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Abstract

In this paper, we apply a relatively new technique which

is called the exp-function method for solving higher order bound-

ary value problems which arise in various physical phenomena of

applied and engineering sciences. The proposed method proves to

be very accurate and efficient for solving such problems.

1. Introduction

This paper is devoted to the study of higher-order boundary value prob-

lem which are known to arise in the study of astrophysics, hydrodynamic

and hydro magnetic stability, fluid dynamics, astronomy, beam and long

wave theory , engineering and applied physics, see [2]-[6], [14]-[19], [22], [24]-

[26]. If a uniform magnetic field is applied across the fluid in the same

direction as that of gravity, then the instability may sets in as over stability

which can be modeled by a twelfth or eighth-order boundary value problem;

whereas the instability which occur as ordinary convection can be modeled

by a tenth-order boundary value problem. We would like to point out that

the eighth-order boundary value problems arise in the torsinal vibration of

uniform beam, see [2]-[6], [14]-[19], [22], [24]-[26] and the references therein.

The boundary value problems of higher order have been investigated due
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to their mathematical importance and the potential for applications in di-

versified applied sciences. Several techniques including the finite-difference,

polynomial, non-polynomial spline and decomposition have been developed

for solving such type of problems, see [1]-[29]. Most of these techniques have

their inbuilt deficiencies, like divergence of the results at the points adjacent

to the boundary and calculation of the so-called Adomian’s polynomials. To

rectify these difficulties, He and Wu [9] developed another method, which

is called the exp-function method, to find solitary, periodic and compacton

like solutions of nonlinear differential equations, see [1], [7]-[10], [12], [13],

[20], [21], [23], [27]-[29]. The exp-function method has been applied for solv-

ing KdV, high-dimensional nonlinear evolution equation, Burgers equations,

combined KdV, mKdV and various other physical problems, see [1], [7]-[10],

[12], [13], [20], [21], [23], [27]-[29]. The basic motivation of this paper is to

extend the applications of this powerful technique for solving higher-order

nonlinear boundary value problems. Several examples are given to verify the

efficiency and accuracy of the proposed algorithm. It is worth mentioning

that we obtained exact solutions for all the higher-order nonlinear boundary

value problems. We have also obtained the soliton solutions for a reaction

diffusion problem. The numerical results are very encouraging. We have

demonstrated that the exp-function method can be viewed as an alternative

method to variational iteration, homotopy perturbation and decomposition

methods for the implementation and efficiency.

2. Exp-function Method

To convey an idea of the exp-function method, we consider the general

nth-order boundary value problem of the type

y(n)(x) = f(x, y), (1)

with boundary conditions

y(j−2)(ai) = Ai, i = 1, 2, . . . ,
n

2
, y(j−2)(bi) = Bi, j = 2, 4, . . . , n

The exp-function method, developed by He and Wu [9], is based on the

assumption that solution of nonlinear ordinary differential equations an be
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expressed in the following form

y(x) =

∑d
n=−c an exp[nx]

∑q
m=−p bm exp[mx]

, (2)

where p, q, c and d are positive integers which are known to be further

determined, an and bm are unknown constants. Equation (2) can be re-

written as the following alternate and useful form

y(x) =
ac exp[cx] + · · · + a−d exp[−dx]

bp exp[px] + · · · + b−q exp[−qx]
. (3)

To determine the values of c and p, we balance the linear terms of higher

order of the equation with the highest order nonlinear terms.

3. Numerical Applications

In this section, we apply the exp-function method, as developed in Sec-

tion 3, for solving the higher-order boundary value problems. Numerical

results are very encouraging showing the complete reliability and efficiency

of the proposed method.

Example 3.1.([16, 17, 26]) Consider the nonlinear boundary value

problem of eighth-order

y(viii)(x) = e−xy2(x), 0 < x < 1, (4)

with boundary conditions

y(0)=y′′(0)=y(iv)(0)=y(vi)(0)=1, y(1)=y′′(1)=y(iv)(1)=y(vi)(1)=e.

The exact solution for this problem is

y(x) = ex. (5)

We suppose that the solution of the boundary value problem can be ex-

pressed in the following form

y(x) =
ac exp[cx] + · · · + a−d exp[−dx]

bp exp[px] + · · · + b−q exp[−qx]
.
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The appropriate simplification would yield

y(viii) =
c1 exp[(255p + c)x] + · · ·

c2 exp[256px] + · · ·
, (6)

and

y2 =
c3 exp[2cx] + · · ·

c4 exp[2px] + · · ·
=

c3 exp[(254p + 2c)x] + · · ·

c4 exp[256px] + · · ·
, (7)

where ci are determined coefficients only for simplicity. Balancing the highest

order of exp-function in (6) and (7), we have

255p + c = 254p + 2c, (8)

which in turn gives

p = c. (9)

The values of d and q can also be determined by balancing the linear term

of the lowest order

y(viii) =
· · · + d1 exp[(−255q − d)x]

· · · + d2 exp[−256qx]
, (10)

and

y2 =
· · · + d3 exp[−2dx]

· · · + dx exp[−2qx]
=

· · · + d3 exp[(−254q − 2d)x]

· · · + d4 exp[−256qx]
, (11)

where di are determined coefficients only for simplicity. Now, balancing the

lowest order of exp-function in (10) and (11), we have

−255q − d = −254q − 2d, (12)

which in turn gives

q = d. (13)

Case 3.1.1. p = c = 1, and q = d = 1. Equation (3) reduces to

y(x) =
a1 exp[x] + a0 + a−1 exp[−x]

b1 exp[x] + b0 + b−1 exp[−x]
. (14)
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Substituting (14) into (4), we have

1

A

[

c8 exp(8x) + c7 exp(7x) + c6 exp(6x) + c5 exp(5x) + c4 exp(4x)

+c3 exp(3x) + c2 exp(2x) + c1 exp(x) + c0 + c−1 exp(−x)

+c−2 exp(−2x) + c−3 exp(−3x) + c−4 exp(−4x) + c−5 exp(−5x)

+c−6 exp(−6x) + c−7 exp(−7x) + c−8 exp(−8x) + c−9 exp(−9x)

+c−10 exp(−10x)
]

= 0, (15)

where A = (b1 exp(x) + b0 + b−1 exp(−x))9, Ci (i = −10,−9,−8, . . . , 6, 7, 8)

are constants obtained by Maple 7.

Equating the coefficients of exp(nx) to be zero, we obtain

{

c−10 = 0, c−9 = 0, c−8 = 0, c−7 = 0, c−6 = 0, c−5 = 0, c−4 = 0,

c−3 = 0, c−2 = 0, c−1 = 0, c0 = 0, c1 = 0, c2 = 0, c3 = 0,

c4 = 0, c5 = 0, c6 = 0, c7 = 0, c8 = 0.
}

(16)

Solution of (15) will yield

{

a−1 = 0, b1 = 0, a0 = 0, b0 = a1, b−1 = 0, a1 = a1.
}

(17)

Consequently, the exact solution is obtained y(x) = ex.

Case 3.1.2. p = c = 2, and q = d = 1. Equation (3) reduces to

y(x) =
a2 exp[2x] + a1 exp[x] + a0 + a−1 exp[−x]

b2 exp[2x] + b1 exp[x] + b0 + b−1 exp[−x]
. (18)

Proceeding as before, we obtain

{

a−1 = 0, a0 = 0, a1 = b0, a2 = a2,

b−1 = 0, b0 = b0, b1 = a2, b2 = 0.
}

(19)

y(x) =
a2e

(2x) + b0e
(x)

a2e(x) + b0
=

e(x)(a2e
(x) + b0)

(a2e(x) + b0)
, where (a2e

(x) + b0) 6= 0.

Consequently, the exact solution is obtained as y(x) = ex.
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Example 3.2.([16, 17, 25]) Consider the following nonlinear boundary

value problem of tenth-order

y(x)(x) = e−xy2(x), 0 < x < 1 (20)

with boundary conditions

y(0) = 1, y′′(0) = y(iv)(0) = y(vi)(0) = y(viii)(0) = 1,

y(1) = e, y′′(1) = y(iv)(1) = y(vi)(1) = y(viii)(1) = e.

The exact solution for this problem is

y(x) = ex. (21)

We suppose that the solution of the boundary value problem can be ex-

pressed in the following form

y(x) =
ac exp[cx] + · · · + a−d exp[−dx]

bp exp[px] + · · · + b−q exp[−qx]
.

Proceeding as before, we obtain p = c, q = d.

Case 3.2.1. p = c = 1, and q = d = 1. Equation (3) reduces to

y(x) =
a1 exp[x] + a0 + a−1 exp[−x]

b1 exp[x] + b0 + b−1 exp[−x]
. (22)

Substituting (22) into (20), we have

1

A

[

c10 exp(10x)+c9 exp(9x)+c8 exp(8x)+c7 exp(7x)+c6 exp(6x)+c5 exp(5x)

+c4 exp(4x) + c3 exp(3x) + c2 exp(2x) + c1 exp(x) + c0 + c−1 exp(−x)

+c−2 exp(−2x) + c−3 exp(−3x) + c−4 exp(−4x) + c−5 exp(−5x)

+c−6 exp(−6x) + c−7 exp(−7x) + c−8 exp(−8x) + c−9 exp(−9x)

+c−10 exp(−10x) + c−11 exp(−11x) + c−12 exp(−12x)
]

= 0, (23)

where A = (b1 exp(x)+ b0 + b−1 exp(−x))11, Ci (i = −12,−11,−10, . . . , 8, 9,

10) are constants obtained by Maple 7. Equating the coefficients of exp(nx)
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to be zero, we obtain

{

c−12 = 0, c−11 = 0, c−10 = 0, c−9 = 0, c−8 = 0, c−7 = 0, c−6 = 0,

c−5 = 0, c−4 = 0, c−3 = 0, c−2 = 0, c−1 = 0, c0 = 0, c1 = 0, c2 = 0,

c3 = 0, c4 = 0, c5 = 0, c6 = 0, c7 = 0, c8 = 0, c9 = 0, c10 = 0.
}

(24)

Solution of (23) will yield

{a−1 = 0, b1 = 0, a0 = 0, b0 = b0, b−1 = 0, a1 = b0.} (25)

Consequently, the exact solution is obtained as y(x) = ex.

Case 3.2.2. For p = c = 2, and q = d = 1, equation (3) reduces to

y(x) =
a2 exp[2x] + a1 exp[x] + a0 + a−1 exp[−x]

b2 exp[2x] + b1 exp[x] + b0 + b−1 exp[−x]
. (26)

Proceeding as before, we obtain

{

a−2 = 0, a−1 = a−1, a0 = 0, a1 = 0, a2 = 0,

b−2 = 0, b0 = 0, b0 = a−1, b2 = 0.
}

Consequently, the exact solution is obtained as y(x) = ex.

Example 3.3.([16, 17, 18, 26]) Consider the following nonlinear bound-

ary value problem of twelfth-order

y(xii) = 2exy2(x) + y′′′(x), 0 < x < 1 (26)

with boundary conditions

y(0) = y′′(0) = y(iv)(0) = y(vi)(0) = y(viii)(0) = y(x)(0) = 1,

y(1) = y′′(1) = y(iv)(1) = y(vi)(1) = y(viii)(1) = y(x)(1) = e−1.

The exact solution for this problem is

y(x) = e−x. (27)

We assume that the solution of the above boundary value problem can
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be expressed in the form

y(x) =
ac exp[cx] + · · · + a−d exp[−dx]

bp exp[px] + · · · + b−q exp[−qx]
. (28)

Proceeding as before, we obtain p = c, q = d.

Case 3.3.1. For p = c = 1, and q = d = 1, equation (3) reduces to

y(x) =
a1 exp[x] + a0 + a−1 exp[−x]

b1 exp[x] + b0 + b−1 exp[−x]
. (29)

Substituting (29) into (26), we have

1

A

[

c14 exp(14x)+c13 exp(13x)+c12 exp(12x)+c11 exp(11x)+c10 exp(10x)

+c9 exp(9x)+c8 exp(8x)+c7 exp(7x)+c6 exp(6x)+c5 exp(5x)+c4 exp(4x)

+c3 exp(3x) + c2 exp(2x) + c1 exp(x) + c0 + c−1 exp(−x) + c−2 exp(−2x)

+c−3 exp(−3x) + c−4 exp(−4x) + c−5 exp(−5x) + c−6 exp(−6x)

+c−7 exp(−7x) + c−8 exp(−8x) + c−9 exp(−9x) + c−10 exp(−10x)

+c−11 exp(−11x) + c−12 exp(−12x)
]

= 0, (30)

where A = (b1 exp(x) + b0 + b−1 exp(−x))13, Ci (i = −12,−11,−10, . . . , 12,

13, 14) are constants obtained by Maple 7. Equating the coefficients of

exp(nx) to be zero, we obtain

{

c−12 = 0, c−11 = 0, c−10 = 0, c−9 = 0, c−8 = 0, c−7 = 0, c−6 = 0,

c−5 = 0, c−4 = 0, c−3 = 0, c−2 = 0, c−1 = 0, c0 = 0, c1 = 0, c2 = 0,

c3 = 0, c4 = 0, c5 = 0, c6 = 0, c7 = 0, c8 = 0, c9 = 0, c10 = 0, c11 = 0,

c12 = 0, c13 = 0, c14 = 0.
}

Solution of (30) will yield

{a−1 = 0, b1 = a0, a0 = a0, b0 = 0, b−1 = 0, a1 = 0.}

Consequently, the exact solution is obtained as y(x) = e−x.
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Case 3.3.2. For p = c = 2, and q = d = 1, equation (3) reduces to

y(x) =
a2 exp[2x] + a1 exp[x] + a0 + a−1 exp[−x]

b2 exp[2x] + b1 exp[x] + b0 + b−1 exp[−x]
. (31)

Proceeding as before, we obtain

{

a−1 = 0, a0 = a0, a1 = 0, a2 = 0,

b−1 = 0, b0 = 0, b1 = a0, b2 = 0.
}

Consequently, the exact solution is obtained as y(x) = e−x.

Example 3.4.([16, 17, 18, 26]) Consider the nonlinear boundary value

problem of twelfth-order

y(xii) =
1

2
e−xy2(x), 0 < x < 1, (32)

with boundary conditions

y(0) = y′′(0) = y(iv)(0) = y(vi)(0) = y(viii)(0) = y(x)(0) = 2,

y(1) = y′′(1) = y(iv)(1) = y(vi)(1) = y(viii)(1) = y(x)(1) = 2e.

The exact solution for this problem is

y(x) = 2ex. (33)

We assume that the solution of the above boundary value problem can be

expressed in the form

y(x) =
ac exp[cx] + · · · + a−d exp[−dx]

bp exp[px] + · · · + b−q exp[−qx]
. (34)

Proceeding as before, we obtain p = c, q = d.

Case 3.4.1. For p = c = 1, and q = d = 1 equation (3) reduces to

y(x) =
a1 exp[x] + a0 + a−1 exp[−x]

b1 exp[x] + b0 + b−1 exp[−x]
. (35)
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Substituting (35) into (32), we have

1

A

[

c12 exp(12x)+c11 exp(11x)+c10 exp(10x)+c9 exp(9x)+c8 exp(8x)

+c7 exp(7x)+c6 exp(6x)+c5 exp(5x)+c4 exp(4x)+c3 exp(3x)+c2 exp(2x)

+c1 exp(x) + c0 + c−1 exp(−x) + c−2 exp(−2x) + c−3 exp(−3x)

+c−4 exp(−4x) + c−5 exp(−5x) + c−6 exp(−6x) + c−7 exp(−7x)

+c−8 exp(−8x) + c−9 exp(−9x) + c−10 exp(−10x) + c−11 exp(−11x)

+c−12 exp(−12x) + c−13 exp(−13x) + c−14 exp(−14x)
]

= 0, (36)

where A = (b1 exp(x) + b0 + b−1 exp(−x))13, Ci (i = −14,−13,−12, . . . , 10,

11, 12) are constants obtained by Maple 7.

Equating the coefficients of exp(nx) to be zero, we obtain

{

c−14 = 0, c−13 = 0, c−12 = 0, c−11 = 0, c−10 = 0, c−9 = 0, c−8 = 0,

c−7 = 0, c−6 = 0, c−5 = 0, c−4 = 0, c−3 = 0, c−2 = 0, c−1 = 0, c0 = 0,

c1 = 0, c2 = 0, c3 = 0, c4 = 0, c5 = 0, c6 = 0, c7 = 0, c8 = 0, c9 = 0,

c10 = 0, c11 = 0, c12 = 0.
}

Solution of (36) will yield

{

a−1 = 0, b1 = 0, a0 = 0, b0 = b0, b−1 = 0, a1 = 2b0.
}

Consequently, the exact solution is obtained as y(x) = 2ex.

Case 3.4.2. For p = c = 2, and q = d = 1, equation (3) reduces to

y(x) =
a2 exp[2x] + a1 exp[x] + a0 + a−1 exp[−x]

b2 exp[2x] + b1 exp[x] + b0 + b−1 exp[−x]
.

Proceeding as before, we obtain

{

a−1 = 0, a0 = 2b−1, a1 = 2b0, a2 = 2b1,

b−1 = b−1, b0 = b0, b1 = b1, b2 = 0.
}

(37)
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Equation (37) leads to the following solution

y(x) =
2b1e

(2x) + 2b0e
x + 2b−1

b1ex + b0 + b−1e−x
, where b1e

x + b0 + b−1e
−x 6= 0.

Consequently, the exact solution is obtained as y(x) = 2ex.

Example 3.5.([11]) Consider the following reaction diffusion equation

[11]

y′′(x) + yn(x) = 0, 0 < x < L. (38)

with boundary conditions y(0) = y(L) = 0.

Equation (38) can be re-written in the following equivalent form:

y′′′(x) + nyn−1(x)y′(x) = 0, (39)

with boundary conditions y(0) = 0, y′(0) = α, y(L) = 0, where is arbitrary

constant.

Case 3.1. For p = c = 1, and q = d = 1, equation (39) reduces to

y(x) =
a1 exp[x] + a0 + a−1 exp[−x]

b1 exp[x] + b0 + b−1 exp[−x]
. (40)

Substituting (40) into (39) with , we have

1

A

[

C3 exp(3x) + C2 exp(2x) + C1 exp(x) + C0 + C−1 exp(−x)

+C−2 exp(−2x) + C−3 exp(−3x)
]

= 0, (41)

where A = (b1 exp(x) + b0 + b−1 exp(−x))4, Ci (i = −3,−2, . . . , 2, 3) are

constants obtained by Maple 7.

Equating the coefficients of exp(nx) to zero, we obtain

{

C−3 = 0, C−2 = 0, C−1 = 0, C0 = 0, C1 = 0, C2 = 0, C3 = 0.
}

Solving the system, we obtain

{

a−1 = −
1

2
b−1, b1 =

1

4

b2
0

b−1
, a0 =

5

2
b0, b0 = b0, b−1 = b−1, a1 = −

1

8

b2
0

b−1
.

}
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Figure 3.5.1.

The soliton solutions of equation (39) are given as:

y(x) =

−
1

8

b2
0

b−1
ex +

5

2
b0 −

1

2
b−1e

−x

1

4

b2
0

b−1
ex + b0 + b−1e

−x

. (42)

Figure 3.5.1 depicts the soliton solutions of equation (39).

Case 3.2. For p = c = 2, and q = d = 2, the trial function of equation

(39) becomes

y(x) =
a2 exp[2x] + a1 exp[x] + a0 + a−1 exp[−x]

b2 exp[2x] + b1 exp[x] + b0 + b−1 exp[−x]
. (43)
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Figure 3.5.2.

Proceeding as before, we obtain

{

a−1 = 0, b1 = b1, a1 =
5

2
b1, b0 =

1

4

b2
1

b2
,

b−1 = 0, a0 = −
1

8

b2
1

b2
, b2 = b2, a2 = −

1

2
b2.

}

(44)

Equation (44) gives the following solution

y(x) =
−

1

2
b2e

2x +
5

2
b1e

x −
1

8

b2
1

b2
ex

b2e2x + b1ex +
1

4

b2
1

b2

.

Figure 3.5.2 depicts the soliton solutions of equation (39).
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Remark 3.1. It is worth mentioning that exact solutions are obtained

for all the higher-order non-linear boundary value problems, where as soliton

solutions are calculated in case of reaction-diffusion equation.

4. Conclusion

In this paper, we applied the exp-function method for solving the higher-

order nonlinear boundary value problems. The proposed method was applied

for finding the exact solution of the higher-order boundary value problems.

We have also considered an example for the reaction diffusion equation and

obtained soliton solutions. The results are very promising.
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