 xj and bi =
∑i

j=1 yj for every i ∈ [m+1].

A minimum point (ai, bi) is a point in the path M such that bi ≤ bj for all

j 6= i. A rightmost minimum point (ai, bi) is a minimum point such that i > j

if (aj , bj) also is a minimum point and j 6= i. We suppose that the rightmost

minimum point of the Motzkin path M is (ai, bi) for some i ∈ {0, 1, . . . ,m}.

We say that a step (xj , yj) in the path M is left if j ≤ i. An m-Motzkin path

M is called a positive-Motzkin path of length m + 1 if it has no left steps.
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The number of positive-Motzkin paths of lenth m + 1 is the m-th Motzkin

number, denoted by em. The generating function M(z) :=
∑

m≥0 emzm

satisfies M(z) = 1+zM(z)+z2M(z)2 and explicitly M(z) = 1−z−
√

1−2z−3z2

2z2 .

Shapiro [12] found the following Chung-Feller theorem for Motzkin paths.

For every 0 ≤ r ≤ m, the number of m-Motzkin paths M with r left

steps is equal to em and independent on r.

The Chung-Feller theorem for Motzkin paths was investigated in [3].

For an m-Motzkin path, its rightmost minimum point partitions itself into

two parts of left and right. Hence, We say that the Chung-Feller theorem

for Motakin paths is of left-right type.

1.1. Chung-Feller theorems of up-down type and left-right type

There are the following two interesting problems.

• Is there a Chung-Feller theorem of left-right type for Dyck paths?

• Is there a Chung-Feller theorem of up-down type for Motzkin paths?

Let us check the following two examples.

Example 1.1. Given an m-Dyck path D = (x1, y1)(x2, y2) · · · (x2m, y2m),

we note that the m-Dyck path can be viewed a sequence of points (a0, b0)(a1,

b1) · · · (a2m, b2m) in the plane Z×Z where a0 = 0, b0 = 0, ai =
∑i

j=1 xj and

bi =
∑i

j=1 yj for every i ∈ [2m]. We can define the rightmost minimum

r 3-Dyck paths D

0

1

2

3

Figure 1. All the 3-Dyck paths.
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point and left steps of a Dyck path as those for Motzkin paths. We draw all

the 3-Dyck paths with r left up-steps in Figure 1.

We observe that the number of 3-Dyck paths D with r left up-steps is

5 and independent on r for r = 0, 1, 2, 3.

Example 1.2. Given an m-Motzkin path M = (x1, y1)(x2, y2) · · · (xm+1, ym+1),

we can define nonpositive steps of a Motzkin path as those for Dyck paths.

We draw all the 3-Motzkin paths with r nonpositive steps as follows.

r 3-Motzkin paths M

0

1

2

3

Figure 2. All the 3-Motzkin paths

We observe that the number of 3-Motzkin paths M with r nonpositive steps

is 4 and independent on r for r = 0, 1, 2, 3.

In this paper, we focus on three kinds of different rooted lattice paths. In

the Section 3, we prove the Chung-Feller theorems of not only up-down type

but also left-right type for the first kind of rooted lattice paths. The results

about schröder paths in [4] is a special case of our theorems. As applications

of our main theorems in this section, we reprove the classical Chung-Feller

theorem of up-down type for Dyck paths. We also find a Chung-Feller theo-

rem of left-right type for Dyck paths. In the Section 4, we prove Chung-Feller

theorems of not only up-down type but also left-right type for the second

kind of rooted lattice paths. As applications of our main results in this sec-

tion, we reprove the Chung-Feller theorem of left-right type for Motzking

paths. We also find a Chung-Feller theorem of up-down type for Motzkin

paths. Since it is tedious to state Chung-Feller theorems of left-right type

for the third kind of lattice paths, we only prove Chung-Feller theorems of

up-down type for the third kind of lattice paths in the Section 5.
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1.2. Chung-Feller extension

In general, let S be a set of some combinatorial structures S. We call

the set S a combinatorial model. Let θ be a mapping from the set S to the

set N, where N is the set of nonnegative integers. Let S̄ be a combinatorial

model as well. Let θ̄ and λ̄ be two mappings from the set S̄ to the set N

such that 0 ≤ λ̄(S) ≤ θ̄(S) for every S ∈ S̄ .

Definition 1.3. (S̄ , θ̄, λ̄) is a Chung-Feller extension for (S , θ) if the

number of combinatorial structures S in the combinatorial model S̄ such

that θ̄(S) = m and λ̄(S) = r is equal to the number of combinatorial struc-

tures S in the combinatorial model S such that θ(S) = m and independent

on r for all r = 0, 1, . . . ,m. We say that λ̄ is a Chung-Feller parameter for

(S̄ , θ̄).

We give some examples for Chung-Feller extensions.

Example 1.4. Let S be the set of all the Catalan paths in the plane

Z × Z. For every S ∈ S , let θ(S) be the semi-length of the catalan path S.

Define Dm as the set of all the m-Dyck paths. Let S̄ =
⋃

m≥0 Dm. For every

S ∈ S̄ , let θ̄(S) be the semi-length of a Dyck path S and λ̄(S) denote the

number of nonpositive up-steps in a Dyck path S. By the classical Chung-

Feller theorem of up-down type for Dyck paths, (S̄ , θ̄, λ̄) is a Chung-Feller

extension of up-down type for (S , θ).

Example 1.5. Let S be the set of all the positive-Motzkin paths in

the plane Z×Z. For every S ∈ S , let θ(S) be the length of S. Define Bm as

the set of all the m-Motzkin paths. Let S̄ =
⋃

m≥0 Bm. For every S ∈ S̄ ,

let θ̄(S) be the length of a Motzkin path S and λ̄(S) denote the number of

left steps in a Motzkin path S. By the Chung-Feller theorem of left-right

for Motzkin paths, (S̄ , θ̄, λ̄) is a Chung-Feller extension of left-right type for

(S , θ).

Example 1.6. There are m drivers which are labeled by {1, 2, . . . ,m}

and m + 1 parking spaces which are arranged in a cycle and labeled by

{0, 1, . . . ,m} clockwise. Each driver i has an initial parking preference ai.

We call such a sequence S = (a1, . . . , am) a preference function of length

m. Driver enter the parking area in the order in which they are labeled.
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Each driver proceeds to his preferential parking space and parks there if it

is free, or moves clockwise to the next unoccupied parking space and parks

there. Every preference function S leaves one parking space unoccupied. We

denote this unoccupied parking space by λ̄(S).

A preference functions S of length m is a parking function of length m

if λ̄(S) = 0. Let Sm be the set of parking functions of length m and let

S =
⋃

m≥0 Sm. Let θ be a mapping from S to N such that θ(S) is the

length of parking function S.

Let S̄m be the set of preference functions of length m and let S̄ =
⋃

m≥0 S̄m. For every S ∈ S̄ , let θ̄(S) be the length of S. Riordan [11]

proved that the number of preference functions S in S̄ with θ̄(S) = m and

λ̄(S) = r is equal to the number of parking functions S of length m in S and

independent on r. Hence, (S̄ , θ̄, λ̄) is a Chung-Feller extension of (S , θ).

Example 1.7. Let S = {(1, 1), (1,−1), (5,−1)} be a set of vectors,

n and m two positive integers. An (S,m, n)-lattice path is a sequence of

vectors (x1, y1)(x2, y2) · · · (xn, yn) in the set S such that
∑n

i=1 yi = 0 and
∑n

i=1 xi = 2m. We call m the semi-length of this lattice path. An (S,m, n)-

nonnegative lattice path is an (S,m, n)-lattice path such that
∑i

j=1 yj ≥ 0

for all i ∈ [n]. Define SS,m,n as the set of all the (S,m, n)-nonnegative

lattice paths. We consider the set S = SS =
⋃

m≥0,n≥0 SS,m,n. For every

lattice path L ∈ S , let θ(L) be the semi-length of L. There are exactly 6

lattice paths with semi-length 3 in the set S . We draw them as follows.

Figure 3. All the lattice paths with semi-length 3 in the set S .

Define S̄S,m,n as the set of all the (S,m, n)-lattice paths. Let S̄ =

S̄S =
⋃

m≥0,n≥0 S̄S,m,n. For every lattice path L ∈ S̄ , let θ̄(L) be the

semi-length of L. There are exactly 22 lattice paths with semi-length 3 in

the set S̄ . We draw them in Figure 4.

Clearly, there are no mappings λ̄ from S̄ to N such that (S̄ , θ̄, λ̄) is a

Chung-Feller extension for (S , θ) since 22 can not be divided by 6. What
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Figure 4. All the lattice paths with semi-length 3 in the set S̄ .

are Chung-Feller extensions for (S , θ)? In the Section 3, we will give Chung-

Feller extensions of not only up-down type but also left-right type for (S , θ).

We are given a combinatorial model S and a mapping θ from S to N.

Some natural problems arise.

• Is there a Chung-Feller extension (S̄ , θ̄, λ̄) for (S , θ)?

• How to find it if there is a Chung-Feller extesion (S̄ , θ̄, λ̄) for (S , θ)?

• Suppose (S̄ , θ̄, λ̄) is a Chung-Feller extension for (S , θ). Fix S̄ and θ̄.

How many Chung-Feller parameters are there for (S̄ , θ̄) ?

Given a combinatorial model S and a mapping θ from S to N, we

define a generating function S(z) =
∑

S∈S
zθ(S). For any m ≥ 0, let sm

be the number of combinatorial structures S in S with θ(S) = m. Then

S(z) =
∑

m≥0 smzm. We easily obtain a bivariate function S(z)−yS(yz)
1−y

from

S(z). Given a combinatorial model S̄ , two mappings θ̄ and λ̄ from S̄ to

N, we define a generating function S̄(y, z) =
∑

S∈S̄
yλ̄(S)zθ̄(S). Let sm,r

be the number of combinatorial structures S in S̄ with θ̄(S) = m and

λ̄(S) = r. Then S̄(y, z) =
∑

m≥0

∑m
r=0 sm,ry

rzm. It is easy to see that a

necessary condition for (S̄ , θ̄, λ̄) to be a Chung-Feller extension for (S , θ)

is S̄(y, z) = S(z)−yS(yz)
1−y

. In [5], Liu, Wang and Yeh gave the notion of the

function of Chung-Feller type for a generating function S(z).

Definition 1.8. Let S(z) be a generating function of a sequence (s0, s1, . . .).

We call the following bivariate function

S(z) − yS(yz)

1 − y
,
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denoted by CS(y, z), the function of Chung-Feller type for S(z).

Example 1.9. We consider lattice paths in Example 1.7. Let S and θ

be defined as those in Example 1.7. Let sm be the number of lattice paths

of length 2m in S . Define a generating function S(z) =
∑

m≥0 smzm. Sim-

ple computations tell us that S(z) satisfies the functional equation S(z) =

1 + (z + z3)[S(z)]2 and S(z) = 1−
√

1−4z−4z3

2(z+z3)
. We easily obtain the bivari-

ate function of Chung-Feller type CS(y, z) = S(z)−yS(yz)
1−y

for the generating

function S(z).

The function of Chung-Feller type CS(y, z) for S(z) implies us that it

is possible to find a Chung-Feller extension (S̄ , θ̄, λ̄) for (S , θ). The key is

to give a combinatorial interpretation for the function CS(y, z). Liu, Wang

and Yeh [5] attempted to do this for some functions of Chung-Feller type.

In the sections 3,4 and 5, we focus on three different combinatorial models

S formed by combinatorial structures “lattice paths”. By the function

of Chung-Feller type for a generating function, we develope a method to

find Chung-Feller extesions for (S , θ). Particularly, we consider a mapping

θ from S to N. Define a generating function S(x) =
∑

S∈S
zθ(S). We

first find a functional equation which S(z) satisfies. Then we study the

function of Chung-Feller type CS(y, z) for S(z) and give it a combinatorial

interpretation. Thus, we can find a Chung-Feller extension (S̄ , θ̄, λ̄) for

(S , θ) and prove a Chung-Feller theorem for (S̄ , θ̄, λ̄).

1.3. New Chung-Feller theorems

Narayana [10] related cycle permutations of lattice paths to the Chung-

Feller theorem. Mohanty’s book [9] devotes an entire section to exploring the

Chung-Feller theorem. We are interested in the Theorem 2 in the page 70 of

the book. Many Chung-Feller theorems are consequences of this theorem. In

Section 6, we investigate relations between our main results and this theorem.

We find that the main results of this paper can not be derived directly as

special cases of this theorem. Hence, by the main theorems of this paper,

many new Chung-Feller theorems for rooted lattice paths are derived. We
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also mention the notion of incomplete Chung-Feller phenomenents and give

some examples.

2. Rooted Lattice Paths

In this section, we introduce the notion of rooted lattice paths. Let S

be a set of vectors in Z×Z \ {(0, 0)}. Let k, n and m be three integers with

n ≥ 1 and m ≥ 1. An (S,m, k, n)-lattice path L is a sequence of vectors

(x1, y1)(x2, y2) · · · (xn, yn) such that :

• (xi, yi) ∈ S;

•
∑n

i=1 yi = k;

•
∑n

i=1 xi = m.

S is called the step set and each vector in S is called a step. Then the

lattice path L contains n steps. We say that the path L is of order n and

size m. Let LS,m,k,n be the set of all the (S,m, k, n)-lattice paths and let

LS,k =
⋃

m≥0,n≥0 LS,m,k,n.

Let w and l be two mappings from S to R, where R is the set of real

numbers. We say that w and l are the weight function and the length

function of S, respectively. For any (x, y) ∈ S, w(x, y) and l(x, y) are

called the weight and the length of the step (x, y), respectively. For any

L = (x1, y1)(x2, y2) · · · (xn, yn) ∈ LS,m,k,n, define the weight of the path L,

denoted by w(L), as w(L) =
∏n

j=1 w(xj , yj); define the length of the path L,

denoted by θ(L), as θ(L) =
∑n

j=1 l(xj , yj).

We can view the lattice path L as the sequence of points in the plane

Z × Z

(0, 0) = (a0, b0), (a1, b1), (a2, b2), . . . , (an, bn),

where aj =
∑j

i=1 xi and bj =
∑j

i=1 yi for any i ∈ [n]. For any a step

(xj, yj) in the path L, we define the height of the step (xj , yj), denoted

by h(xj , yj), as h(xj , yj) = bj. Let NP (L) be a subset of [n] such that

NP (L) = {j | bj ≤ 0}. Define the non-positive length of L, denoted by

npl(L), as npl(L) =
∑

j∈NP (L) l(xj, yj).

A minimum point is a point (ai, bi) in the path L such that bi ≤ bj

for all j 6= i. A rightmost minimum point is a minimum point (ai, bi) such
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that j < i if (aj, bj) also is a minimum point in the path L and j 6= i.

Finally, suppose (ai, bi) is the rightmost minimum point of the path L. We

define the rightmost minimum length of the path L, denoted by rml(L), as

rml(L) =
∑

1≤j≤i l(xj , yj).

Example 2.1. Let S = {(1, 1), (1, 0), (5,−1), (1,−1)}, m = 16, k = 0,

n = 8, l(1, 1) = 1, l(1,−1) = 1, l(1, 0) = 1 and l(5,−1) = 5. Let L =

(1, 0)(1,−1)(1, 1)(5,−1)(1, 1)(1, 0)(1, 1)(5,−1). We draw the (S, 16, 0, 8)-

lattice path L as follows,

(0,0)

Figure 5. A (S,m, k, n)-lattice path L.

It is easy to see that the length of the path L is 16, i.e., θ(L) = 16. We

have NP (L) = {1, 2, 3, 4, 5, 6, 8}. Hence, the non-positive length of the path

L is 15, i.e., npl(L) = 15. The points (2,−1) and (8,−1) are the minimum

points of the path L. The point (8,−1) is the rightmost minimum point of

the path L. Thus, the rightmost minimum length of the path L is 8, i.e.,

rml(L) = 8.

An (S,m, k, n)-nonnegative path is an (S,m, k, n)-lattice path which

never goes below the line y = k. Let NS,m,k,n be the set of all the (S,m, k, n)-

nonnegative paths and NS,k =
⋃

m≥0,n≥0 NS,m,k,n.

We define rooted lattice paths as follows.

Definition 2.2. Let k be an integer. Let n and m be two positive inte-

gers. Let S be a set of vectors in Z×Z\{(0, 0)}. Let l be the length function

of S. A rooted (S,m, k, n)-lattice path is a pair [L; j] such that:

(a) L = (x1, y1) · · · (xn, yn) is a (S,m, k, n)-lattice path;

(b) 0 ≤ j ≤ l(xn, yn) − 1.

We let the point (m− j, 0) the root of L̄. Given a L̄ = [L; j] ∈ L̄S,k, we

define the non-positive root length of L̄, denoted by nprl(L̄), as nprl(L̄) =

npl(L)+j and the rightmost minimum root length of L̄, denoted by rmrl(L̄),

as rmrl(L̄) = rml(L) + j.
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Example 2.3. We consider the lattice path L given in Example 2.1.

We draw a rooted (S, 16, 0, 8)-lattice path L̄ = [L; 2] as follows,

(0,0)

Figure 6. A rooted (S,m, k, n)-lattice path L̄.

where the point (14, 0) is the root of L since m = 16 and j = 2, denoted by

the notation “ • ”. It is easy to see that nprl(L̄) = 17 and rmrl(L̄) = 10.

We use L̄S,m,k,n to denote the set of rooted (S,m, k, n)-lattice paths

and L̄S,k =
⋃

m≥0,n≥0 L̄S,m,k,n.

We define rooted (S,m, k, n)-nonnegative paths as follows.

Definition 2.4. A rooted (S,m, k, n)-nonnegative path is a rooted

(S,m, k, n)-lattice path which never goes below the line y = k.

Let ¯NS,m,k,n be the set of all the rooted (S,m, k, n)-nonnegative paths

and ¯NS,k =
⋃

m≥0,n≥0 N̄S,m,k,n.

3. Chung-Feller Extensions of Two Types for (NS1,0, θ)

Throughout the paper, we always let A and B be two finite subsets of

the set P, where P is the set of positive integers. For any i ∈ A (resp. j ∈ B),

let ai (resp. bj) be a real number. In this section, we consider rooted lattice

paths with the step set, the weight function and the length function in the

following case.

Let S1 = SA ∪ SB ∪ {(1, 1)}, where SA = {(2i − 1,−1) | i ∈ A} and

SB = {(2i, 0) | i ∈ B}.

For any step (x, y) ∈ S1, let

l1(x, y) =















i if (x, y) = (2i, 0),

i − 1 if (x, y) = (2i − 1,−1),

1 if (x, y) = (1, 1),
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w1(x, y) =



















bi if (x, y) = (2i, 0),

ai if (x, y) = (2i − 1,−1),

1 if (x, y) = (1, 1).

Recall that NS1,0 =
⋃

m≥0,n≥0 NS1,m,0,n, where NS1,m,0,n denotes the set

of all the (S1,m, 0, n)-nonnegative paths. For every L ∈ NS1,0, θ(L) denote

the length of L. Note that θ can be viewed as a mapping from NS1,0 to N.

Our goal is to find Chung-Feller extensions of not only up-down type but

also left-right type for (NS1,0, θ).

3.1. The generating function S1(z)

Define a generating function S1(z) as follows:

S1(z) =
∑

L∈NS1,0

w(L)zθ(L).

Let s1;m be the sum of weights of lattice paths in the set NS1,0 with length

m for m ≥ 1 and s1;0 = 1. It is easy to see that S1(z) =
∑

m≥0 s1;mzm.

Lemma 3.1. S1(z) = 1 +
(
∑

i∈B biz
i
)

S1(z) +
(
∑

i∈A aiz
i
)

[S1(z)]2

Proof. Given a path L ∈ NS1,0 and L 6= ∅, we suppose that (x, y) ∈ S1

is the first step of L and discuss the following two cases:

Case I. (x, y) = (2i, 0) for some i ∈ B. We can decompose the path L into

(x, y)R, where R ∈ NS1,0. Note that l1(x, y) = i and w1(x, y) = bi. This

provides the second term
(
∑

i∈B biz
i
)

S1(z).

Case II. (x, y) = (1, 1). Let (x′, y′) be the first step returning to the x-axis in

L. We can decompose the path L into (x, y)R(x′, y′)Q, where R,Q ∈ NS1,0

and (x′, y′) = (2i − 1,−1) for some i ∈ A. Note that l1(x, y) = 1 and

w1(x, y) = 1, l1(x
′, y′) = i − 1 and w1(x

′, y′) = ai. This provides the third

term
(
∑

i∈A aiz
i
)

[S1(z)]2. �
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3.2. A Chung-Feller extension (L̄S1,1, θ̄, nprl) of up-down type for

(NS1,0, θ)

Recall that L̄S1,1 =
⋃

m≥0,n≥0 L̄S1,m,1,n, where L̄S1,m,1,n denotes the

set of all the rooted (S1,m, 1, n)-lattice paths. For every L̄ ∈ L̄S1,1, let

θ̄ : L̄S1,1 → N be a mapping such that θ̄(L̄) = θ(L) − 1; nprl(L̄) denotes

the non-positive root length of L̄. In this subsection, we will show that

(L̄S1,1, θ̄, nprl) is a Chung-Feller extension for (NS,0, θ).

First, we investigate the function of Chung-Feller type CS1(y, z) for

S1(z). By Lemma 3.1, we have S1(yz) = 1 +
(
∑

i∈B biy
izi
)

S1(yz) + (
∑

i∈A

aiy
izi)[S1(yz)]2. Hence,

CS1(y, z) =
S1(z) − yS1(yz)

1 − y

=
1 +

(

∑

i∈B biz
i
∑i−1

j=0 yj
)

S1(z) +
(

∑

i∈A aiz
i
∑i−2

j=0 yj
)

[S1(z)]2

1 −
∑

i∈B biyizi −
(
∑

i∈A aiyizi
)

S1(yz) −
(
∑

i∈A aiyi−1zi
)

S1(z)

So, let

P1(y, z) = 1 +





∑

i∈B

biz
i

i−1
∑

j=0

yj



S1(z) +





∑

i∈A

aiz
i

i−2
∑

j=0

yj



 [S1(z)]2

and

G1(y, z) =
1

1−
∑

i∈B biyizi−
(
∑

i∈A aiyizi
)

S1(yz)−
(
∑

i∈A aiyi−1zi
)

S1(z)
.

We need to give combinatorial interpretations for P1(y, z), G1(y, z) and

CS1(y, z), respectively.

Recall that ¯NS1,0 =
⋃

m≥0,n≥0 N̄S1,m,0,n, where N̄S1,m,0,n is the set of

all the rooted (S1,m, 0, n)-nonnegative paths. Define a generating function

P̃1(y, z) as follows:

P̃1(y, z) =
∑

[L;j]∈N̄S1,0

w(L)yjzθ(L).

Lemma 3.2. P̃1(y, z) = 1 +
(

∑

i∈B biz
i
∑i−1

j=0 yj
)

S1(z) +
(

∑

i∈A aiz
i
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∑i−2
j=0 yj

)

[S1(z)]2.

Proof. Given a rooted lattice path L̄ = [L, j] ∈ ¯NS1,0 and L̄ 6= ∅, we

suppose that the final step of L is (x, y). Note that 0 ≤ j ≤ l1(x, y)− 1. We

discuss the following two cases:

Case I. (x, y) = (2i, 0) for some i ∈ B. We can decompose the path L into

R(x, y), where R ∈ NS1,0. Note that l1(x, y) = i , w1(x, y) = bi and j ∈

{0, 1, . . . , i − 1}. This provides the second term
(

∑

i∈B biz
i
∑i−1

j=0 yj
)

S1(z).

Case II. (x, y) = (2i − 1,−1) for some i ∈ A and i ≥ 2. Let (x′, y′)

be the right-most step leaving the x-axis. We can decompose the path

L into Q(x′, y′)R(x, y), where R,Q ∈ NS1,0 and (x′, y′) = (1, 1). Note

that l1(x
′, y′) = 1, w1(x

′, y′) = 1, l1(x, y) = i − 1, w1(x, y) = ai and

j ∈ {0, 1, . . . , i − 2}. This provides the third term
(

∑

i∈A aiz
i
∑i−2

j=0 yj
)

[S1(z)]2. �

Lemma 3.2 tells us that P̃1(y, z) =
∑

[L;j]∈N̄S1,0
w(L)yjzθ(L) is a combi-

natorial interpretation for P1(y, z).

Now, recall that LS1,0 =
⋃

m≥0,n≥0 LS1,m,0,n, where LS1,m,0,n denotes

the set of all the (S1,m, 0, n)-lattice paths. Define a generating function

G̃1(y, z) as follows:

G̃1(y, z) =
∑

L∈LS1,0

w(L)ynpl(L)zθ(L).

Lemma 3.3.

G̃1(y, z) = 1 +

(

∑

i∈B

biy
izi

)

G̃1(y, z) +

(

∑

i∈A

aiy
izi

)

S1(yz)G̃1(y, z)

+

(

∑

i∈A

aiy
i−1zi

)

S1(z)G̃1(y, z),

Equivalently,

G̃1(y, z) =
1

1−
∑

i∈B biyizi−
(
∑

i∈A aiyizi
)

S1(yz)−
(
∑

i∈A aiyi−1zi
)

S1(z)
.

Proof. Since the second identity is equivalent to the first identity, we

just prove the first identity. Given a path L ∈ LS,0 and L 6= ∅, we suppose
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that (x, y) is the first step of L. We discuss the following three cases:

Case I. (x, y) = (2i, 0) for some i ∈ B. We can decompose the path L

into (x, y)R, where R ∈ LS1,0. Note that l1(x, y) = i , w1(x, y) = bi and

h(x, y) = 0. This provides the second term
(
∑

i∈B biy
izi
)

G̃1(y, z).

Case II. (x, y) = (2i − 1,−1) for some i ∈ A. Let (x′, y′) = (1, 1) be

the first step returning to the x-axis. We can decompose the path L into

(x, y)Q(x′, y′)R. Clearly, R ∈ LS1,0. For any a lattice path P = (x1, y1) · · ·

(xn, yn), we define P ′ as P ′ = (xn, yn)(xn−1, yn−1) · · · (x1, y1). Then Q′ ∈

NS1,0. Note that l1(x
′, y′) = 1, w1(x

′, y′) = 1, l1(x, y) = i− 1, w1(x, y) = ai,

h(x, y) = −1 and h(x′, y′) = 0. This provides the third term
(
∑

i∈A aiy
izi
)

×S1(yz)G̃1(y, z).

Case III. (x, y) = (1, 1). Let (x′, y′) = (2i−1,−1) be the first step returning

to the x-axis. We can decompose the path L into (x, y)Q(x′, y′)R, where

R ∈ LS1,0 and Q ∈ NS1,0. Note that l1(x
′, y′) = i − 1, w1(x

′, y′) = ai,

l1(x, y) = 1, w1(x, y) = 1, h(x, y) = 1 and h(x′, y′) = 0. This provides the

fourth term
(
∑

i∈A aiy
i−1zi

)

S1(z)G̃1(y, z). �

Hence, G̃1(y, z) =
∑

L∈LS1,0
w(L)ynpl(L)zθ(L) is a combinatorial inter-

pretation for G1(y, z).

Now, we give a combinatorial interpretation for the function CS1(y, z)

of Chung-Feller type for S1(z). Define a generating function D1(y, z) as

follows:

D1(y, z) =
∑

L̄∈L̄S1,1

w(L)ynprl(L̄)zθ̄(L̄).

Let s̄1;m,r be the sum of weights of rooted lattice paths in the set L̄S1,1

with length m + 1 and non-positive root length r for (m, r) 6= (0, 0) and let

s̄1;0,0 = 1. It is easy to see that D1(y, z) =
∑

m≥0

∑m
r=0 s̄1;m,ry

rzm.

Lemma 3.4. D1(y, z) = G1(y, z)P1(y, z).

Proof. Let L̄ ∈ L̄S1,1. Let (x, y) be the right-most step (1, 1) leaving

x-axis and reaching the line y = 1. We can decompose the path L̄ into

R(x, y)Q̄, where R ∈ LS1,0 and Q̄ ∈ N̄S1,0. Hence, D1(y, z) = G1(y, z)P1(y,

z). �
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Hence, D1(y, z) =
∑

m≥0

∑m
r=0 s̄1;m,ry

rzm is a combinatorial interpre-

tation for CS1(y, z).

Theorem 3.5. (L̄S1,1, θ̄, nprl) is a Chung-Feller extension for (NS,0, θ).

Theorem 3.6. Let s̄1;m,r be the sum of weights of rooted lattice paths

in the set L̄S1,1 which

(a) have length m + 1,

(b) have non-positive root length r.

Let s1;m be the sum of weights of lattice paths in the set NS1,0 with length

m. Then s̄1;m,r = s1;m and s̄1;m,r is independent on r.

The classical Chung-Feller theorem can be derived as a special case of

Theorem 3.6.

Corollary 3.7. (Chung-Feller [2]) For every 0 ≤ r ≤ m, the number of

m-Dyck paths with r nonpositive up-steps is equal to cm and independent on

r.

Proof. Let S = {(1, 1), (1,−1)}, w(x, y) = 1 for any (x, y) ∈ S, l(1, 1) =

1 and l(1,−1) = 0. Suppose L̄ = [L; j] ∈ L̄S,1. Since l(1, 1) = 1 and

l(1,−1) = 0, the final step of L̄ must be (1, 1) and j = 0. Deleting the root

and the final step of L̄, we obtain a lattice path in LS,0. This implies that

the number of rooted lattice paths L̄ in L̄S,1 with length θ̄(L̄) = m and

nprl(L̄) = r is equal to the number of lattice paths L in LS,0 with θ(L) = m

and npl(L) = r. It is easy to see that LS,0 is the set of Dyck paths. For

every L ∈ LS,0, the number of nonpositive up-steps and the semilength of

the path L are npl(L) and θ(L) respectively.

By Theorem 3.6, the number of rooted lattice paths L̄ in L̄S,1 with

length θ̄(L̄) = m and nprl(L̄) = r is equal to the number of lattice paths L

in NS,0 with θ(L) = m. By Lemma 3.1, we have S1(z) = 1 + z[S1(z)]2 since

S = {(1, 1), (1,−1)}, w(s) = 1 for any s ∈ S, l(1, 1) = 1 and l(1,−1) = 0.

Hence, the number of the lattice paths L in NS1,0 with θ(L) = m is the m-th

Catalan number. Thus, the number of m-Dyck paths D with r nonpositive

up-steps is equal to cm and independent on r. �
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3.3. A Chung-Feller extension (L̄S1,1, θ̄, rmrl) of left-right type for

(NS1,0, θ)

For every L̄ ∈ L̄S1,1, rmrl(L̄) denotes the rightmost minimum root

length of L̄. We will show that (L̄S1,1, θ̄, rmrl) is a Chung-Feller extension

for (NS1,0, θ). Note that

CS1(y, z) =
S1(z) − yS1(yz)

1 − y
=

P1(y, z)S1(yz)

1 −
[
∑

i∈A aiyi−1zi
]

[S1(yz)S1(z)]
,

where P1(y, z)=1+
(

∑

i∈B biz
i
∑i−1

j=0 yj
)

S1(z)+
(

∑

i∈A aiz
i
∑i−2

j=0 yj
)

[S1(z)]2.

We give a new combinatorial interpretation for CS1(y, z).

Let k ≥ 0. Recall that NS1,−k =
⋃

m≥0,n≥0 NS1,m,−k,n, where NS1,m,−k,n

denotes the set of all the (S1,m,−k, n)-nonnegative paths. Define a gener-

ating function

H1;k(z) =
∑

L∈NS1,−k

w(L)zθ(L).

Lemma 3.8. H1;k(z) = [S1(z)]k+1
[
∑

i∈A aiz
i−1
]k

.

Proof. For any a path L ∈ NS1,−k and L 6= ∅, we consider the first

step with height −m in L, denoted by (xm, ym), where 1 ≤ m ≤ k. Thus

we can decompose the path L into L0(x1, y1)L1(x2, y2) · · ·Lk−1(xk, yk)Lk,

where Lr ∈ NS1,0 for all 0 ≤ r ≤ k and (xj , yj) ∈ SA for all j. Thus,

H1;k(z) = [S1(z)]k+1
[
∑

i∈A aiz
i−1
]k

. �

Define a generating function M1(y, z) as follows:

M1(y, z) =
∑

L̄∈L̄S1,1

w(L)yrmrl(L̄)zθ̄(L).

Let ḡ1;m,r be the sum of weights of rooted lattice paths in the set L̄S1,1 with

length m + 1 and rightmost minimum root length r for (m, r) 6= (0, 0) and

ḡ1;0,0 = 1. It is easy to see that M1(y, z) =
∑

m≥0

∑m
r=0 ḡ1;m,ry

rzm.

Lemma 3.9. M1(y, z) =
P1(y, z)S1(yz)

1 −
[
∑

i∈A aiyi−1zi
]

[S1(yz)S1(z)]
.
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Proof. Given a rooted lattice path L̄ ∈ L̄S1,1 we suppose the rightmost

minimum point of L is (a,−k), where k ≥ 0. Furthermore, suppose the first

step at the right of the point (a,−k) in L is (x, y). Then (x, y) = (1, 1).

Using this step, we can decompose L̄ into R(1, 1)T̄ , where R ∈ NS1,−k. For

the path T̄ , we denote the rightmost step (1, 1) with height −m in the path

T̄ as (xm+1, ym+1) , where −1 ≤ m ≤ k − 1. Thus we can decompose the

path T̄ into Lk−1(xk, yk)Lk−2(xk−1, yk−1) · · ·L0(x0, y0)Q̄, where Lj ∈ NS1,0

for all 0 ≤ j ≤ k− 1 and Q̄ ∈ N̄S1,0. Hence, by Lemmas 3.1, 3.2 and 3.8, we

get M1(y, z) =
∑

k≥0 H1;k(yz)[S1(z)]kzkP1(y, z). Hence,

M1(y, z) = P1(y, z)S1(yz)
∑

k≥0

[S1(yz)]k

[

∑

i∈A

aiy
i−1zi−1

]k

[S1(z)]kzk

=
P1(y, z)S1(yz)

1 −
[
∑

i∈A aiyi−1zi
]

[S1(yz)S1(z)]
,

�

Hence, M1(y, z) =
∑

L̄∈L̄S1,1
w(L)yrmrl(L̄)zθ̄(L) is a combinatorial inter-

pretation for CS1(y, z)

Theorem 3.10. (L̄S1,1, θ̄, rmrl) is a Chung-Feller extension for (NS1,0, θ).

Theorem 3.11. Let ḡ1;m,r be the sum of weights of rooted lattice paths

in L̄S1,1 which:

(a) have length m + 1,

(b) have rightmost minimum root length r.

Let s1;m be the sum of weights of lattice paths in NS1,0 with length m. Then

ḡ1;m,r = s1;m and ḡ1;m,r is independent on r.

By Theorem 3.11, we derive Chung-Feller Theorem of left-right type for

Dyck paths. See also Example 1.1.

Corollary 3.12. For every 0 ≤ r ≤ m, the number of m-Dyck paths

with r left up-steps is equal to cm and independent on r.

Proof. Let S = {(1, 1), (1,−1)}, w(x, y) = 1 for any (x, y) ∈ S, l(1, 1) =

1 and l(1,−1) = 0. Suppose L̄ = [L; j] ∈ L̄S,1. Since l(1, 1) = 1 and

l(1,−1) = 0, the final step of L̄ must be (1, 1) and j = 0. Deleting the
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root and the final step of L̄, we obtain a lattice path in LS,0. This implies

that the number of rooted lattice paths L̄ in L̄S,1 with length θ̄(L̄) = m and

rmrl(L̄) = r is equal to the number of lattice paths L in LS,0 with θ(L) = m

and rml(L) = r. It is easy to see that LS,0 is the set of Dyck paths. For

every L ∈ LS,0, the number of left up-steps and the semilength of the path

L are rml(L) and θ(L) respectively.

By Theorem 3.11, the number of rooted lattice paths L̄ in L̄S,1 with

length θ̄(L̄) = m and rmrl(L̄) = r is equal to the number of lattice paths

L in NS,0 with θ(L) = m. Hence, the number of m-Dyck paths with r left

up-steps is equal to cm and independent on r. �

By Theorems 3.6 and 3.11, we can derive many new Chung-Feller The-

orems for rooted lattice paths. As example, we give the following corollary.

This corollary answers the problem in Example 1.7.

Corollary 3.13. Let S = {(1, 1), (5,−1), (1,−1)}, w(x, y) = 1 for any

(x, y) ∈ S, l(1, 1) = 1, l(5,−1) = 2 and l(1,−1) = 0. Then

(1) the number of lattice paths in L̄S1,1 with length m + 1 and non-positive

root length r equal to the number of lattice paths in NS1,0 with length m

and independent on r;

(2) the number of lattice paths in L̄S1,1 with length m + 1 and rightmost

minimum root length r equal to the number of lattice paths in NS1,0 with

length m and independent on r.

Example 3.14. Let m = 3. Let the step set S, the weight function w

and the length function l be given as those in Corollary 3.13. We draw all

the lattice paths L in NS1,0 with θ(L) = 3 as follows:

Figure 7. All the lattice paths in NS1,0 with θ(L) = 3.



318 JUN MA AND YEONG-NAN YEH [September

We draw rooted lattice paths L̄ in L̄S1,1 with θ̄(L̄) = 3 and nprl(L̄) = r

as follows:

r r

0 1

2 3

Figure 8. Rooted lattice paths L̄ in L̄S1,1 with θ̄(L̄) = 3 and nprl(L̄) = r.

where the notation “ • ” denotes the root of the corresponding path. We

draw rooted lattice paths L̄ in L̄S1,1 with θ̄(L̄) = 3 and rmrl(L̄) = r as

follows:

r r

0 1

2 3

Figure 9. Rooted lattice paths L̄ in L̄S1,1 with θ̄(L̄) = 3 and rmrl(L̄) = r.

where the notation “ • ” denotes the root of the corresponding path.

4. Chung-Feller Extensions of Two Types for (NS2,0, θ)

In this section, we give another example of Chung-Feller extensions ob-
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tained by the function of Chung-Feller type for a generating function. Since

we use similar methods to those used in Section 3, we don’t give the detail

of the proofs for lemmas and theorems in this section and only list them.

In this subsection, we consider rooted lattice paths with the step set, the

weight function and the length function in the following case.

Let S2 = SA ∪ SB ∪ {(1, 1)}, where SA = {(i,−1) | i ∈ A} and SB =

{(i, 0) | i ∈ B}.

For any step (x, y) ∈ S2, let

l2(x, y) =

{

i if (x, y) = (i, 0) and (i,−1),

1 if (x, y) = (1, 1),

w2(x, y) =











bi if (x, y) = (i, 0),

ai if (x, y) = (i,−1),

1 if (x, y) = (1, 1).

Recall that L̄S2,1 =
⋃

m≥0,n≥0 L̄S2,m,1,n, where L̄S2,m,1,n denotes the set

of all the rooted (S2,m, 1, n)-lattice paths. For every L̄ ∈ L̄S2,1, let θ̄ :

L̄S1,1 → N be a mapping such that θ̄(L̄) = θ(L) − 1; nprl(L̄) denotes the

non-positive root length of L̄. We first show that (L̄S2,1, θ̄, nprl) is a Chung-

Feller extension for (NS2,0, θ).

4.1. A Chung-Feller extension (L̄S2,1, θ̄, nprl) of up-down type for

(NS2,0, θ)

Define a generating function S2(z) as S2(z) =
∑

L∈NS2,0
w(L)zθ(L). Let

s2;m be the sum of weights of lattice paths in the set NS2,0 with length m

for m ≥ 1 and s2;0 = 1. It is easy to see that S2(z) =
∑

m≥0 s2;mzm.

Lemma 4.1. S2(z) = 1 +
(
∑

i∈B biz
i
)

S2(z) +
(
∑

i∈A aiz
i+1
)

[S2(z)]2.

We consider the function of Chung-Feller type CS2(y, z) for S2(z) as

follows.

CS2(y, z) =
S2(z) − yS2(yz)

1 − y

=
1 +

(

∑

i∈B biz
i
∑i−1

j=0 yj
)

S2(z) +
(

∑

i∈A aiz
i+1
∑i−1

j=0 yj
)

[S2(z)]2

1 −
∑

i∈B biyizi −
(
∑

i∈A aiyi+1zi+1
)

S2(yz) −
(
∑

i∈A aiyizi+1
)

S2(z)
.
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Hence, let

P2(y, z) = 1 +





∑

i∈B

biz
i

i−1
∑

j=0

yj



S2(z) +





∑

i∈A

aiz
i+1

i−1
∑

j=0

yj



 [S2(z)]2

and

G2(y, z) =
1

1−
∑

i∈B biyizi−
(
∑

i∈A aiyi+1zi+1
)

S2(yz)−
(
∑

i∈A aiyizi+1
)

S2(z)

We give combinatorial interpretations for P2(y, z), G2(y, z) and CS2(y, z).

Define a generating function P̃2(y, z) as P̃2(y, z)=
∑

[L;j]∈N̄S2,0
w(L)yjzθ(L).

Lemma 4.2. P̃2(y, z) = 1 +
(

∑

i∈B biz
i
∑i−1

j=0 yj
)

F2(z)

+
(

∑

i∈A aiz
i+1
∑i−1

j=0 yj
)

[F2(z)]2.

Hence, P̃2(y, z) =
∑

[L;j]∈N̄S2,0
w(L)yjzθ(L) is a combinatorial interpre-

tation for P2(y, z).

Define a generating functions G̃2(y, z) as G̃2(y, z)=
∑

L∈LS2,0
w(L)ynpl(L)

zθ(L).

Lemma 4.3.

G̃2(y, z) = 1 +

(

∑

i∈B

biy
izi

)

G̃2(y, z) +

(

∑

i∈A

aiy
i+1zi+1

)

S2(yz)G̃2(y, z)

+

(

∑

i∈A

aiy
izi+1

)

S2(z)G̃2(y, z).

Equivalently,

G2(y, z) =
1

1−
∑

i∈Bbiyizi−(
∑

i∈Aaiyi+1zi+1)S2(yz)−(
∑

i∈Aaiyizi+1)S2(z)
.

Hence, G̃2(y, z) =
∑

L∈LS2,0
w(L)ynpl(L)zθ(L) is a combinatorial inter-

pretation for G2(y, z).

Define a generating functions D2(y, z) as D2(y, z) =
∑

L̄∈L̄S2,1
w(L)

×ynprl(L̄)zθ̄(L). Let s̄2;m,r be the sum of weights of rooted lattice paths in the

set L̄S2,1 with length m+1 and non-positive root length r for (m, r) 6= (0, 0)
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and s̄2;0,0 = 1. It is easy to see that D2(y, z) =
∑

m≥0

∑m
r=0 s̄2;m,ry

rzm.

Lemma 4.4. D2(y, z) = G2(y, z)P2(y, z).

Hence, D2(y, z) =
∑

L̄∈L̄S2,1
w(L)ynprl(L̄)zθ̄(L) is a combinatorial inter-

pretation for CS2(y, z).

Theorem 4.5. (L̄S2,1, θ̄, nprl) is a Chung-Feller extension for (NS2,0, θ).

Theorem 4.6. Let s̄2;m,r be the sum of weights of rooted lattice paths

in the set L̄S2,1 which

(a) have length m + 1,

(b) have non-positive root length r.

Let s2;m be the sum of weights of lattice paths in the set NS2,0 with length

m. Then s̄2;m,r = s2;m and s̄2;m,r is independent on r.

By Theorem 4.6, we derive a Chung-Feller Theorem of up-down type for

Motzkin paths. See also Example 1.2.

Corollary 4.7. For every 0 ≤ r ≤ m, the number of m-Motzkin paths

with r nonpositive steps is equal to the m-th Motzkin number and independent

on r.

Proof. Let S = {(1, 1), (1,−1), (1, 0)}, w(x, y) = 1 and l(x, y) = 1 for

any (x, y) ∈ S. Suppose L̄ = [L; j] ∈ L̄S1,1. Since l(x, y) = 1 for any

(x, y) ∈ S, we have j = 0. Deleting the root from the rooted lattice path

L̄, we obtain a lattice path in LS,1. This implies that the number of rooted

lattice paths L̄ in L̄S1,1 with θ̄(L̄) = m and nprl(L̄) = r is equal to the

number of lattice paths L in LS,1 with length θ(L) = m and npl(L) = r. It

is easy to see that LS,1 is the set of Motzkin paths. For every L ∈ LS,1, the

number of nonpositive steps and the length of the path L are npl(L) and

θ(L) respectively.

By Theorem 4.6, the number of rooted lattice paths L̄ in L̄S1,1 with

θ̄(L̄) = m and nprl(L̄) = r is equal to the number of lattice paths L in NS1,0

with θ(L) = m. By Lemma 4.1, we have S2(z) = 1+zS2(z)+z2[S2(z)]2 since

S = {(1, 1), (1,−1), (1, 0)}, w(x, y) = 1 and l(x, y) = 1 for any (x, y) ∈ S.

Hence, the number of lattice paths L in NS2,0 with θ(L) = m is the m-th

Motzkin number. Thus the number of m-Motzkin paths with r nonpositive

steps is equal to the m-th Motzkin number and independent on r. �
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4.2. A Chung-Feller extension (L̄S2,1, θ̄, rmrl) of left-right type for

(NS2,0, θ)

For every L̄ ∈ L̄S2,1, rmrl(L̄) denotes the rightmost minimum root

length of L̄. We will show that (L̄S2,1, θ̄, rmrl) also is a Chung-Feller exten-

sion for (NS2,0, θ).

It is easy to see that

CS2(y, z) =
S2(z) − yS2(yz)

1 − y
=

P2(y, z)S2(yz)

1 −
[
∑

i∈A aiyizi+1
]

[S2(yz)S2(z)]
.

We will give a new combinatorial interpretation for CS2(y, z).

Let k ≥ 0. Define a generating function H2,k(z) =
∑

L∈NS2,−k
w(L)zθ(L).

Lemma 4.8. H2,k(z) = [S2(z)]k+1
[
∑

i∈A aiz
i
]k

.

Define a generating function M2(y, z) as M2(y, z) =
∑

L̄∈L̄S2,1
w(L)

×yrmrl(L̄)zθ̄(L). Let ḡ2;m,r be the sum of weights of rooted lattice paths in the

set L̄S2,1 with length m+1 and rightmost minimum root length r for (m, r) 6=

(0, 0) and ḡ2;0,0 = 1. It is easy to see that M2(y, z) =
∑

m≥0

∑m
r=0 ḡ2;m,ry

rzm.

Lemma 4.9. M2(y, z) =
P2(y, z)S2(yz)

1 −
[
∑

i∈A aiyizi+1
]

[S2(yz)S2(z)]
.

Hence, M2(y, z) =
∑

L̄∈L̄S2,1
w(L)yrmrl(L̄)zθ̄(L) is a combinatorial inter-

pretation for CS2(y, z)

Theorem 4.10. (L̄S2,1, θ̄, rmrl) is a Chung-Feller extension for (NS2,0, θ).

Theorem 4.11. Let ḡ2;m,r be the sum of weights of rooted lattice paths

in L̄S2,1 which:

(a) have length m + 1,

(b) have rightmost minimum root length r.

Let s2;m be the sum of weights of lattice paths in NS2,0 with length m. Then

ḡ2;m,r = s2;m and ḡ2;m,r is independent on r.

The result which Shapiro [12] found is a corollary of Theorem 4.11.



2009] GENERALIZATIONS OF CHUNG-FELLER THEOREMS 323

Corollary 4.12. (Shapiro [12]) For every 0 ≤ r ≤ n, the number of

m-Motzkin paths with r left steps is equal to the m-th Motzkin number and

independent on r.

Proof. Let S = {(1, 1), (1,−1), (1, 0)}, w(x, y) = 1 and l(x, y) = 1 for

any (x, y) ∈ S. Suppose L̄ = [L; j] ∈ L̄S1,1. Since l(x, y) = 1 for any

(x, y) ∈ S, we have j = 0. Deleting the root from the rooted lattice path

L̄, we obtain a lattice path in LS,1. This implies that the number of rooted

lattice paths L̄ in L̄S1,1 with θ̄(L̄) = m and rmrl(L̄) = r is equal to the

number of lattice paths L in LS,1 with θ(L) = m and rml(L) = r. It is easy

to see that LS,1 is the set of Motzkin paths. For every L ∈ LS,1, the number

of left steps and the length of the path L are θ(L) = m and rml(L) = r

respectively.

By Theorem 4.11, the number of rooted lattice paths L̄ in L̄S1,1 with

θ̄(L̄) = m and rmrl(L̄) = r is equal to the number of lattice paths L in

NS1,0 with θ(L) = m. Hence, the number of m-Motzkin paths with r left

steps is equal to the m-th Motzkin number and independent on r. �

By Theorem 4.6 and 4.11, we can derive many new Chung-Feller Theo-

rems for lattice paths. As example, we give the following corollary.

Corollary 4.13. Let S = {(1, 1), (3,−1), (1,−1)}, w(x, y) = 1 for any

(x, y) ∈ S, l(1, 1) = 1, l(3,−1) = 3 and l(1,−1) = 1. Then

(1) the number of lattice paths in L̄S1,1 with length m + 1 and non-positive

root length r equal to the number of lattice paths in NS1,0 with length m

and independent on r;

(2) the number of lattice paths in L̄S1,1 with length m + 1 and rightmost

minimum root length r equal to the number of lattice paths in NS1,0 with

length m and independent on r.

Example 4.14. Let m = 4. Let the step set S, the weight function w

and the length function l be given as those in Corollary 4.13. We draw all

the lattice paths L in NS1,0 with θ(L) = 4 as follows:

Figure 10. All the lattice paths in NS1,0 with θ(L) = 4.



324 JUN MA AND YEONG-NAN YEH [September

We draw rooted lattice paths L̄ in L̄S1,1 with θ̄(L̄) = 4 and nprl(L̄) = r

as follows:

r r

0 1

2 3

4

Figure 11. Rooted lattice paths L̄ in L̄S1,1 with θ̄(L̄) = 4 and nprl(L̄) = r.

where the notation “ • ” denotes the root of the corresponding path. We

draw rooted lattice paths L̄ in L̄S1,1 θ̄(L̄) = 4 and rmrl(L̄) = r as follows:

r r

0 1

2 3

4

Figure 12. Rooted lattice paths L̄ in L̄S1,1 with θ̄(L̄) = 4 and rmrl(L̄) = r.

where the notation “ • ” denotes the root of the corresponding path.

5. A Chung-Feller extension of up-down type for (NS3,0, θ)

In this section, we give the third example of Chung-Feller extensions

obtained by the function of Chung-Feller type for a generating function.

Since we use similar methods to those used in Section 3, we don’t give the

detail of the proofs for lemmas and theorems in this section and only list
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them. In this subsection, we consider rooted lattice paths with the step set,

the weight function and the length function in the following case.

Let S3 = SA ∪ SB ∪ {(1, 1)}, where SA = {(1,−2i + 1) | i ∈ A} and

SB = {(2i, 0) | i ∈ B}.

For any step (x, y) ∈ S3, let

l3(x, y) =















i if (x, y) = (2i, 0),

0 if (x, y) = (1,−2i + 1),

1 if (x, y) = (1, 1),

w3(x, y) =















bi if (x, y) = (2i, 0),

ai if (x, y) = (1,−2i + 1),

1 if (x, y) = (1, 1).

Define a generating function S3(z) as S3(z) =
∑

L∈NS3,0
w(L)zθ(L). Let

s3;m be the sum of the weights of lattice paths in the set NS3,0 with length

m for m ≥ 1 and s3;0 = 1. It is easy to see that S3(z) =
∑

n≥0 s3;mzm.

Lemma 5.1. S3(z) = 1 +
(
∑

i∈B biz
i
)

S3(z) +
(
∑

i∈A aiz
i
)

[S3(z)]i+1.

By Lemma 5.1, we have

CS3(y, z) =
S3(z) − yS3(yz)

1 − y

=
1 +

(

∑

i∈B biz
i
∑i−1

j=0 yj
)

S3(z)

1 −
∑

i∈B biyizi −
∑

i∈A aizi
∑i

j=0 yi−j [S3(yz)]i−j [S3(z)]j
.

Hence, let

P3(y, z) = 1 +





∑

i∈B

biz
i

i−1
∑

j=0

yj



S3(z)

and

G3(y, z) =
1

1 −
∑

i∈B biyizi −
∑

i∈A aizi
∑i

j=0 yi−j[S3(yz)]i−j [S3(z)]j

We give combinatorial interpretations for P3(y, z), G3(y, z) and CS3(y, z).
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Define a generating function P̃3(y, z) as P̃3(y, z) =
∑

[L;j]∈N̄S3,0
w(L)yj

zθ(L).

Lemma 5.2. P̃3(y, z) = 1 +
(

∑

i∈B biz
i
∑i−1

j=0 yj
)

S3(z).

Hence, P̃3(y, z) =
∑

[L;j]∈N̄S3,0
w(L)yjzθ(L) is a combinatorial interpre-

tation for P3(y, z).

Define a generating function G̃3(y, z) as G̃3(y, z) =
∑

L∈LS3,0
w(L)ynpl(L)

zθ(L).

Lemma 5.3.

G̃3(y, z) = 1 +





∑

i∈A

aiz
i

i
∑

j=0

yi−j[S3(yz)]i−j [S3(z)]j



 G̃3(y, z)

+

(

∑

i∈B

biy
izi

)

G̃3(y, z).

Equivalently,

G̃3(y, z) =
1

1 −
∑

i∈B biyizi −
∑

i∈A aizi
∑i

j=0 yi−j[S3(yz)]i−j [S3(z)]j

Hence, G̃3(y, z) =
∑

L∈LS3,0
w(L)ynpl(L)zθ(L) is a combinatorial inter-

pretation for G3(y, z).

Define a generating function D3(y, z) as D3(y, z)=
∑

L̄∈L̄S3,1
w(L)ynprl(L̄)

zθ(L)−1. Let s̄3;m,r be the sum of weights of rooted lattice paths in the set

L̄S3,1 with length m + 1 and non-positive root length r for (m, r) 6= (0, 0)

and s̄3;0,0 = 1. It is easy to see that D3(y, z) =
∑

m≥0

∑m
r=0 s̄3;m,ry

rzm.

Lemma 5.4. D3(y, z) = G3(y, z)P3(y, z).

Hence, D3(y, z) =
∑

L̄∈L̄S3,1
w(L)ynprl(L̄)zθ(L)−1 is a combinatorial in-

terpretation for CS3(y, z).

Theorem 5.5. (L̄S3,0, θ̄, nprl) is a Chung-Feller extension for (NS3,0, θ).

Theorem 5.6. Let s̄3;m,r be the sum of weights of rooted lattice paths

in the set L̄S3,1 which
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(a) have length m + 1,

(b) have non-positive root length r.

Let s3;m be the sum of the weights of the lattice paths in the set NS3,0 with

length m. Then s̄3;m,r = s3;m and s̄3;m,r is independent on r.

By Theorem 5.6, we can derive many new Chung-Feller Theorems for

lattice paths. As example, we give the following corollary.

Corollary 5.7. Let S = {(1, 1), (1,−3), (2, 0), (4, 0)}, w(x, y) = 1 for

any (x, y) ∈ S, l(1, 1) = 1, l(1,−3) = 0, l(4, 0) = 2 and l(2, 0) = 1. Then

the number of lattice paths in L̄S1,1 with length m + 1 and non-positive root

length r equal to the number of lattice paths in NS1,0 with length m and

independent on r.

Example 5.8. Let m = 3. Let the step set S, the weight function w

and the length function l be given as those in Corollary 5.7. We draw all

the lattice paths L in NS3,0 with θ(L) = 3 as follows:

Figure 13. All the lattice paths in NS3,0 with θ(L) = 3.

We draw rooted lattice paths L̄ in L̄S3,1 with θ̄(L̄) = 3 and nprl(L̄) = r

as follows:

r r

0 1

2 3

Figure 14. Rooted lattice paths L̄ in L̄S3,1 with θ̄(L̄) = 3 and nprl(L̄) = r.

where the notation “ • ” denotes the root of the corresponding path.
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6. Remarks

In this section, we give some observations and Remarks.

6.1. New Chung-Feller theorems

Narayana [10] related cycle permutations of lattice paths to the Chung-

Feller theorem. Mohanty’s book [9] devotes an entire section to exploring

Chung-Feller theorem. We are interested in the Theorem 2 in the page 70

of the book. We state the Theorem as the following lemma.

Lemma 6.1. ([9]) Given a positive integer n, let Y = (y1, . . . , yn+1)

be a sequence of integers with 1 − n ≤ yi ≤ 1 for all i ∈ [n + 1] such that
∑n+1

i=1 yi = 1. Furthermore, let E(Y ) = |{i |
∑i

j=1 yj ≤ 0}|. Let Yi be the i-th

cyclic permutation of Y (i.e., Yi = (yi, yi+1, . . . , yn+i+1) with yn+r+1 = yr).

Then there exists a permutation i1, . . . , in+1 on the set [n + 1] such that

E(Yi1) > E(Yi2) > · · · > E(Yin+1).

Many Chung-Feller theorems are consequences of Lemma 6.1. First,

let φ be a mapping from Z to P, where P is the set of all the positive

integers. For any a sequence Y = (y1, . . . , yn+1), we can obtain a sequence of

vectors (φ(y1), y1)(φ(y2), y2) · · · (φ(yn+1), yn+1). The sequence can be viewed

as a lattice path in the plane Z × Z that goes from the origin to the point

(
∑n+1

i=1 φ(yi),
∑n+1

i=1 yi). We use P (Y ) to denote this path.

For example, let φ(y) = 1 for all y ∈ Z. Let Y = (y1, . . . , yn+1) be a

sequence of integers with yi ∈ {−1, 1} for all i ∈ [n+1] such that
∑n+1

i=1 yi =

1. Then P (Y ) is the famous Dyck path that goes from the origin to the

point (n + 1, 1). Using Lemma 6.1, we derive a Chung-Feller theorem for

Dyck paths.

If let φ(y) = 1 for all y ∈ Z and let Y = (y1, . . . , yn+1) be a sequence of

integers with yi ∈ {−1, 0, 1} for all i ∈ [n + 1] such that
∑n+1

i=1 yi = 1, then

P (Y ) is the famous Motzkin path that goes from the origin to the point

(n + 1, 1). Using Lemma 6.1, we derive a Chung-Feller theorem for Motzkin

paths.
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If let φ(0) = 2, φ(y) = 1 for all y 6= 0 and let Y = (y1, . . . , yn+1)

be a sequence of integers with yi ∈ {−1, 0, 1} for all i ∈ [n + 1] such that
∑n+1

i=1 yi = 1, then P (Y ) is the Schröder path. Using Lemma 6.1, we derive

a Chung-Feller theorem for Schröder paths.

On the other hand, as an example, Corollary 3.13 cannot be derived

directly as a special case of Lemma 6.1 since there is no mapping φ such

that φ(−1) = 1 and φ(−1) = 5. See Corollaries 4.13 and 5.7 for more

examples. Hence, by the main theorems in this paper, many new Chung-

Feller theorems for rooted lattice paths are derived.

6.2. Incomplete Chung-Feller phenomenents

We are given a combinatorial model S̄ , two mappings θ̄ and λ̄, where

0 ≤ λ̄(S) ≤ θ̄(S) for every S ∈ S̄ . For any m ≥ 0, let Am be a subset

of {0, 1, . . . ,m}. We say that (S̄ , θ̄, λ̄) has incomplete Chung-Feller phe-

nomenents if the number of combinatorial structures S in the set S̄ with

θ̄(S) = m and λ̄(S) = r is a constant and independent on r for all r ∈ Am.

Chung-Feller theorems which we discuss in the foregoing sections are the

case Am = {0, 1, . . . ,m} for all m ≥ 0.

Example 6.2. There is an example for incomplete Chung-Feller the-

orems. Let D = (x1, y1) · · · (x2m, y2m) be a sequence of vectors in the set

{(1, 1), (1,−1)} such that
∑2m

i=1 yi = 0. Then D is an m-Dyck path in the

plane Z×Z. The semi-length of D is m. For every i ∈ [2m− 1], we say that

a subsequence of length 2 (xi, yi)(xi+1, yi+1) in D is a peak of D if yi = 1 and

yi+1 = −1. We use p(D) to denote the number of peaks in a m-Dyck path D.

Let sm,r,k be the number of m-Dyck paths with r nonpositive up-steps such

that p(D) = k or m−k. By datas obtained by computer searchs, we observe

that sm,r,k is independent on r for all r ∈ [m−1]. In [6], we proved this propo-

sition by using the ideal of the function of Chung-Feller type. In particular,

we define generating functions S(x, y, z) =
∑

m≥0

∑m−1
r=1

∑m−1
k=1 sm,r,kx

kyrzm

and α(x, z) =
∑

m≥0

∑m−1
k=1 sm,1,kx

kzm. By simple computations, we can get
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formulars for S(x, y, z) and α(x, z). Note that

S(x, y, z) =
yα(x, z) − α(x, yz)

1 − y
.

Hence, the proposition holds. For r = 1, 2, 3, and k = 1, 2 we draw all the

4-Dyck paths with r nonpositive up-steps which have k or m − k peaks as

follows.

k=1 k=2

r=1

r=2

r=3

Figure 15. All the 4-Dyck paths with non-positive r which have k or m − k

peaks for r = 1, 2, 3 and k = 1, 2.

Example 6.3. Fix two positive integers m and n. Let S̄m,n be a

set of sequences of vectors (x1, y1) · · · (xn+1, yn+1) such that
∑n+1

i=1 yi = 1,

1 − n ≤ yi ≤ 1,
∑n+1

i=1 xi = m and xi ≥ 1. Each element in S̄m,n can

be viewed as a lattice path in the plane Z × Z. For every S ∈ S̄m,n, let

NP (S) = {i |
∑i

j=1 yj ≤ 0}. Define the non-positive length of S, denoted

by npl(S), as npl(S) =
∑

i∈NP (S) xi. Let sm,n,r be the number of lattice

paths S in S̄m,n with npl(S) = r. By bijection method, we proved that

sm,n,r is a constant and independent on r for all r ∈ [m − 1] in [7]. For

r = 0, 1, 2, 3, we draw 18 lattice paths in S̄4,2 with non-positive length r as

follows.
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r r

0 1

2 3

Figure 16. All the lattice paths in S̄4,2 with non-positive length r for r =

0, 1, 2, 3.

Let S = (x1, y1) · · · (xn+1, yn+1) ∈ S̄m,n. Let a0 = 0, b0 = 0, ai =
∑i

j=1 xj and bi =
∑i

j=1 yj for every i ∈ [n + 1]. We suppose that (ai, bi) is

the rightmost minimum point of S. Define the rightmost minimum length

of S, denoted by rml(S), as rml(S) = ai. Let s̄m,n,r be the number of

lattice paths S in S̄m,n with rml(S) = r. By bijection method, we proved

that s̄m,n,r is a constant and independent on r for all r ∈ [m − 1] in [7].

For r = 0, 1, 2, 3, we draw 18 lattice paths in S̄4,2 with rightmost minimum

length r as follows.

r r

0 1

2 3

Figure 17. All the lattice paths in S̄4,2 with non-positive length r for r =

0, 1, 2, 3.
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