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Abstract

The Grusin operator ∆G = 1
2
(∂2

x + x2∂2
y), x, y ∈ R, is

studied by Hamilton-Jacobi theory. In particular, we find all the

geodesics of ∆G of the induced nonholonomic geometry, construct

a modified complex action f which allows us to obtain the heat

kernel Pt of ∆G. The small time asymptotics of Pt at all critical

points of f are computed. Finally we discuss the connection be-

tween ∆G and the subLaplacian of the 1-dimensional Heisenberg

group.

1. Introduction

We are interested in the geometric and analytic properties of the step

two Grusin operator

∆G =
1

2
(X2

1 +X2
2 ),

where the vector fields X1 and X2 in R
2 are given by

X1 =
∂

∂x
, X2 = x

∂

∂y
, (x, y) ∈ R

2.
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Note that X1 and X2 are linearly independent everywhere except on the

y-axis, where X2 vanishes. Consequently, the operator ∆G is elliptic except

on the y-axis and the geometry of ∆G is not Riemannian. On the other

hand, [X1,X2] = ∂
∂y , so Chow’s theorem [6] holds, and any two points on

the (x, y)-plane can be connected by a piecewise differentiable horizontal

curve; a horizontal curve is a curve whose tangents are linear combinations

of X1 and X2.

Our main tool is the Hamilton-Jacobi theory of bicharacteristics.(see [1],

[2], [7]). The Hamiltonian function H associated with the symbol of −∆G is

H(x, y, ξ, η) =
1

2

(
ξ2 + x2η2

)

where (x, y, ξ, η) are the coordinates of the cotangent bundle T ∗
R

2. Note

that by setting η = 1, H corresponds to the 1-dimensional harmonic oscilla-

tor in quantum mechanics. A geodesic is the projection of a bicharacteristic

curve of H into the (x, y) plane. In order to obtain geodesics between two

points (x0, y0) and (x, y) in R
2, one solves the Hamiltonian system

dx

ds
= Hξ = ξ,

dξ

ds
= −Hx = −xη2

(
so

d2x

ds2
= −xη2

)
,

dy

ds
= Hη = x2η,

dη

ds
= −Hη = 0,

(2.4)

with boundary conditions given by

x(0) = x0, y(0) = y0, x(1) = x, y(1) = y. (2.5)

Since the operator ∆G is translation invariant along the y-direction, one may

assume that y(0) = 0, in other words, only the quantity y − y0 matters. We

shall mainly consider the case y ≥ 0 which implies η ≥ 0 by (2.4); the case

y ≤ 0 (so η ≤ 0) is obatined by symmetry.

In solving (2.4) with y ≥ 0 one finds that there are more than one

bicharacteristic curve satisfying (2.5) and the projected curves in (x, y)-plane

can be more than one, too. The length of a horizontal curve is defined in

(4.26), (4.27). The length of the shortest geodesics is called the Carnot-

Carathéodory distance. Here we consider all the geodesics between any two

distinct points as Perry [11] showed that each geodesic contributed to the

asymptotics of the resolvent in the Heisenberg group case.
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From (2.4) one gets immediately that

x(s) = x0 cos(ηs) +B sin(ηs), (2.6)

with

B =
x− x0 cos η

sin η
, if η 6= kπ (2.9)

and

y(s) = η
[1

2
(x2

0 +B2)s+
1

4η
(x2

0 −B2) sin(2ηs) +
x0B

η
sin2(ηs)

]
. (2.8)

Substituting (2.9) and s = 1 in (2.8) one has (cf. (2.10), (2.11), (2.12))

y =
1

4
[(x+ x0)

2 η + sin η

1 + cos η
+ (x− x0)

2 η − sin η

1 − cos η
] (*)

Those η’s satisfying (*) give rise to geodesics connecting (x0, 0) and (x, y).

Clearly η = kπ, k = 1, 2, . . . are not allowed in (*). However, if one puts s = 1

and η = kπ in (2.8), the geodesics with η = kπ can still be obtained (see

2.4.2), but the information is only partial. One has to study the behavior of

the right hand side of (*) as a function of η ∈ R in order to have a systematic

understanding of the geodesics. In so doing, one can count the number of

geodesics, their multiplicity, and most important, one sees those geodesics

which are not solutions of (*) are limits (in the sense of (2.23),(2.24)) of

the geodesics given by solutions of (*). We call the geodesics coming from

the solutions of (*) ‘generic’ and the rest ‘exceptional’. As a result, one

only needs to work with generic geodesics or the formula (*). A detailed

description of all geodesics is contained in Theorem 2.6. One remarks that

not all geodesics with η = kπ, k = 1, 2, . . . are exceptional, see Section

2.6.1(II). Another interesting fact is that there are countably many geodesics

connecting (0, 0) and (0, y) for any y 6= 0.

Imitating Riemannian case, one uses Hamilton-Jacobi theory to con-

struct an action and then finds the heat kernel of ∆G. As in our case, the

geodesics connecting two distinct points may be multiple, so we uniformise

with a parameter and the formal expression for the heat kernel is an integral

over this parameter. It turns out that the action is the solution of the eiconal

equation (cf.(3.24)). To get the heat kernel one has to find a proper contour
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to make the integral converge, and then one arrives at the modified complex

action

f(τ) = −iτy +
τ

4

[
(x+ x0)

2 tanh
τ

2
+ (x− x0)

2 coth
τ

2

]
, τ ∈ C. (3.28)

Note that f is holomorphic in C \ {ikπ | k = ±1,±2, . . .}.

The case y ≥ 0 corresponds to Imτ ≥ 0 and symmetrically y ≤ 0

corresponds to Imτ ≤ 0 and as before, we deal with y ≥ 0 only.

Writing τ = u + iv, we show that all the critical points of f in the

upper half plane are exactly of the form iv with v satisfying (*). In fact,

the equation ∂Imf
∂u

∣∣
u=0,v≥0

= 0 is nothing but (*) with η replaced by v. One

should mention here that ηj, ηj 6= mπ for some m ∈ Z and of multiplicity k,

corresponds to a zero of order k+1 of Imf at iηj . On the other hand, ηj ≡ 0

mod(π) and of multiplicity k, corresponds to a zero of order k − 1 of Imf

at iηj (here k ≥ 2 always). Furthermore, we find a curve Γ (cf. Section 4.2)

part of Imf = 0, which possesses the property that Ref
∣∣
Γ
> 0 and Ref is

strictly decreasing on Γ− =Γ∩ {u+ iv |u ≤ 0} and Ref is strictly increasing

on Γ+ =Γ∩ {u+ iv |u ≥ 0}. Together with the result Ref(0, ηj) =
l
2
j

2 , where

lj is the length of the geodesic connecting (x0, 0) and (x, y) with η = ηj,

(cf. Theorem 4.7), we show that the lengths of the geodesics are strictly

increasing with respect to ηj .

With the help of the properties of the modified complex action f , one

can easily verify the Pt(x0, x, y) of Section 3 is the heat kernel.

In Section 6 we compute the small time asymptotics for Pt(x0, x, y) at

every critical point of f . In particular,

(I) for simple root ηj of (*), the expansion is of the form

(2πt)−
3
2 e−

f(iηj )

t

∞∑

k=1

αk(ηj)t
k
2 ;

(II) for ηj 6= mπ for some m ∈ Z, ηj double roots of (*), one has

(2πt)−
3
2 e−

f(iηj )

t

∞∑

k=1

αk(ηj)t
k
3 ;
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(III) for ηj ≡ 0 mod(π), ηj is of multiplicity two, one has

(2πt)−
3
2 e−

jyπ
2t

∞∑

k=0

αk(j)t
k+ 1

2 ;

(IV) for ηj ≡ 0 mod(π), ηj is of multiplicity three, one has

(2πt)−
3
2 e−

(j−1)yπ

2t

∞∑

k=0

αk(j)t
k
2
+ 1

4 .

Thus small time asymptotics of Pt yield all geodesic lengths.

f is real analytic in x0, x and y. It follows that the curve Γ(x0,x,y) de-

fined in Section 4 varies continously with respect to x0, x and y for generic

geodesics. As mentioned before, the exceptional geodesics are limits of

generic ones, one has, for example, as x0, x → 0, the roots η2j−1, η2j of

(*) with respect to (x0, 0) and (x, y) tend to jπ, which corresponds to two

distinct geodesics connecting (0, 0), (0, y). We show that the sum of the first

terms in the small time asymptotics with respect to (x0, 0), (x, y) at iη2j−1

and at iη2j converges to the first term of the small time asymptotic with

respect to (0, 0), (0, y) at iη2j−1 = iη2j = ijπ. However, this is not true for

higher order terms.

In the final section, we point out the relation between Grusin operator

and the 1-dimensional Heisenberg group H1. We show how the fundamental

solution of ∆G can be obtained from the fundamental solution of ∆H1 . We

also show how to get Pt(x0, x, y) from the heat kernel of ∆H1 . The relation

between the geodesics of ∆G and ∆H1 is described also. At the end, we write

down the Wiener integral formula for Pt(x0, x, y) which shows the positivity

of Pt(x0, x, y). Of course, this fact also follows from the positivity of the

heat kernel of ∆H1 and the relation between it and Pt(x0, x, y) (cf. (7.2)).

On the other hand, the modified complex action for 1-dimensional Heisen-

berg group H1 is (cf. (7.1))

−iηy +
η

4
|x|2 coth

η

2

where (x1, x2, y) are coordinates for H1 and |x|2 = x2
1 + x2

2. And due to

the group structure one can always take the origin as one of the end points.
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Now in Grusin case with x0 = 0, the modified complex action becomes

− iτy +
τ

4
x2(coth

τ

2
+ tanh

τ

2
)

= − iτy +
τ

2
x2 coth τ

= − iη
y

2
+
η

4
x2 coth

η

2
( by setting τ =

η

2
.)

Therefore the results in Sections 2 and 4 all apply to H1, except when |x| = 0,

where there are uncountably many geodesics in H1 connecting (0, 0, 0) and

(0, 0, y), y 6= 0; they are parametrized by S1. By further study of the action,

we shall give in a forthcoming paper an elementary proof of the positivity of

the heat kernel for the Grusin operator and also for the heat kernel of ∆H1
.

In conclusion, the modified complex action plays the central role in the

construction of the heat kernel. We expect this will hold true for other

subelliptic operators.

We thank Mr. You-Jen Chang for helping in preparing graphs of this

paper.

2. SubRiemannian Geometry induced by the Grusin Operator

2.1. The definition of geodesics

In this section we study the geodesics determined by the Grusin operator

in the (x, y)-plane. Recall

∆G =
1

2

(
X2

1 +X2
2

)
(2.1)

where the vector fields X1 and X2 are given by

X1 =
∂

∂x
, X2 = x

∂

∂y
. (2.2)

The Hamiltonian associated with the symbol of −∆G is

H(x, y, ξ, η) =
1

2

(
ξ2 + x2η2

)
(2.3)

where we use (x, y, ξ, η) to denote the coordinate of the cotangent bundle

T ∗
R

2.
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A bicharacteristic curve of H is the solution of the Hamiltonian system

dx

ds
= Hξ = ξ,

dξ

ds
= −Hx = −xη2,

dy

ds
= Hη = x2η,

dη

ds
= −Hη = 0.

(2.4)

The geodesics are the projection to the base space R
2 of the bicharacteristic

curves of H in T ∗
R

2. For our purpose, we first consider s ∈ [0, 1], and the

initial conditions are given by

x(0) = x0, y(0) = y0, x(1) = x, y(1) = y. (2.5)

2.2. Reduction

Since ∂
∂x and x ∂

∂y are translation invariant in the y-direction, we will

assume y0 = 0 in the rest of this paper. Moreover, the system (2.4) is

invariant under the transformation

(x, y, ξ, η) 7→ (x,−y, ξ,−η),

thus it suffices to study y ≥ 0 or y ≤ 0 and we will assume y ≥ 0 in the rest

of our paper. It follows immediately from (2.4) that η is constant along any

bicharacteristic curve of H. The choice y ≥ 0 forces η ≥ 0 by (2.4). First

we give a rough idea about the solutions of the system (2.4) with initial

conditions (2.5) for the following possible η’s.

2.3. The case η = 0

When η = 0, the system (2.4) implies ξ = constant = ξ(0)
.
= ξ0 and

x(s) = ξ0s+ x0, y(s) = y0 = 0.

So the geodesic is a straight line segment on x-axis connecting (x0, 0) and

(x, 0). Conversely, if we assume y = 0, then by (2.4), we have

0 = y = y(1) = η

∫ 1

0
x2(u)du.
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This implies η = 0 or x(s) ≡ 0. But x(s) ≡ 0 implies ξ = 0 and x0 = x = 0

by (2.4). This forces that the two end points coincide and η is arbitrary. In

fact, {(0, 0, 0, η)| η 6= 0} lies in the characteristic set of ∆G. We exclude this

trivial case. We conclude that

Lemma 2.1 In (2.4), the constant η is zero if and only if the initial

conditions are (x0, 0) and (x, 0) with x0 6= x. The straight line connecting

(x0, 0) and (x, 0) is the only geodesics.

2.4. The case η > 0

It follows from the proof of Lemma 2.1 that y > 0. In this case, we solve

(2.4) to obtain

x(s) = x0 cos(ηs) +B sin(ηs), (2.6)

where

B =
ξ0
η
, ξ0 = ξ(0), (2.7)

and

y(s) = η

∫ s

0
x2(u)du

(2.8)
= η

[1

2
(x2

0 +B2)s+
1

4η
(x2

0 −B2) sin(2ηs) +
x0B

η
sin2(ηs)

]
.

Remark 2.2. Formula (2.6) implies if η = kπ for k ∈ N, then x =

(−1)kx0.

2.4.1. η 6= kπ,k ∈ N

In this case (2.5) and (2.6) yield

B =
x− x0 cos η

sin η
. (2.9)

Formula (2.8) then becomes

y =y(1)

=
1

2

[
(x2 + x2

0)
(η − sin η cos η

sin2 η

)
+ 2xx0

(sin η − η cos η

sin2 η

)]
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=
1

4

[
(x+x0)

2
((η+sin η)(1−cos η)

sin2 η

)
+(x−x0)

2
((η − sin η)(1 + cos η)

sin2 η

)]

or more properly

y =
1

4

[
(x+ x0)

2µ̃(η) + (x− x0)
2µ(η)

]
where (2.10)

µ̃(η) =
η + sin η

1 + cos η
and (2.11)

µ(η) =
η − sin η

1 − cos η
. (2.12)

Those η’s solving (2.10) give the geodesics between (x0, 0) and (x, y). Not all

geodesics arise from the solutions of (2.10), for example, when x = x0 = 0

and y > 0 we do not have any information from (2.10). The geodesics

arise from the solutions of (2.10) will be called generic, and exceptional

otherwise. Note that η = kπ can be a solution of (2.10), see 2.6.1 (II), (III).

The properties of µ and µ̃ will be investigated in 2.5.

2.4.2. η = kπ,k ∈ N

By Remark 2.2, we must have x = (−1)kx0. Most geodesics in this case

do not come from solving (2.10).

Setting s = 1 and η = kπ in (2.8) yields

y =
kπ

2
(x2

0 +B2). (2.13)

Solving for B, we get

B = ±(
2y

kπ
− x2

0)
1
2 . (2.14)

(2.13) implies the following necessary condition for k

2y ≥ kπx2
0. (2.15)

Thus the cases x0 6= 0 and x0 = 0 are quite different. They will be treated

separately in 2.6.2 and 2.6.3.

To find out all the geodesics, we need to solve (2.10), or to understand

the properties of the functions µ and µ̃.
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2.5. Properties of µ, µ̃ and the function F

For a, b ∈ R, define

F (η) = a2µ̃(η) + b2µ(η). (2.16)

We consider η ≥ 0 only. The properties of µ and µ̃ are summarized in the

following lemma.

Lemma 2.3.

(a) The functions µ and µ̃ defined on η ≥ 0 are positive functions vanishing

at η = 0 only.

(b) The function µ (resp. µ̃) has poles at η = 2kπ (resp. η = (2k − 1)π),

k ∈ N.

(c) The function µ (resp. µ̃) is strictly convex in each interval (2(k−1)π, 2kπ),

(resp. (0, π)and ((2k − 1)π, (2k + 1)π)), k ∈ N.

(d) On (2kπ, 2(k+1)π) (resp. ((2k−1)π, (2k+1)π), the function µ (resp. µ̃)

takes minimum at α′
k ∈ (2kπ, (2k + 1)π), (resp. α′′

k ∈ ((2k − 1)π, 2kπ)),

k ∈ N, where α′
k, (resp. α′′

k) satisfies

tan
(α′

k

2

)
=
α′

k

2
,

(
resp. − cot

(α′′
k

2

)
=
α′′

k

2

)
, k ∈ N.

(e) We have

µ(α′
k) =

α′
k

2
,

(
resp. µ̃(α′′

k) =
α′′

k

2

)
, k ∈ N,

hence

· · · < µ((2k − 1)π) = (k − 1

2
)π < µ(α′

k) < µ((2k + 1)π)

= (k +
1

2
)π < µ(α′

k+1) < · · · ,

(resp. · · · < µ̃(2(k − 1)π) = (k − 1)π < µ̃(α′′
k) < µ̃(2kπ) = kπ <

µ̃(α′′
k+1) < · · · ) for all k ∈ N.

Proof. We just prove parts (c) and (e) for µ. The rest parts are straight-

forward.
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Proof of (c). We have for η ≥ 0, η 6= kπ, k ∈ N,

µ′′(z) =
2η + η cos η − 3 sin η

(1 − cos η)2
.

Let

ψ(η)
.
= 2η + η cos η − 3 sin η = η(1 + cos η) + η − 3 sin η.

It suffices to prove ψ(η) > 0 for 0 < η < 3. To do this, we differentiate

ψ(η) and get ψ′(η) = 2 − η sin η − 2 cos η, ψ′′(η) = sin η − η cos η, ψ′′′(η) =

η sin η. Now ψ′′′(η) is strictly positive for 0 < η < 3, this fact and ψ′′(0) = 0

imply ψ′′(η) > 0 for 0 < η < 3. Again, ψ′′ > 0 on 0 < η < 3 and ψ′(0) = 0

imply that ψ′(η) > 0 for 0 < η < 3. Repeat the same argument once more,

we get µ′′(η) > 0 for 0 < η < 3. The proof of the convexity of µ̃ is even

simpler. �

Proof of (e). We concentrate on the function µ(η). The statement for µ̃ can

be proved similarly. From

µ′(η) =
2(1 − cos η) − η sin η

(1 − cos η)2
,

it follows that for η 6= nπ, n ∈ N, µ′(η) = 0 ⇔ η
2 = tan η

2 . When η = α′
k,

by repeatedly using tan
α′

k

2 =
α′

k

2 , we have

µ
(
α′

k) =

α′
k

2 − sin
α′

k

2 cos
α′

k

2

sin2 α′
k

2

=
1 − cos2 α′

k

2

sin
α′

k

2 cos
α′

k

2

=
sin2 α′

k

2

sin
α′

k

2 cos
α′

k

2

= tan
(α′

k

2

)
=
α′

k

2
. �

The graphs of µ, µ̃ and F are shown in Figures 2-1, 2-2 and 2-3.

Now we may prove the main theorem of this section.
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ζ

ζ = η
2

µ(η)

η
π 2π 3π3π 4π 5πα′

1
α′

2

Figure 2-1

ζ

ζ = η

2

µ̃(η)

η
π 2π 3π 4πα′′

1
α′′

2

Figure 2-2

F (η)

η
π α1 2π α2 3π α3 4π

Figure 2-3

Theorem 2.4. When ab 6= 0, the function F (η) = a2µ̃(η) + b2µ(η) has

the following properties:

(a) F (η) ≥ 0 for η ≥ 0 and F (η) = 0 if and only if η = 0;

(b) F (η) has poles at η = kπ for k ∈ N;

(c) F (η) is strictly convex in each interval ((k − 1)π, kπ), k ∈ N;

(d) in each interval (kπ, (k + 1)π), k ∈ N, F (η) takes a unique minimum at

αk such that for k ≥ 1, α2k−1 < α′′
k, α2k < α′

k and

F (αk) >

{
a2α′

k if k is odd

b2α′′
k if k is even.
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So F (αk) tends to infinity as k → ∞;

(e) for each k ∈ N, F (αk) < F (αk+1).

When a = 0, b 6= 0 (resp. b = 0, a 6= 0), F degenerates to b2µ (resp.

a2µ̃).

Proof. Properties (a)−(d) follows immediately from Lemma 2.3. Now

we prove property (e). For a, b ∈ R, ab 6= 0, recall

F (η) = a2µ̃(η) + b2µ(η) = a2 η + sin η

1 + cos η
+ b2

η − sin η

1 − cos η
≥ 0.

It follows from Lemma 2.3 that F (η) = 0 at η = 0 only and is convex in

(kπ, (k + 1)π) for all k = 0, 1, 2, . . .. Observe that

F (η) =
(
ηg(η)

)′
= g(η) + ηg′(η) (2.17)

where

g(η) = sin η
( a2

1 + cos η
− b2

1 − cos η

)
.

Note that

g′(η) =
( a2

1 + cos η
+

b2

1 − cos η

)
> 0, ∀ η ∈ R \ {kπ| k ∈ Z},

g(η) is a periodic function with period 2π, and

g(η) = −g(2kπ − η), for η ∈ (kπ, (k + 1)π). (2.18)

The graph of g(η) is shown in Figure 2-4.

Let F (η) take the unique minima at αk in the interval (kπ, (k+1)π) for

k = 1, 2, . . .. For k ∈ N, η ∈ (kπ, (k + 1)π), we have by (2.18)

g(η) = −g(2kπ − η) and g′(η) = g′(2kπ − η).

Put this and (2.18) into (2.17) to get

F (η) = g(η) + ηg′(η) = −g(2kπ − η) + ηg′(2kπ − η)

= g(2kπ − η) + (2kπ − η)g′(2kπ − η) + 2
[
− g(2kπ − η)

+(η − kπ)g′(2kπ − η)
]
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η

g(η)

θ̃0
π θ̃1 2π θ̃2 3π θ̃3 4π θ̃4 5π

cos θ̃j = a2
−b2

a2+b2

Figure 2-4

= g(2kπ − η) + (2kπ − η)g′(2kπ − η) + 2
[
g(η) + (η − kπ)g′(η)

]

= F (2kπ − η) + 2[g(η) + (η − kπ)g′(η)]. (2.19)

When k is even, by the periodicity of g, the terms in the last bracket becomes

g(η) + (η − kπ)g′(η) = g(η − kπ) + (η − kπ)g′(η − kπ) = F (η − kπ) > 0

for η ∈ (kπ, (k + 1)π). Therefore, for k even, η ∈ (kπ, (k + 1)π) we have

F (η) = F (2kπ − η) + 2F (η − kπ), with 2kπ − η ∈ ((k − 1)π, kπ).

It follows that

F (αk) = F (2kπ − αk) + 2F (αk − kπ) > F (2kπ − αk) ≥ F (αk−1)

since αk ∈ (kπ, (k + 1)π) and F (αk − kπ) > 0 for all k ∈ N.

For odd integer k, the periodicity of g yields, for η ∈ (kπ, (k + 1)π),

g(η) + (η − kπ)g′(η) = g(η − (k − 1)π) + (η − kπ)g′(η − (k − 1)π) (2.20)
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with η − kπ ∈ (0, π) and η − (k − 1)π ∈ (π, 2π). Direct computation shows

that

g(η + π) + ηg′(η + π) = a2 η − sin η

1 − cos η
+ b2

η + sin η

1 + cos η
> 0

for all η ∈ (0, π). Thus, by (2.19) we have F (η) > F (2kπ− η) for k odd and

η ∈ (kπ, (k + 1)π). Therefore

F (αk) > F (2kπ − αk) ≥ F (αk−1)

since 2kπ − η ∈ ((k − 1)π, kπ). This completes the proof of (e). �

2.6. The geodesics

2.6.1. The generic case

These are the geodesics connecting (x0, 0) and (x, y) which come from

those η’s solving (2.10):

y =
1

4
(x+ x0)

2µ̃(η) +
1

4
(x− x0)

2µ(η) = F (η),

with a = x+x0
2 , b = x−x0

2 .

(I) y > 0, x2 6= x2
0

By Remark 2.2, η = kπ can not be a solution here. Since x2 6= x2
0,

Theorem 2.4(e) implies that there exists N ∈ N such that F (αN−1) ≤ y <

F (αN ). When F (αN−1) < y by Theorem 2.4 (a), (b), (c) there are 2N − 1

distinct solutions to (2.10). When F (αN−1) = y, αN−1 is counted as a

solution of multiplicity two. In this sense, there are always 2N − 1 geodesics

connecting (x0, 0) and (x, y).

(II) y > 0, x = x0 6= 0 (resp. x = −x0 6= 0)

Here the function F (η) degenerates to x2
0µ̃(η) (resp. x2

0µ(η)) due to

x = x0 (resp. x = −x0).

We want to find those η satisfying y
x2
0

= µ̃(η) (resp. y
x2
0

= µ(η)). By

Lemma 2.3, there exists N ∈ N such that µ̃(α′′
N−1) ≤ y

x2
0
< µ̃(α′′

N ) (resp.

µ(α′
N−1) ≤ y

x2
0
< µ(α′

N )). As in (I) we conclude that there are 2N − 1

geodesics connecting (x0, 0) and (x0, y) (resp. (x0, 0) and (−x0, y)). Note
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that (a) α′′
N ∈ ((2N − 1)π, 2Nπ) (resp. α′

N ∈ (2Nπ, (2N + 1)π), (b) it is

possible that η = 2(N − 1)π (resp. η = (2N − 1)π). Clearly these geodesics

are limits of geodesics in (I) when η is not an integral multiple of π. The

fact that the geodesic corresponding to η, η ≡ 0 mod(π), is the limits of

geodesics in (I), will be explained in Section 2.6.2.

(III) y = 0, x 6= x0

This case lies between y > 0 (so η > 0), and y < 0 (so η < 0). Observe

that obviously η = 0 is the only solution to (2.10) when y = 0. The explicit

form of the geodesic is derived in 2.3. The point here is to show that its

form is consistent with (2.6). For x 6= x0 fixed and y > 0 small we have by

(I) a solution η ∈ (0, π) to (2.10). (2.9) can be written in the form

Bη =
η(x− x0 cos η)

sin η
.

Then put (2.6) as follows

x(s) = x0 cos(ηs) +
η(x− x0 cos η)

sin η

sin(η s)

ηs
· s.

Let y → 0+ and so η → 0+. We have

x(s) = x0 + (x− x0)s,

which is exactly the form in Lemma 2.1.

2.6.2. The mild exceptional case y > 0, x2 = x2
0 6= 0 with η ≡ 0

mod(π), η not a solution of (2.10)

These geodesics are called mild because only µ(η) or µ̃(η) disappears in

F (η) and there are only finitely many geodesics connecting (x0, 0) and (x, y),

because of (2.15). We have briefly discussed how to obtain the geodesics with

η = kπ in 2.4.2. However, that approach can not tell whether the geodesic

is also a solution of (2.10) or not and thus the total number of geodesics

is unclear. We are going to show that these geodesics are limits of generic

ones. This will solve the above question. We only treat the case x = x0 6= 0.

The case x = −x0 6= 0 can be done similarly.
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Fix y > 0 and x0 6= 0. Observe that when x = x0, for η = kπ to

define a geodesic between (x0, 0) and (x0, y), it is necessary that k is even

by Remark 2.2. Also (2.15) must hold. We assume that y >
kπx2

0
2 = x2

0µ̃(kπ)

in the beginning. By Lemma 2.3, α′′
k
2

< kπ and µ̃(η) is increasing for η ∈
(α′′

k
2

, (k + 1)π). Given ǫ > 0 such that 1
2(kπ− α′′

k
2

) > ǫ > 0, let x 6= x0 and x

close to x0 to be determined later. Set F (η) = 1
4 (x+x0)

2µ̃(η)+ 1
4(x−x0)

2µ(η)

as before. By the definition of µ(η) and µ̃(η), there exists δ > 0 such that





1
4 (x+ x0)

2µ̃(η) <
kπx2

0
2 + 1

2(y − kπx2
0

2 ) = y
2 + 1

4kπx
2
0

if |x− x0| < δ and |η − kπ| < 2ǫ.
1
4 (x− x0)

2µ(η) < 1
2(y − kπx2

0
2 )

if |x− x0| < δ and ǫ < |η − kπ| < 2ǫ.

It follows that if x is chosen such that 0 < |x− x0| < δ, one has

min
η∈(kπ+ǫ,(k+1)π)

F (η) < y and min
η∈(kπ−2ǫ,kπ−ǫ)

F (η) < y.

The first inequality shows that F (αk) < y; whence by Theorem 2.4 there are

solutions η± with η− < kπ < η+ satisfying y = F (η±). Furthermore, the

above two inequalities imply that |η± − kπ| < 2ǫ.

In conclusion we have proved

Lemma 2.5. Given y > 0, x0 6= 0, k positive even integer so that

y >
kπx2

0
2 . For any ǫ > 0, ǫ < 1

2(kπ − α′′
k
2

), there exists δ > 0 such that for

any x satisfying 0 < |x− x0| < δ, there are two geodesics connecting (x0, 0)

and (x, y) with η = η+ or η−, η− < kπ < η+ and |η± − kπ| < 2ǫ.

Next, we rewrite (2.6) in the form

x(s) = A sin(ηs + α), (2.21)

where

A =
√
x2

0 +B2 and sinα =
x0√

x2
0 +B2

. (2.22)
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Now formula (2.8) becomes

y(s) = ηA2

∫ s

0
sin2(ηu+ α)du = ηA2

[s
2
− sin 2(ηs + α)

4η
+

sin(2α)

4η

]
.

At s = 1, we have

y =y(1) = η(x2
0 +B2)

[1

2
− sin 2(η + α)

4η
+

sin(2α)

4η

]

=
η

2
(x2

0 +B2)
[
1 − sin η cos(2α+ η)

η

]
.

Solve for B and get

B = ±
√

2y

η − sin η cos(η + 2α)
− x2

0.

Note that B is a C∞ function of η if 2y
η−sin η cos(η+2α) − x2

0 > 0. The sign of

B is determined by (2.7) or (2.9). Let x0, y, η = η± be as in Lemma 2.5.

As η approaches kπ, we recover (2.14)

B = ±
√

2y

kπ
− x2

0.

Figures 2-5, 2-6 respectively illustrate geodesics for x = x0 η = 2π with

B > 0 and with B < 0.

Thus when 2y > kπx2
0, as x tends to x0, the two geodesics with η = η+

or η− tend to two distinct geodesics with B > 0 for one and with B < 0

for the other. When 2y = kπx2
0, we begin with 2ỹ > kπx2

0 and x = x0.

As ỹ decreases to
kπx2

0
2 , B tends to zero and the two geodesics merge to

one. However, there is another geodesic from (I) merges together. So this

geodesic has multiplicity three.

Let us look at (2.9) again. Instead of specifying that k is a positive even

integer, we now use 2kπ. When η± → 2kπ±, x− x0 → 0 we have

lim
η±→2kπ±

x−x0→0

x− x0

sin η±
= lim

η±→2kπ±

x−x0→0

x− x0 cos η± − x0(1 − cos η±)

sin η±

= lim
η±→2kπ±

x−x0→0

x− x0 cos η±

sin η±
= B

(2.23)
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Figure 2-5 Figure 2-6

where

B > 0 if




η+ → 2kπ+, x > x0, or

η− → 2kπ−, x < x0,

and

B < 0 if




η+ → 2kπ+, x < x0, or

η− → 2kπ−, x > x0.

As for the case x = −x0, we consider the limit η± → (2k − 1)π±,

x+ x0 → 0 and have

lim
η±→(2k−1)π

x+x0→0

x+ x0

sin η±
= lim

η±→(2k−1)π±

x+x0→0

x− x0 cos η± + x0(1 + cos η±)

sin η±

= lim
η±→(2k−1)π±

x+x0→0

x− x0 cos η±

sin η±
= B

(2.24)

where

B > 0 if




η+ → (2k − 1)π+, x+ x0 > 0, or

η− → (2k − 1)π−, x− x0 < 0,
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and

B < 0 if




η+ → (2k − 1)π+, x+ x0 < 0, or

η− → (2k − 1)π−, x+ x0 > 0.

Finally, we count the total number of geodesics connecting (x0, 0) and

(x0, y) (resp.(−x0, y)). The number of mild exceptional geodesics here is

2(N − 1) (resp. 2N). In 2.6.1(II) we have α′′
N ∈ ((2N − 1)π, 2Nπ) (resp.

α′
N ∈ (2Nπ, (2N+1)π)). So there are 2N−1 (resp. 2N−1) generic geodesics

coming from 2.6.1(II). Hence the total number of geodesics is 2N−1+2(N−

1) = 4N − 3 = 2(2N − 1) − 1 (resp. 2N − 1 + 2N = 4N − 1 = 2(2N) − 1).

This result agrees with 2.6.1(I).

Figures 2-7 and 2-8 illustrate the η’s for both cases 2.6.1 (II) and 2.6.2. In

Figure 2-7 η1, η2 and η5 correspond to generic geodesics and η3, η4 correspond

to mild exceptional geodesics. As y decreases to πx2
0, one gets η3 = η4 = η5

= 2π which corresponds to a geodesic of multiplicity three.

η1

η2

η3 =η4

η5

α′′

1
α′′

2
π 2π 3π 4π 5π

ζ

y

η

x = x0

Figure 2-7
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ζ

y
η1 =η2

η3 η4

η5 =η6

η7

α′

1
α′

2
π 2π 3π 4π 5π 6π

η

−x = x0
Figure 2-8

2.6.3. The exceptional case y > 0, x = x0 = 0

Put x0 = 0 in (2.22) (so α = 0 automatically) and follow the same

argument there. We get

B = ±
√

2y

kπ
, k = 1, 2, · · · .

So there are infinitely many geodesics between (0, 0) and (0, y), y > 0, with

η2k−1 = η2k = kπ, k ∈ N. Explicitly,





x(s) = ±
√

2y
kπ sin(kπs)

y(s) = y
(
s− sin(2kπs)

2kπ

)
,

k = 1, 2, 3, . . .

So every kπ k = 1, 2, . . . corresponds to two distinct geodesics with the same

length. Figure 2-9 illustrates the η’s in this case.

2.6.4. The main Theorem on geodesics

In conclusion, we have the following theorem:

Theorem 2.6. Given two points (x0, 0) and (x, y) in the plane with

y > 0,
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π 2π 3π 4π 5π

x=x0 =0

y
η1 =η2

η3 = η4

η5 = η6

η7 = η8

η9 = η10

Figure 2-9

(1) If x 6= ±x0 the equation (2.10) has finitely many solutions ηj , j =

1, 2, . . . , N , N odd such that

0 < η1 < π < η2 < η3 < 2π < · · · < N − 1

2
π < ηN−1 ≤ ηN <

N + 1

2
π,

where ηN−1 = ηN occurs when ηN = αN−1
2

.

The curves defined by

Cj :




x(s) = x0 cos(ηjs) +

x−x0 cos ηj

sin ηj
sin(ηjs)

y(s) = ηj

∫ s
0 x2(u)du

(2.25)

are all the geodesics connecting (x0, 0) and (x, y) in time s ∈ [0, 1]. Let

ℓj denote the length of Cj , one has 0 < ℓ1 < ℓ2 < · · · < ℓN−1 ≤ ℓN .

(2) If 0 6= x = x0, then there are finitely many geodesics Cj, j = 1, 2, . . . , N ,

N odd, connecting (x0, 0) and (x0, y). The corresponding ηj ’s, j =

1, 2, . . . , N satisfy

0 <η1 < π < η2 < η3 = 2π = η4 < η5 < · · · < η4k−2 < η4k−1 = 2kπ = η4k

<η4k+1 < · · · < ηN−2 ≤ ηN−1 ≤ ηN ≤ N + 1

2
π,

where ηN−2 <
N−1

2 π < ηN−1 = ηN < N+1
2 π occurs when ηN = α′′

N−1
2

,

N ≡ 3mod 4; N−3
2 π < ηN−3 < ηN−2 = ηN−1 = ηN < N+1

2 π occurs when

ηN = N−1
2 π, N ≡ 1mod 4 and ηN−3 < ηN−2 = ηN−1 < ηN < N+1

2 π
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occurs when ηN−2 = ηN−1 = N−1
2 π, N ≡ 1mod 4.

When η 6= 2kπ, the corresponding geodesic is of the form (2.25). When

y > kπx2
0 we have η4k−1 = η4k = 2kπ and the two geodesics take the

form

C4k−1, C4k :

{
x(s) = x0 cos(2kπs) ± x0√

2kπ

√
2y
x2
0
− 2kπ sin(2kπs)

y(s) = 2kπ
∫ s
0 x2(u)du.

(2.26)

When y = kπx2
0 we have CN−2 = CN−1 = CN with N ≡ 1mod 4, in

other words k = N−1
4 , and x(s) = x0 cos

(
N−1

2 πs
)

in (2.26).

The length of the geodesic satisfies

0 <ℓ1 < ℓ2 < ℓ3 = ℓ4 < · · · < ℓ4k−2 < ℓ4k−1 = ℓ4k

<ℓ4k+1 < · · · < ℓN−2 ≤ ℓN−1 ≤ ℓN .

(3) If 0 6= x = −x0, then there are finitely many geodesics Cj, j = 1, 2, . . . , N ,

N odd, connecting (x0, 0) and (−x0, y). The corresponding ηj ’s, j =

1, 2, . . . , N satisfy

0 <η1 = π = η2 < η3 < η4 < · · · < η4k−4 < η4k−3 = (2k − 1)π = η4k−2

<η4k−1 < · · · < ηN−2 ≤ ηN−1 ≤ ηN <
N + 1

2
π,

where ηN−2 < ηN−1 = ηN occurs when ηN = α′
N−1

4

, N ≡ 1mod 4 and

ηN−2 = ηN−1 = ηN occurs when ηN = N−1
2 π, N ≡ 3mod 4, and ηN−2 =

ηN1 < ηN occurs when ηN−2 = ηN1 = N−1
2 π, N ≡ 3mod 4.

When η 6= (2k − 1)π, the corresponding geodesic is of the form (2.25).

When 2y > (2k − 1)πx2
0 we have η4k−3 = η4k−2 = (2k − 1)π, the two

geodesics take the form

C4k−3, C4k−2 :



x(s) = x0 cos((2k − 1)πs)

± x0√
(2k−1)π

√
2y
x2
0
− (2k − 1)π sin((2k − 1)πs)

y(s) = (2k − 1)π
∫ s
0 x2(u)du.

(2.27)

When 2y = (2k − 1)πx2
0 we have CN−2 = CN−1 = CN with x(s) =

x0 cos
(

N−1
2 πs

)
in (2.27), i.e. k = N+1

4 .
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The length ℓj satisfies

0 <ℓ1 = ℓ2 < ℓ3 < ℓ4 < · · · < ℓ4k−4 < ℓ4k−3 = ℓ4k−2

<ℓ4k−1 < · · · < ℓN−2 ≤ ℓN−1 ≤ ℓN .

(4) If x = x0 = 0 y > 0, then there are infinitely many geodesics connecting

(0, 0) and (0, y). The ηj ’s are of the form

η1 = π = η2 < η3 = 2π = η4 < · · · < η4k−3 = (2k − 1)π = η4k−2

<η4k−1 = 2kπ = η4k < · · · .

The geodesics take the form

C2k−1, C2k :





x(s) = ±
√

2y
kπ sin(kπs)

y(s) = y
(
s− sin(2kπs)

2kπ

) (2.28)

where η2k−1 = η2k = kπ. The length of C2k−1 or C2k is ℓ2k−1 = ℓ2k =

kπy, k ∈ N.

(5) If y = 0, x0 6= x then there is a unique geodesic connecting (x0, 0) and

(x, 0) with

η = 0, x(s) = x0 + (x− x0)s, y(s) ≡ 0.

All the geodesics in cases (2)−(5) are limits of the geodesics in case (1).

The statements concerning the length ℓj will follow from Corollary 4.6

and Theorem 4.7.

Remark 2.7. In the next section we will use geometric mechanics

method to find the modified complex action which plays the key role in

constructing the heat kernel of ∆G. In that process we use only the generic

geodesics which is adequate as justified by Theorem 2.6. The close relation

between the modified complex action and the geometry discussed here will

be seen more clearly in Sections 4-6. Only at that point one may say that

the modified complex action indeed reflects the geometry of ∆G.
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3. The Modified Complex Action

3.1. Riemannian case

We recall the heat kernel for the Laplace-Beltrami operator,

∆ = −1

2

n∑

j=1

X∗
jXj =

1

2

n∑

j=1

X2
j + · · · .

Here X1, . . . ,Xn represent n linearly independent vector fields on an n-

dimensional manifold Mn. Assuming that X = {X1, . . . ,Xn} is an or-

thonormal set we obtain a volume element on Mn which yields X∗
j , the

operator adjoint to Xj , + · · · stands for lower order terms. The heat kernel

for ∆, at least locally, takes the form,

Pt(x,x0) =
1

(2πt)
n
2

e−
d(x,x0)2

2t

(
a0 + a1t+ a2t

2 + · · ·
)
.

where d(x,x0) denotes for the Riemannian distance between x and x0 if

the metric is induced by the orthonormal set {X1, . . . ,Xn}. The aj ’s are

functions of x and x0. Note that

∂

∂t

(d(x,x0)
2

2t

)
+

1

2

n∑

j=1

(
Xj

d(x,x0)
2

2t

)2
= 0, (3.1)

that is,
d(x,x0)

2

2t
is a solution of the Hamilton-Jacobi equation.

3.2. The classical action for Grusin operator

In the case of the Grusin operator

∆G =
1

2

( ∂2

∂x2
+ x2 ∂

2

∂y2

)

we shall look for a heat kernel in the form

1

tα
e−h, (3.2)
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where, imitating (3.1), h is a solution of

∂h

∂t
+

1

2

(∂h
∂x

)2
+

1

2
x2

(∂h
∂y

)2
= 0. (3.3)

Thus we start with solving

∂z

∂t
+H

(
x, y,

∂z

∂x
,
∂z

∂y

)
= 0 (3.4)

for z, where

H(x, y, ξ, η) =
1

2
ξ2 +

1

2
x2η2.

Normally one reduces this question to finding a solution of a system of or-

dinary differential equations as follows. Set

H̃(x, y, t, z, ξ, η, γ) = γ +H(x, y, ξ, η) = 0, (3.5)

where ξ = ∂z
∂x , η = ∂z

∂y and γ = ∂z
∂t . We shall find the bicharacteristic curves

which are solutions to the following system:

ẋ =H̃ξ = ξ where ẋ =
dx

ds
,

ẏ =H̃η = ηx2,

ṫ =H̃γ = 1,

ξ̇ = − H̃x = −η2x,

η̇ = − H̃y = 0,

γ̇ = − H̃t = 0,

ż =ξH̃ξ + ηH̃η + γH̃γ .

(3.6)

With 0 ≤ s ≤ t,

η(s) =η(0) = η = constant,

γ(s) =γ = −H = constant,

t(s) =s.

Here “constant” means “constant along the bicharacteristic curve”. Observe
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that (3.6) is an extended system of (2.4). In particular,

ż = ξ · ẋ+ η · ẏ −H. (3.7)

From (3.6)

ẍ = ξ̇ = −η2x, or ẍ+ η2x = 0,

so,

x(s) = x(0) cos(ηs) +
ξ(0)

η
sin(ηs), if η 6= 0, (3.8)

(cf. (2.6), (2.7)). As for y(s), one has

ẏ(s) = ηx2(s)

= η
[
x2(0)

(1

2
+

1

2
cos(2ηs)

)
+ 2x(0)

ξ(0)

η
sin(ηs) cos(ηs)

+
ξ2(0)

η2

(1

2
− 1

2
cos(2ηs)

)]
,

hence,

y(s) − y(0) = η

[
x2(0)

2

(
s+

sin(2ηs)

2η

)
+ x(0)

ξ(0)

η2
sin2(ηs)

+
1

2

ξ2(0)

η2

(
s+

sin(2ηs)

2η

)]

(3.9)

=
η

2

(
x2(0) +

ξ2(0)

η2

)
s+

1

4

(
x2(0) − ξ2(0)

η2

)
sin(2ηs)

+
x(0)

2

ξ(0)

η

(
1 − cos(2ηs)

)
.

From (3.8), one has

ξ(0)

η
=
x(t) − x(0) cos(ηt)

sin(ηt)
, if sin(ηt) 6= 0, (3.10)

(cf. (2.9)). So we work with generic geodesics only, see Remark 2.7.

We introduce (3.10) into (3.9):

y(s)−y(0) =
x2(0)

2

(
ηs +

1

2
sin(2ηs)

)
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+
1

2

x2(t) − 2x(t)x(0) cos(ηt) + x2(0) cos2(ηt)

sin2(ηt)

(
ηs− 1

2
sin(2ηs)

)

+
x(0)

2

x(t) − x(0) cos(ηt)

sin(ηt)

(
1 − cos(2ηs)

)
.

Collecting terms containing x2(0), x2(t) and x(0)x(t) respectively, we have

y(s) − y(0) =
x2(0)

4 sin2(ηt)

{
2ηs −

[
sin(2ηt) − sin(2η(t − s))

]}

+
x2(t)

4 sin2(ηt)
(2ηs − sin(2ηs))

+
x(0)x(t)

2 sin2(ηt)
[sin(2ηs − ηt) + sin(ηt) − 2ηs cos(ηt)] .

From (3.7), one has

z(t) = z(0) +

∫ t

0
ż(s) ds = z(0) + S(t), (3.11)

where S(t) is the classical action. To simplify matters we set

x = x(t), y = y(t).

The classical action S(t) is given by

S(t) =

∫ t

0

(
ξẋ+ ηẏ −H

)
ds

(3.12)

= η
(
y − y(0)

)
+

∫ t

0

(
ξ2(s) −H(s)

)
ds.

Then (3.6) and (3.8) yield

ξ(s) = ẋ(s) = ξ(0) cos(ηs) − ηx(0) sin(ηs).

H is constant along a bicharacteristic, so

H = H(0) =
1

2

(
ξ2(0) + η2x2(0)

)
,
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and

S(t) = η
(
y(t)−y(0))+

∫ t

0

[
cos(2ηs)

2

(
ξ2(0)−η2x2(0)

)
−ηx(0)ξ(0) sin(2ηs)

]
ds

= η
(
y − y(0)

)
+

sin(2ηt)

4η

(
ξ2(0) − η2x2(0)

)
+ ηx(0)ξ(0)

cos(2ηt) − 1

2η
.

Replacing ξ(0) by (3.10), one has

S(t) − η
(
y − y(0)

)

=
η2

2

(
x− x(0) cos(ηt)

sin(ηt)

)2 sin(2ηt)

2η
− 1

2
η2x2(0)

sin(2ηt)

2η

+η2x(0)
x− x(0) cos(ηt)

sin(ηt)

cos(2ηt) − 1

2η

=
η

4

[(x− x(0) cos(ηt)

sin(ηt)

)2
sin(2ηt) − x2(0) sin(2ηt)

−2x(0)
x − x(0) cos(ηt)

sin(ηt)

(
1 − cos(2ηt)

)]
.

After simple computations, one has

S(t) = η
(
y − y(0)

)
− η

4

((
x+ x(0)

)2
tan

ηt

2
−

(
x− x(0)

)2
cot

ηt

2

)
.

3.3. The Hamilton-Jacobi equation

To find the solution of the Hamilton-Jacobi equation we still need z(0),

see (3.11). Instead, we shall substitute S(t) of (3.12),

S = S(t, x, y, x0, η), x0 = x(0),

into (3.4) and find the discrepancy. Recall

x(s) = x(s;x, y, x0, η, t), . . . , etc.
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Then,

∂S

∂x
(t;x, y, x0, η)

=

∫ t

0

[∂ξ
∂x

dx

ds
+ ξ

d

ds

∂x(s;x, y, x0, η, t)

∂x
+
∂η

∂x

dy

ds
+ η

d

ds

∂y(s; · · · , t)
∂x

−∂H
∂ξ

∂ξ

∂x
− ∂H

∂η

∂η

∂x
− ∂H

∂x

∂x(s; · · · , t)
∂x

− ∂H

∂y

∂y(s; · · · , t)
∂x

]
ds

=

∫ t

0

(
ξ
d

ds

∂x(s; · · · , t)
∂x

+η
d

ds

∂y(s; · · · , t)
∂x

+ξ̇
∂x(s; · · · , t)

∂x
+η̇

∂y(s; · · · , t)
∂x

)
ds

=

∫ t

0

d

ds

(
ξ
∂x(s; · · · , t)

∂x
+ η

∂y(s; · · · , t)
∂x

)
ds

= ξ(s)
∂x(s; · · · , t)

∂x

∣∣∣
s=t

s=0
+ η(s)

∂y(s; · · · , t)
∂x

∣∣∣
s=t

s=0
.

which yields

∂S

∂x
(t;x, y, x0, η) = ξ(t) − η(0)

∂y(0;x, y, x0 , η, t)

∂x
. (3.13)

Similarly,

∂S

∂y
(t;x, y, x0, η) = η(t) − η(0)

∂y(0;x, y, x0, η, t)

∂y
. (3.14)

Moreover,

∂S

∂t
(t; · · · )

= ξ(t; · · · )ẋ(t; · · · ) + η(t; · · · )ẏ(t; · · · ) −H(t)

+

∫ t

0

(
ξ
∂

∂t

dx

ds
+ η

∂

∂t

dy

ds
− ∂H

∂x

∂x

∂t
− ∂H

∂y

∂y

∂t

)
ds

= ξ(t)ẋ(t)+η(t)ẏ(t)−H(t)+

∫ t

0

(
ξ
d

ds

∂x

∂t
+η

d

ds

∂y

∂t
+ξ̇

∂x

∂t
+η̇

∂x

∂t

)
ds (3.15)

= ξ(t)ẋ(t) + η(t)ẏ(t) −H(t) +

∫ t

0

d

ds

(
ξ
∂x

∂t
+ η

∂y

∂t

)
ds

= ξ(t)ẋ(t) + η(t)ẏ(t) −H(t)

+ξ(s)
∂x(s; · · · )

∂t

∣∣∣
s=t

s=0
+ η(s)

∂y(s; · · · )
∂t

∣∣∣
s=t

s=0
.
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Now, x0 = x(0; · · · , t) is fixed, and x = x(t; · · · , t) is also fixed, so

0 =
d

dt
x(t; · · · , t) = ẋ(t) +

∂x

∂t
(s; · · · , t)

∣∣∣
s=t
,

and therefore,

∂x

∂t
(s; · · · , t)

∣∣∣
s=t

s=0
= −ẋ(t); (3.16)

we note that x(0) = x0 is fixed. On the other hand y(0; · · · ) is not indepen-

dent of t, so

∂y

∂t
(s; · · · , t)

∣∣∣
s=t

s=0
= −ẏ(t) − ∂y

∂t
(0; · · · ). (3.17)

Consequently, one has

∂S

∂t
= −H(t) − η(0)

∂y

∂t
(0; · · · ). (3.18)

We set

h = η(0)y(0; · · · ) + S. (3.19)

Then (3.13) and (3.14) yield

∂h

∂x
= ξ(t),

∂h

∂y
= η(t), (3.20)

and (3.18) gives us

0 =
∂h

∂t
+H(t) =

∂h

∂t
+H

(
x(t), y(t), ξ(t), η(t)

)
.

In view of (3.20) we have found a solution of

∂h

∂t
+H

(
x(t), y(t),

∂h

∂x
,
∂h

∂y

)
=
∂h

∂t
+H

(
∇h

)
= 0.

We note that

h = h(x, y, x0, η(0), t).

Thus we have derived
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Theorem 3.1. When ηt 6= ±kπ, k = 1, 2, . . .,

h = ηy − 1

4
η
[
(x+ x0)

2 tan
ηt

2
− (x− x0)

2 cot
ηt

2

]
(3.21)

is a solution of the Hamilton-Jacobi equation (3.3).

3.4. The eiconal equation and the modified complex action

We note that

h(x, y, x0, η, t) =
1

t
h(x, y, x0, ηt, 1)

.
=

1

t
g(x, y, x0, ηt), (3.22)

which we use to define g. According to (3.2) and Theorem 3.1, we look for

a heat kernel in the form
1

tα
e−h =

1

tα
e−

g
t .

The heat kernel should not depend on η. So we use an age old technique to

get rid of η by summing over it. Thus we shall look for a heat kernel in the

following form:

P =
1

(2πt)α

∫

R

e−
g(x,y,x0,λ)

t V (λ)dλ. (3.23)

To simplify matters we summed over ηt = λ; an extra t can always be

absorbed in t−α, especially since we have not chosen α so far. V (λ) is

thrown in for good measure; we are free to do so and we shall need it.

Lemma 3.2. g(x, y, x0, λ) is a solution of the eiconal equation

λ
∂g

∂λ
+H

(
x, y,

∂g

∂x
,
∂g

∂y

)
= g. (3.24)

Proof. One has

∂h

∂t
= −1

2

(
∂h

∂x

)2

− 1

2
x2

(
∂h

∂y

)2

,

and (3.22) gives

∂h

∂t
= − 1

t2
g +

1

t
η
∂g

∂λ
, λ = ηt.
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The two right hand sides agree for all t, so we may as well set t = 1. Replacing

η by λ we have derived the lemma. �

It is time to fix the path of integration. Equations (3.21) and (3.22)

yield

g(λ) = λy − λ

4

[
(x+ x0)

2 tan
λ

2
− (x− x0)

2 cot
λ

2

]
, (3.25)

λ 6= ±kπ, k = 1, 2, . . .. Still, this nonclassical action will give us all geodesics

(see Remark 2.7).

To simplify the calculations we set

a2 = (x+ x0)
2, b2 = (x− x0)

2.

Lemma 3.3. Let λ = θρ = λ1 + iλ2 ∈ C with ρ = |λ|, λ1, λ2 ∈ R. Fix

θ. Then

lim
ρ→∞

Re g(θρ) = ∞

for all (x, y) off the canonical curve x2 + x2
0 = 0 if and only if θ ∈ iR.

Proof. The content of the square bracket in (3.25) may be rewritten in

the following form:

a2 sin λ
2

cos λ
2

− b2 cos λ
2

sin λ
2

=
a2(1 − cos λ) − b2(1 + cosλ)

sinλ

=
a2(1 − cos λ) − b2(1 + cosλ)

sinλ · sin λ̄ sin λ̄

=
a2(1 − cos λ) − b2(1 + cosλ)
1
2

(
cos(λ− λ̄) − cos(λ+ λ̄))

sin λ̄

=
a2(1 − cos λ) − b2(1 + cosλ)

1
2

(
cosh(2λ2) − cos(2λ1))

sin λ̄

=
a2(1 − cos λ) − b2(1 + cosλ)

cosh2 λ2 − cos2 λ1

sin λ̄.
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Now a straightforward elementary calculation gives us

Re(g)(λ)
(3.26)

= λ1y+
1

4

[
a2λ2 sinhλ2−λ1 sinλ1

coshλ2+cosλ1
+b2

λ2 sinhλ2 + λ1 sinλ1

cosh λ2−cos λ1

]
.

We write θ = θ1 + iθ2, θ1, θ2 ∈ R.

(i) θ1 = 0, θ2 = ±1, so θ ∈ iR. When ρ ≈ ∞,

Re(g) ≈
1

4

(
a2 + b2

)
θ2ρ tanh(θ2ρ)

≈
1

2
(x2 + x2

0)ρ → ∞.

(ii) θ1 = ±1, θ2 = 0 and θ ∈ R. Then

Re(g) = ±ρy − ρ

4

(
a2 tan

ρ

2
− b2 cot

ρ

2

)
,

which is highly singular in ρ ∈ R when x2
0 + x2 6= 0, otherwise

Re(g) = ±ρy → ±(sgn)(y)∞,

as ρ→ ∞.

(iii) θ1 6= 0, θ2 6= 0. In this case, for large ρ one has

Re(g) ≈ θ1ρy +
1

4

(
a2λ2 tanh λ2 + b2λ2 coth λ2

)

≈ θ1ρy +
1

4
(a2 + b2)|θ2|ρ

=
(
θ1y +

1

2
(x2

0 + x2)|θ2|
)
ρ.

Choosing y so that
∣∣θ1y

∣∣ > 1

2
(x2

0 + x2)|θ2|,

we obtain

Re(g) →
(
sgn(θ1y)

)
∞,

which can be ±∞ depending on the sign of y and θ1. This completes

the proof of the lemma. �



2009] GEOMETRIC ANALYSIS ON A STEP 2 GRUSIN OPERATOR 153

So to have our integrand on its best behavior, our choice of integration

path should end on the imaginary axis at ±∞. An obvious choice is the

imaginary axis; this may also be forced on us, more or less, if the heat kernel

is real. We make this choice and set

λ = −iτ, τ ∈ C, (3.27)

by convention, and

f(τ) = g(−iτ),

so

f(τ) = −iτy +
τ

4

[
(x+ x0)

2 tanh
τ

2
+ (x− x0)

2 coth
τ

2

]
, (3.28)

is the modified complex action.

We note that f(τ) is bounded near τ = 0. Thus we look for a heat

kernel in the form

P =
1

(2πt)α

∫

R

e−
f(τ)

t V (τ)dτ, (3.29)

where we used the shorthand

P = Pt = Pt(x0, x, y).

f(τ) satisfies the eiconal equation (3.24):

τ
∂f

∂τ
+H

(
x, y,

∂f

∂x
,
∂f

∂y

)
= f. (3.30)

4. Properties of the Modified Complex Action

4.1. The critical points of the modified complex action f

Recall the modified complex action

f = −iτy +
1

4

(
a2τ tanh

τ

2
+ b2τ coth

τ

2

)

where τ = u + iv ∈ C, a = x + x0 and b = x − x0. Denote by f1, f2
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respectively the real and imaginary part of f .

f1(u, v) = Ref
(4.1)

= vy +
1

4

[
a2u sinhu−v sin v

coshu+cos v
+b2

u sinhu+v sin v

coshu−cos v

]
;

f2(u, v) = Imf
(4.2)

= −uy+
1

4

[
a2 v sinhu+u sin v

coshu+cos v
+b2

v sinhu−u sin v

coshu−cos v

]
.

In Section 3 we find the classical action S from the system (3.6) which

contains (2.4) as a subsystem. Then we get from S successively the functions

h, g and the modified complex action f . Hence it is not surprising that

∂f

∂τ
|u=0 =

∂f

∂u
|u=0 =

∂(if2)

∂u
|u=0 = i[−y +

1

4
(a2µ̃(v) + b2µ(v))] (4.3)

which is exactly i times (2.10). It follows from Theorem 2.6 that (4.3)

vanishes at v = ηj , j = 1, . . . , N for generic geodesics connecting (x0, 0) and

(x, y). So these geodesics correspond to the critical points of f . In fact, we

will show that: For v ≥ 0 (i.e. y ≥ 0), all the critical points of f lie on the

positive v-axis and are related to generic geodesics. Therefore the critical

points of f is in one to one correspondence with the generic geodesics.

We first prove for the generic case, then give a brief discussion for the

exceptional geodesics.

4.1.1. The generic case

(A) As f is holomorphic,

∂f

∂τ
= 0 ⇔ ∂f1

∂u
=
∂f2

∂u
= 0. (4.4)

When a = b = 0, f(τ) = −iτy, so ∂f
∂τ = −iy which vanishes if and only

if y = 0. In other words, this corresponds to the trivial initial conditions

x0 = x = y = 0. So we exclude this case and assume that a2 + b2 > 0 and

y ≥ 0 (so v ≥ 0 by (3.27)) in finding the set satisfying the right hand side of

(4.4).
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(B) We have

4
∂f1

∂u
=

{ a2

(cosh u+ cos v)2

×
[
u+ sinhu coshu+ u cosh u cos v + v sinhu sin v + sinhu cos v

]}

+
{ b2

(cosh u− cos v)2

×
[
u+ sinhu coshu− u cosh u cos v − v sinhu sin v − sinhu cos v

]}
.

So ∂f1

∂u = 0 implies that

α2
(
u+ sinhu cosh u+ u cosh u cos v + v sinhu sin v + sinhu cos v

)

+β2
(
u+ sinhu cosh u− u cosh u cos v − v sinhu sin v − sinhu cos v

)
= 0

where

α2 =
a2

(cosh u+ cos v)2
, β2 =

b2

(cosh u− cos v)2
.

(C) When v = 0, ∂f1

∂u = 0 implies that

α2
(
u+ sinhu cosh u+ u cosh u+ sinhu

)

+β2
(
u+ sinhu cosh u− u coshu− sinhu

)
= 0

and it is easy to see that ∂f2

∂u

∣∣∣
v=0

= −y.

As

u+ sinhu cosh u+ u coshu+ sinhu = (sinhu+ u)(cosh u+ 1)

u+ sinhu cosh u− u coshu− sinhu = (sinhu− u)(cosh u− 1),

we see that they always take the same sign. Hence,

∂f1

∂u
=
∂f2

∂u
= 0 holds only when u = 0 and y = 0.



156 C.-H. CHANG, D.-C. CHANG, B. GAVEAU, P. GREINER AND H.-P. LEE [June

(D) It remains to consider v > 0. First assume u ≥ 0. Now ∂f1

∂u = 0

implies that

v(α2 − β2) sinhu sin v

= −α2
(
u+ sinhu cosh u+ u coshu cos v + sinhu cos v

)
(4.5)

−β2
(
u+ sinhu coshu− u coshu cos v − sinhu cos v

)
.

Since

u+ sinhu cosh u+ u cosh u cos v + sinhu cos v

≥ u+ sinhu coshu− u coshu− sinhu

= (sinhu− u)(cosh u− 1) ≥ 0

and similarly

u+ sinhu coshu− u cosh u cos v − sinhu cos v

≥ (sinhu− u)(cosh u− 1) ≥ 0.

As v > 0, (4.5) holds only if

(α2 − β2) sin v ≤ 0. (4.6)

On the other hand,

∂f2

∂u
=
f2

u

+
α2

4

[(
v coshu− v sinhu

u

)
(cosh u+cos v)−(u sin v+v sinhu) sinhu

]
(4.7)

+
β2

4

[(
v cosh u− v sinhu

u

)
(cosh u−cos v)−(v sinhu−u sin v) sinhu

]
.

Now consider the case f2 ≤ 0. Then ∂f2

∂u = 0 implies that

0 ≤ α2
[
v
(
cosh u− sinhu

u

)
(cosh u+ cos v) − (v sinhu+ u sin v) sinhu

]

+β2
[
v
(
coshu− sinhu

u

)
(cosh u− cos v) − (v sinhu− u sin v) sinhu

]

= α2
[
v
(
cosh2 u− sinhu coshu

u
+ cosh u cos v − sinhu

u
cos v − sinh2 u

)

−u sin v sinhu
]
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+β2
[
v
(
cosh2 u− sinhu coshu

u
− coshu cos v +

sinhu

u
cos v − sinh2 u

)

+u sin v sinhu
]
.

Therefore, after multiplying the whole formula by u we obtain

v
[
α2(u− sinhu cosh u+ u coshu cos v − sinhu cos v)

+β2(u− sinhu coshu− u coshu cos v + sinhu cos v)
]

(4.8)

≥ (α2 − β2)u2 sin v sinhu.

Multiply both sides of (4.8) by (α2 − β2) sinhu sin v, the inequality reverses

because of (4.6). Then we substitute v(α2−β2) sinhu sin v by the right hand

side of (4.5) to obtain

(α2 − β2)2u2 sinh2 u sin2 v

≥−
{
α2

[
u(1 + cosh u cos v) + sinhu(coshu+ cos v)

]

+ β2
[
u(1 − cosh u cos v) + sinhu(cosh u− cos v)

]}

×
{
α2

[
u(1 + cosh u cos v) − sinhu(coshu+ cos v)

]

+ β2
[
u(1 − cosh u cos v) − sinhu(cosh u− cos v)

]}

= −
{
α4

[
u2(1 + coshu cos v)2 − sinh2 u(cosh u+ cos v)2

]

+ β4
[
u2(1 − coshu cos v)2 − sinh2 u(cosh u− cos v)2

]

+ 2α2β2
[
u2(1 − cosh2 u cos2 v) − sinh2 u(cosh2 u− cos2 v)

]}
.

Collect terms containing u2 on the right hand side then move it to the left

hand side, we get

u2
[
α4(1 + cosh u cos v)2 + β4(1 − coshu cos v)2

+ 2α2β2(1 − cosh2 u cos2 v) + (α2 − β2)2 sin2 v sinh2 u
]

≥ sinh2 u
[
α4(cosh u+cos v)2+β4(cosh u−cos v)2+2α2β2(cosh2 u−cos2 v)

]
.

In other words,

u2
[
α4(cosh u+ cos v)2 + β4(coshu−cos v)2+2α2β2(sin2 v−sinh2 u)

]

≥ sinh2 u (4.9)

×
[
α4(coshu+cos v)2+β4(cosh u−cos v)2+2α2β2(cosh2 u−cos2 v)

]
.
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Since (cosh2 u− cos2 v)− (sin2 v− sinh2 u) = 2 sinh2 u ≥ 0, and u2 ≤ sinh2 u,

the inequality (4.9) holds only when u = 0.

(E) The case v > 0, u < 0 and f2 ≤ 0 can be proved similarly. Actually,

follow the same steps, we see (4.6) holds also. Then the inequality is reversed

in (4.8). However, in this case (α2 − β2) sinhu sin v ≥ 0, so we get the same

conclusion.

We have proved that when v ≥ 0, u ∈ R, all the critical points of f in

{u+ iv; f2(u+ iv) ≤ 0} lie on v-axis.

(F) Finally observe that f2 is an odd function with respect to u. There-

fore the critical points of f can only occur on the positive v-axis. In view of

(4.3) we have proved the following theorem.

Theorem 4.1. The critical points of the modified complex action f with

y ≥ 0 (and so v ≥ 0) can occur only on the positive v-axis. In fact, they

correspond exactly to the generic geodesics.

4.1.2. Discussion on exceptional geodesics

In Section 2 we already know that the exceptional geodesics do not

come from the solutions of (2.10) and the generic geodesics are dense. The

function F (η) is singular at η = kπ, k ∈ N in general and is defined at these

points only in the sense of (2.14), (2.23) and (2.24). The situation here is

exactly the same. The modified complex action f is singular at τ = ikπ,

k ∈ N in general. Suppose we take (2.14), (2.23) and (2.24) into account,

f will be defined at these singular points. Also the critical points of f will

include exceptional geodesics if we start from generic case and then taking

limits in the sense of (2.14), (2.23) and (2.24). The details are left to the

readers.

On the other hand, the volume form V (τ) constructed in Section 3 for

the heat kernel of ∆G is singular at τ = ikπ, k ∈ N. This fact actually

reflects the existence of the exceptional geodesics and will be seen clearer in

Section 6.

4.2. The set {(u, v) : Imf(u + iv) = f2(u, v) = 0} and the curve Γ

We follow the notations in 4.1. We need to consider the set {(u, v) :

f2(u, v) = 0, u ≥ 0, v ≥ 0} only. The set {(u, v) : f2(u, v) = 0, u ≤ 0, v ≥
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0} can be obtained by symmetry. We then define the curve Γ which is

crucial in proving the strict increase of the lengths of the geodesics claimed

in Theorem 2.6 and the discussions in Sections 5 and 6.

We start with the following obvious fact

Lemma 4.2. The function f2 vanishes on v-axis except at τ = ikπ,

k ∈ N, which are simple poles of f .

The next lemma is important.

Lemma 4.3. Assume y > 0. Let A = {(u, v)| u ≥ 0, v ≥ 0, f2(u, v) <

0}. Then ∂f2

∂u < 0 on Ā except those points (0, ηj), j = 1, . . . , N with ηj’s

defined in Theorem 2.6(1).

Proof. The lemma holds on positive u-axis since ∂f2

∂u |v=0 = −y < 0 by

assumption. On Ā ∩ {u = 0}, we first assume that x 6= ±x0. By (4.3)

∂f2

∂u
|u=0 = −y +

1

4
F (v).

It follows from Theorem 2.4(c) that

∂f2

∂u
(0, v) < 0 if 0 ≤ v < η1 or η2j < v < η2j+1, 1 ≤ j ≤ N − 1

2
(4.10)

∂f2

∂u
(0, v) = 0 if v = ηj , 1 ≤ j ≤ N (4.11)

∂f2

∂u
(0, v) > 0 if η2j−1 < v < η2j, 1 ≤ j ≤ N − 1

2
or ηN < v. (4.12)

Hence for positive u close to zero we have

f2(u, v) < 0 if v satisfies (4.10) (4.13)

f2(u, v) > 0 if v satisfies (4.12). (4.14)

Therefore Ā∩{u = 0} = {(0, v)| 0 ≤ v ≤ η1, η2j ≤ v ≤ η2j+1, 1 ≤ j ≤ N−1
2 }

by (4.3) and by (4.10), (4.11) the lemma is true here. The assumption

x 6= ±x0 can be dropped by the same argument in proving Theorem 2.6.

It remains to consider u > 0, v > 0. In view of (4.7) it suffices to prove

sinhu coshu− u+ (sinhu− u cosh u) cos v +
sin v

v
u2 sinhu > 0 (4.15)
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and

sinhu cosh u− u+ (u coshu− sinhu) cos v − sin v

v
u2 sinhu > 0. (4.16)

Proof of (4.15). Note that

sinhu < u cosh u for u > 0. (4.17)

(a) sin v ≥ 0. In this case

sinhu coshu− u+ (sinhu− u coshu) cos v +
sin v

v
u2 sinhu

≥ sinhu coshu− u+ sinhu− u coshu

=(sinhu− u)(1 + cosh u) > 0 for u > 0

(b) sin v < 0. We first prove for v < 2π.

(b1) π < v ≤ 3π
2 . Here cos v ≤ 0, so

sinhu coshu− u+ (sinhu− u coshu) cos v +
sin v

v
u2 sinhu

≥ sinhu coshu− u− u2

π
sinhu = sinhu

(
coshu− u2

π

)
− u

≥ sinhu
(
1 + (

1

2
− 1

π
)u2

)
− u > 0 if u > 0.

(b2) 3π
2 < v < 2π. Now cos v > 0 and by (4.12)

sinhu cosh u− u+ (sinhu− u cosh u) cos v +
sin v

v
u2 sinhu

≥ sinhu cosh u− u+ sinhu− u coshu− 2

3π
u2 sinhu

= sinhu cosh u+ sinhu− u(2 cosh2 u

2
) − 2

3π
u2 sinhu

=2cosh
u

2

[
sinh

u

2

(
1 + cosh u− 2

3π
u2

)
− u cosh

u

2

]

(4.18)

which is 0 if u = 0.
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On the other hand,

d

du

[
sinh

u

2

(
1 + coshu− 2

3π
u2

)
− u cosh

u

2

]

=
1

2
cosh

u

2

(
1 + cosh u− 2

3π
u2

)
+ sinh

u

2

(
sinhu− 4

3π
u
)
−cosh

u

2
−u

2
sinh

u

2

=
1

2
cosh

u

2

(
coshu− 1 − 2

3π
u2

)
+ sinh

u

2

(
sinhu+

( 4

3π
+

1

2

)
u
)
> 0, if u>0.

Therefore the last line of (4.18) is strictly positive if u > 0. So (4.15) holds

for 3π
2 < v < 2π.

When v > 3π and sin v < 0, the proof is similar but easier. We omit it.

This completes the proof of (4.15). �

Proof of (4.16).

(a) sin v ≤ 0. In this case

sinhu cosh u− u+ (u cosh u− sinhu) cos v − sin v

v
u2 sinhu

≥ sinhu cosh u− u− u coshu+ sinhu

= (1 + coshu)(sinhu− u) > 0 if u > 0.

(b) sin v > 0. We divide the proof into two cases.

(b1) v > π, sin v > 0. This implies that v > 2π. Hence,

sinhu coshu− u+ (u cosh u− sinhu) cos v − sin v

v
u2 sinhu

≥ sinhu cosh u− u− u cosh u+ sinhu− 1

2π
u2 sinhu

≥ sinhu− u+ coshu
(
sinhu− u− u3

2π︸ ︷︷ ︸
>u3( 1

3!
− 1

2π
)>0

)
> 0, if u > 0.

In the last line we replace u2 sinhu by u3 coshu which is larger by (4.17).

(b2) 0 < v < π. We have

sinhu cosh u− u+ (u coshu− sinhu) cos v − sin v

v
u2 sinhu

=
sinh(2u)

2
− u+ (u cosh u− sinhu) cos v − sin v

v
u2 sinhu
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=
1

2

∞∑

k=1

(2u)2k+1

(2k + 1)!
+

(
u

∞∑

k=0

u2k

(2k)!
−

∞∑

k=0

u2k+1

(2k + 1)!

)
cos v

−u2
∞∑

k=0

u2k+1

(2k + 1)!

sin v

v

)

=
1

v

∞∑

k=1

u2k+1

(2k + 1)!

(
22kv + 2kv cos v − 2k(2k + 1) sin v

)
.

It is easy to see that 22k − 2k − 2k(2k + 1) > 0 for k ≥ 3. Furthermore,

d

dv

(
22kv + 2kv cos v − 2k(2k + 1) sin v︸ ︷︷ ︸

denote this function by E(v)

)

= 22k + 2k cos v − 2kv sin v − 2k(2k + 1) cos v

= 22k − (2k)2 cos v − 2kv sin v,

and

d2E(v)

dv2
= (2k)2 sin v − 2kv cos v − 2k sin v

= 2k(2k − 1) sin v − 2kv cos v

≥ 2k(sin v − v cos v) > 0 for 0 < v < π.

Now E(v) = 0 if v = 0, and

dE

dv

∣∣∣
v=0

= 22k − (2k)2 = 0 for k = 1, 2

It follows that E(v) > 0 for 0 < v < π, and the proof of (4.16) is therefore

complete.

This completes the proof of Lemma 4.3. �

Assume that y > 0. For any v0 ≥ 0 fixed, the function f2(u, v0) tends to

−∞ as u tends to ∞. Lemma 4.3 implies that there is a unique u0 ≥ 0 such

that f2(u0, v0) = 0, f2(u, v0) < 0 if u > u0 and f2(u, v0) ≥ 0 if u ≤ u0. Thus

A is an unbounded simply connected set and ∂A \ u-axis is a curve {(u, v)}
so that u is a function of v > 0. We set

Γ+ = ∂A \ {(u, v)| v < η1} if y > 0.
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When y = 0,we set

Γ+ = {(u, 0)| u ≥ 0}.

Note that in this case A = ∅ and ∂f2

∂u

∣∣∣
Γ+

≡ 0.

The properties of Γ+ are collected in the following proposition. We need

consider y > 0 only. First assume that x 6= x0.

Proposition 4.4.

(1) Γ+ is a C∞ curve except at (0, ηj), j = 2, . . . , N .

(2) Γ+ =
⋃N

1 Γ+
j where

Γ+
2j = {(0, v)| η2j ≤ v < η2j+1}, 1 ≤ j ≤ N − 1

2

Γ+
2j−1 = {(u, v) ∈ Γ+| η2j−1 ≤ v < η2j}, 1 ≤ j ≤ N − 1

2
and

Γ+
N = {(u, v) ∈ Γ+| ηN ≤ v}.

For u, v large ΓN asymptotically tends to uy = v
2(x2

0 + x2) = v
4 (a2 + b2).

Also {(u, v)| u ≥ 0, v ≥ 0} \A =
⋃N+1

2
j=1 Dj . Each Dj is simply connected.

For j = 1, . . . , N−1
2 , Dj is bounded by Γ+

2j−1 and v-axis, so is a bounded

set. The boundary of DN+1
2

is {(0, v)| v ≥ ηN} ∪ Γ+
N and so DN+1

2
is

unbounded.

(3) At iηj , 1 ≤ j < N and j = N if ηN−1 < ηN ,

∂f

∂τ
(iηj) = 0, and

∂2f

∂τ2
(iηj) 6= 0.

Γ+ meets v-axis at iηj , j = 1, . . . , N orthogonally.

(4) If ηN−1 = ηN , then ηN = αN−1
2

by Theorem 2.6(1). We have

∂f

∂τ
(iηN ) =

∂2f

∂τ2
(iηN ) = 0, and

∂3f

∂τ3
(iηN ) 6= 0.

In this case, Γ+
N−1 degenerates to the point (0, ηN ) and Γ+

N−2, Γ+
N and

v-axis meet at iηN with three equal intersecting angles, i.e. π
3 .

Proof. (1) follows from the implicit function theorem by Lemma 4.3.

(2) is clear from the discussions before the Proposition.
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To prove (3), observe that ηj is not a local minimum of ∂f2

∂u |u=0 for

1 ≤ j < N or for j = N if ηN−1 < ηN . So, we have for these critical points,

∂2f2

∂u ∂v
(0, ηj) 6= 0,

or equivalently,

∂2f

∂τ2
(iηj) 6= 0.

The last statement of (3) follows from the fact that f2 is harmonic there.

As for (4), if ηN−1 = ηN , then ηN is a local minimum of ∂f2

∂u (0, v) and

ηN = αN−1
2

by Theorem 2.6(1). Hence

∂2f2

∂u ∂v
(0, ηN ) = 0 or equivalently

∂2f

∂τ2
(iηN ) = 0.

By Theorem 2.4(c) F is strictly convex there, this and (4.3) imply the strong

convexity of ∂f2

∂u |u=0 near ηN , thus we have

∂3f2

∂u ∂v2
(0, ηN ) 6= 0 or equivalently

∂3f

∂τ3
(iηN ) 6= 0.

The last statement follows from the harmonicity of f2. This proves the

Proposition. �

The orientation of Γ+ starts from iη1 to infinity. Let

Γ− = {τ : τ = u+ iv such that − u+ iv ∈ Γ+} (4.19)

with orientation reversed. Then set

Γ = Γ+ ∪ Γ− (4.20)

The curve Γ is depicted in Figure 4-1 and 4-2.

Next we discuss Γ in limiting cases.

The case y = 0, x0 6= x is obvious: it is just the u-axis. For the rest cases, the

definition of Γ+ still holds if we use the conventions for ηj in Theorem 2.6.
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For example, the curve Γ in the case y > 0, x0 = x = 0 consists of

Γ+ = {0+ + iv : v ≥ π} and Γ− = {0− + iv : v ≥ π}

with usual orientation. In other words, we have N = ∞ and Γ+
2j−1 shrinks

to the point ijπ, j = 1, 2, . . . .

The details of the other cases are omitted. See Figure 4-3—4-6 for the

corresponding pictures of Γ.

Figure 4-1 Figure 4-2

Figure 4-3 Figure 4-4
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Figure 4-5 Figure 4-6

4.3. Monotonicity of Ref along the curve Γ+

In this section we prove the following theorem.

Theorem 4.5. The function f1 = Ref is positive and monotone in-

creasing along Γ+ which is defined in 4.2.

Since f1(−u, v) = f1(u, v), it follows that f1 is monotone decreasing

along Γ−.

We shall give two proofs of this Theorem. When y = 0, Γ+ is the positive

u-axis and ∂f1

∂u

∣∣
Γ+ > 0 follows from 4.1.1(c). So we assume that y > 0 in the

following proofs.

Proof. Proof I: First we deal with the case, a2 + b2 > 0.

(A) When u = 0, one has, by (4.10),

∂f1(0, v)

∂v
= −∂f2

∂u
|u=0 > 0, if 0 ≤ v < η1, or η2j < v < η2j+1, 1 ≤ j ≤ N − 1

2
.

Thus f1(0, v) is monotone increasing for v in the intervals [0, η1] and [η2j , η2j+1],
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1 ≤ j ≤ N−1
2 , and so

f1(0, η2j+1) ≥ f1(0, η2j) if η2j+1 > η2j . (4.21)

As f1(0, 0) = b2

2 ≥ 0, we have

f1(0, η1) > 0 since η1 > 0 if y > 0. (4.22)

(B) The case u > 0. On Γ+ \ {u = 0}, u is a C∞ function of v by 4.2. We

differentiate f2(u(v), v) = 0 with respect to v implicitly and obtain

u′ =
du

dv
= −

∂f2

∂v
∂f2

∂u

(4.23)

Note that by Lemma 4.3 ∂f2

∂u < 0 on Γ+ \ {u = 0}.

Let now r(v) = Re(f)(u(v), v). Then by Cauchy-Riemann equations

dr

dv
= u′

∂f1

∂u
+
∂f1

∂v
=

(∂f2

∂u )2 + (∂f2

∂v )2

−∂f2

∂u

. (4.24)

Therefore dr
dv > 0 on Γ+ \ {u = 0}. As a consequence, f1 is strictly

increasing on Γ+ \ {u = 0}. So the theorem holds for a2 + b2 > 0.

When a2 + b2 = 0, Γ+ degenerates to {(0+, v)|v ≥ π} and f1 = vy.

Obviously the theorem is also true. This completes our proof.

Proof II: By Lemma 4.3 and Theorem 4.1 we know that (∂f2

∂u ,
∂f2

∂v ) 6= 0

on Γ+ \ {(0, ηj)| j = 1, . . . , N}. By Cauchy-Riemann equations (∂f1

∂u ,
∂f1

∂v ) =

(∂f2

∂v ,−
∂f2

∂u ) 6= 0 on Γ+ \ {(0, ηj)| j = 1, . . . , N} too. Since f2 < 0 on the

right hand part of Γ+, (∂f2

∂u ,
∂f2

∂v ) is perpendicular to Γ+ and lies to the left

of it. Thus (∂f1

∂u ,
∂f1

∂v ) is tangent to Γ+ and directs along the orientation of

Γ+. Therefore f1 is strictly increasing on Γ+ \ {(0, ηj)| j = 1, . . . , N} at the

greatest rate. This completes the proof. �

As a consequence, we have for 1 ≤ j ≤ N−1
2 ,

Re(f)(0, η2j) > Re(f)(0, η2j−1) if η2j > η2j−1. (4.25)
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Combining (4.21),(4.22) and (4.25), we have for j = 1, 2, . . . , N − 1

Re(f)(0, ηj+1) ≥ Re(f)(0, ηj) > 0 if ηj+1 > ηj. (4.26)

In summary, we have

Corollary 4.6. Let ηj, j = 1, . . . , N be defined in Theorem 2.6. Then

0 ≤ f1(0, ηj) < f1(0, ηj+1), if ηj < ηj+1, 1 ≤ j ≤ N − 1.

The following theorem gives the precise relation between f1(0, ηj) and

the length ℓj of the geodesic Cj defined in Theorem 2.6.

Theorem 4.7. We have f1(0, ηj) =
ℓ2j
2 for all 1 ≤ j ≤ N .

So the statements concerning the ℓ′js in Theorem 2.6 follows from Corol-

lary 4.6 and Theorem 4.7. This finishes the proof of Theorem 2.6.

Proof. Let Cj be the geodesic defined in Theorem 2.6. We have

Ċj(s) = (ẋ(s), ẏ(s)) = ẋ(s)
( ∂

∂x

)
+
ẏ(s)

x(s)

(
x
∂

∂y

)
= ẋ(s)X1 +

ẏ(s)

x(s)
X2.

Then ℓj is defined by the follwing

ℓj =

∫ 1

0

[
ẋ2(s) +

( ẏ(s)
x(s)

)2] 1
2
ds

=

∫ 1

0

[
ξ2(s) + x2(s)η2(s)

] 1
2
ds (by (2.4)) (4.27)

=

∫ 1

0
(2H)

1
2ds =

√
2H (by (2.3))

since the energy H is constant along the bicharacteristic.

At s = 0, (2.6) and (2.7) yield

H =
1

2
(ξ2 + x2η2) =

η2

2
(x2

0 +B2) (4.28)
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Then by (2.9), (2.10), (2.11) and (2.12)

H =
ηj

4

[
a2(µ̃(ηj) −

sin ηj

1 + cos ηj
) + b2(µ(ηj) +

sin ηj

1 − cos ηj
)
]

=ηjy +
1

4

(−a2 ηj sin ηj

1 + cos ηj
+
b2ηj sin ηj

1 − cos ηj

)

=f1(0, ηj) (by (4.1))

(4.29)

if ηj solves (2.10). In other words, (4.29) holds for all ηj , ηj 6= kπ. The case

ηj = kπ can be checked in (4.27) directly with the help of (2.26), (2.27),

(2.28). We omit the details. This proves the Theorem. �

5. The Heat Kernel

We shall show that with an appropriate choice of V (τ), (3.29) does

represent the heat kernel of ∆G. By the definition of the heat kernel, one

needs to show

{
∆GPt − ∂

∂tPt = 0, t > 0,

limt→0 Pt(x, y, x0) = δ(x− x0)δ(y).
(5.1)

We start with the first assertion of (5.1)

(
∆G − ∂

∂t

)
e−

f
t

tα
=
e−

f
t

tα+2

(
H(∇f) − f

)
− e−

f
t

tα+1

(
∆Gf − α

)
.

Then the eiconal equation (3.30) implies

(
∆G − ∂

∂t

)
e−

f
t V (τ)

tα
=
e−

f
t

tα+1
τ
(
− 1

t

∂f

∂τ

)
V − e−

f
t

tα+1

(
∆Gf − α

)
V

= − e−
f
t

tα+1

[
τ
dV

dτ
+

(
∆Gf − α+ 1

)
V

]
+

∂

∂τ

(τe−
f
t V (τ)

tα+1

)
.

Assuming

lim
τ→±∞

τe−
f
t V (τ) = 0, (5.2)
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one has
(

∆G − ∂

∂t

)
1

tα

∫

R

e−
f
t V (τ)dτ

= − 1

tα+1

∫

R

e−
f
t

[
τ
dV

dτ
+

(
∆Gf − α+ 1

)
V (τ)

]
dτ

= 0

if t > 0 and

τ
dV

dτ
+

(
∆Gf − α+ 1

)
V (τ) = 0. (5.3)

From (3.28), one has

∆Gf =
1

2
τ coth τ,

therefore (5.3) yields

τ
dV

dτ
+

(1

2
τ coth τ − α+ 1

)
V (τ) = 0,

dV

V
=

(
α− 1

τ
− 1

2
coth τ

)
dτ,

so

log V = (α− 1)
(
log τ + log C

)
− 1

2
log(sinh τ),

and we have derived

Lemma 5.1.

V (τ) =
(Cτ)α−1

√
sinh τ

(5.4)

is the general solution of (5.3).

We need V holomorphic near τ = 0 which forces us to choose α = n+ 1
2 ,

n = 1, 2, . . ., and then

V (τ) = Cτn−1

√
τ

sinh τ
,
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so we are looking at the following heat kernel

Pt =
C

(2πt)n+ 1
2

∫

R

e−
f(τ)

t

√
τ

sinh τ
τn−1dτ. (5.5)

Here ( τ
sinh τ )

1
2 is defined on C\⋃k=0,1,2···[(2k+1)πi, 2(k+1)πi]

⋃
k=0,−1,−2,...[2(k−

1)πi, (2k − 1)πi]. By writing τ = u+ iv, u, v ∈ R

( τ

sinh τ

) 1
2 =

( u2 + v2

sinh2 u cos2 v + cosh2 u sin2 v

) 1
2 e

i
2

arg( τ
sinh τ

), (5.6)

where arg( τ
sinh τ ) = arctan

(
v sinh u cos v−u cosh u sin v
u sinh u cos v+v cosh u sin v

)
for u ∈ R, |v| ≤ π/2 and

this defines ( τ
sinh τ )

1
2 on its domain.

By (4.1) and (5.6), one has (5.2) and so the first part of (5.1) holds. In

fact, recall that in the definition of f we always have vy ≥ 0; also −Re(f) →
−∞ as |u| → ∞ for any v fixed, if a2 + b2 = 2(x2

0 + x2) > 0. So, in view of

(5.6), (5.2) always holds as |u| → ∞ for any v fixed. As a result, we may

write (5.5) as

Pt =
c

(2πt)n+ 1
2

∫ ∞+iv

−∞+iv
e−

f(τ)
t

√
τ

sinh τ
τn−1dτ (5.7)

for any v ∈ (−π, π) fixed.

Furthermore, let B+ be the subset of C between u-axis and the curve Γ

defined by (4.20). We claim Re(f) > 0 on B̄+ and Re(f) → ∞ on B̄+ as

|τ | → ∞.

Proof. Recall that it is implicitly assumed that (x0, 0) 6= (x, y) and

y ≥ 0. Section 4.1 part (C) gives ∂Re(f)
∂u ≥ 0 (= 0 only when u = 0 or x =

x0 = 0) on u ≥ 0, v = 0. As Re(f)(0, 0) = b2

2 = (x−x0)2

2 , one has Re(f) ≥ 0

and Re(f) ↑ on positive u-axis. Next, Lemma 4.3 and Cauchy-Riemann

equations give ∂Re(f)
∂v > 0 on B̄+ ∩ {(u, v)| u ≥ 0}. Also, by Proposition

4.4(2) and the argument preceding (5.7) one concludes that Re(f) → ∞ on

B̄+ ∩ {(u, v)| u ≥ 0} as |τ | → ∞. Since Re(f)(u, v) = Re(f)(−u, v), the

Claim is proved. �
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Therefore, when y ≥ 0 one has

Pt =
c

(2πt)n+ 1
2

∫

γ
e−

f(τ)
t

√
τ

sinh τ
τn−1dτ (5.8)

where γ is any rectifiable curve homotopic to u-axis in B̄+. Note that

Re(f)|γ > 0. In particular, when γ = Γ one has Im(f) = 0.

When y ≤ 0, one deals with v ≤ 0 and the corresponding result still

holds. In conclusion, one has

lemma 5.2. For each (x, y) ∈ R
2 \{(x0, 0)}, there is a contour in (u, v)

plane on which Re(f) > 0, Re(f) → ∞ as |τ | → ∞ and (5.8) holds. In

particular, there is a contour on which Im(f) = 0.

Corollary 5.3. One has

lim
t→0+

Pt(x0, x, y) = 0 (5.9)

uniformly for (x, y) in any compact subset of ∈ R
2 \ {(x0, 0)}.

Proof. LetW be a compact subset of R
2\{(x0, 0)}. Let 2ǫ = dist((x0, 0),

W ). Write W = W1∪W2∪W3 where W1 = W ∩{(x, y)| |y| ≤ ǫ}, W2 = W∩
{(x, y)| y ≥ ǫ}, W3 = W ∩ {(x, y)| y ≤ −ǫ}. So W1, W2, W3 are compact

sets in R
2 \{(x0, 0)}. For any (x, y) ∈W1, one has |x−x0| ≥ ǫ; whence there

exists a positive constant δ such that Re(f)|v=0 > δ > 0 for all (x, y) ∈W1.

Therefore (5.9) holds for W1.

The case W3 is similar to W2. So it suffices to prove (5.9) for W2

and the corollary is proved. Let (x, y) ∈ W2. Since y ≥ ǫ it follows

from our discussion in Sections 2 and 4 that the smallest critical point

η1(x, y) of f(x0, x, y, τ) is strictly positive. As W2 is compact, one has

η0 = min(x,y)∈W2
η1(x, y) > 0. Thus Re(f)|v=iη0 > 0 for all (x, y) ∈ W2.

Therefore (5.9) holds for W2 too. �

We shall show that for all t > 0

∫

R2

Pt(x0, x, y)dx dy =
V (0)c

(2πt)n−1
.
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So by taking c = 1 and n = 1 the second part of (5.1) will follow in view of

Corollary 5.3. By taking v = 1 or −1 in (5.7) we have,

∫ +∞

−∞
dy

∫ +∞+isgn(y)

−∞+isgn(y)
e−

f(τ)
t V (τ)dτ

=

∫ ∞

0
dy

∫ +∞+i

−∞+i
e−

f(τ)
t V (τ)dτ +

∫ 0

−∞
dy

∫ +∞−i

−∞−i
e−

f(τ)
t V (τ)dτ

=

∫ ∞

0
dy

∫ +∞

−∞
e−

f(u+i)
t V (u+ i)du+

∫ 0

−∞
dy

∫ +∞

−∞
e−

f(u−i)
t V (u− i)du

=

∫ ∞

−∞
V (u+ i)du

∫ ∞

0
e−

f(u+i)
t dy +

∫ ∞

−∞
V (u− i)du

∫ 0

−∞
e−

f(u−i)
t dy

=

∫ ∞

−∞
V (u+ i)e−

h(u+i)
t

t

−iudu+

∫ ∞

−∞
V (u− i)e−

h(u−i)
t

t

+iu
du

=i

∫ ∞+i

−∞+i
V (z)e−

h(z)
t
t

z
dz − i

∫ ∞−i

−∞−i
V (z)e−

h(z)
t
t

z
dz

=2πtV (0)e−
h(0)

t

=2πtV (0)e−
(x−x0)2

2t .

where f = −iτy + h.

As ∫ ∞

−∞
e−

(x−x0)2

2t dx =
√

2πt,

we obtain ∫

R2

∫ ∞

−∞
e−

f(τ)
t V (τ)dτ =

(
2πt

) 3
2V (0).

We have derived

Theorem 5.4. The heat kernel for the subLaplacian of the Grusin

operator is given by

Pt(x0, x, y) =
(
2πt

)− 3
2

∫

R

e−
f(τ)

t

√
τ

sinh τ
dτ. (5.10)

Remark 5.5. Assuming V in (3.29) is analytic near 0 and V (0) 6= 0,
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set

V (τ) = a0 + a1τ + a2τ
2 + · · · .

Substituting this into (5.3), one obtains

a1τ + · · · +
(1

2
τ coth τ − α+ 1

)(
a0 + a1τ + a2τ

2 + · · ·
)

= 0,

a1τ + · · · +
(1

2
+ · · · − α+ 1

)(
a0 + a1τ + a2τ

2 + · · ·
)

= 0,

a1τ +
3

2
a0 +

3

2
a1τ − αa0 − αa1τ + · · · = 0,

or,
(3

2
− α

)
a0 + O(τ) = 0,

and a0 6= 0 implies

α =
3

2
.

Remark 5.6. We note that

Pt(x0, x, 0) =
1

(2πt)
3
2

∫ +∞

−∞
e−

h(τ)
t V (τ)dτ

is positive, hence Pt(x0, x, y) is also positive for small y, by continuity.

6. Small Time Asymptotics of the Heat Kernel

In this section we study the small time asymptotics of the heat kernel

at every critical point of the complex action function f . For y ≥ 0, we have

Pt(x0, x, y) = (2πt)−
3
2

∫

Γ
e−

f(τ)
t V (τ)dτ. (6.1)

where Γ is defined by (4.20). As before, the critical points of f are denoted

by ηj, 1 ≤ j ≤ N . Let γj = Γ+
j ∪ Γ−

j , 1 ≤ j ≤ N . When ηj = ηj+1 then γj

degenerates to a point. Now, (6.1) can be written as

Pt(x0, x, y) = (2πt)−
3
2

N∑

j=1

∫

γj

e−
f(τ)

t V (τ)dτ. (6.2)
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We want to find the small time asymptotics of the integrals

I ′j =

∫

γj

e−
f(τ)

t V (τ)dτ j = 1, . . . , N, (6.3)

as tց 0.

Recall that the function f1 = Ref is strictly increasing on Γ+. So in studying

the small time asymptotics of I ′j, we need only to consider the part of γj

close to iηj . Now, let ϕ(τ) ∈ C∞
0 (C) satisfying

0 ≤ ϕ ≤ 1, ϕ(τ) =

{
1 |τ | ≤ 1

0 |τ | ≥ 2,
and ϕ(τ) = ϕ(eiθτ) (6.4)

for all θ ∈ [0, 2π].

Set

ϕj(τ) = ϕ(
τ − iηj

ǫj
), (6.5)

where ǫj > 0 is to be specified case by case later on. The integral (6.3) is

modified to

Ij =

∫

γj

e−
f(τ)

t ϕj(τ)V (τ)dτ j = 1, . . . , N. (6.6)

In the following lemma we collect the properties of V (τ) without proof.

Lemma 6.1. For u ∈ R, v ≥ 0, V (τ) satisfies

V (−u+ iv) = V (u+ iv) (6.7)

When ηj is not an integral multiple of π, 1 ≤ j ≤ N , we write

V (0+ + iηj) = eiβj

( ηj

| sin ηj|
) 1

2
, 1 ≤ j ≤ N, (6.8)
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where 



βj = 0 if j ≡ 0 or 1 mod(8);

βj = −π
2 if j ≡ 2 or 3 mod(8);

βj = −π if j ≡ 4 or 5 mod(8);

βj = −3π
2 if j ≡ 6 or 7 mod(8).

Lemma 6.2. For j odd, 1 ≤ j ≤ N , and γj nondegenerate, let γ+
j = Γ+

j .

We write γ+
j = {u+ i(vj(u) + ηj)} for γ+

j near iηj . We have, when iηj is a

double point of f ,

v′j(0) = 0, v′′j (0) =
1

3

∂3f1

∂u2∂v
∂2f1

∂u2

∣∣∣∣∣
τ=iηj

, v′′′j (0) = 0 (6.9)

and when iηj is a triple point of f ,

v′j(0) = 0,

v′′j (0) =
2

9

∂4f1

∂u2∂v2

∂3f1

∂u2∂v

∣∣∣∣∣
τ=iηj

,

v′′′j (0) =
√

3
(12 ∂3f1

∂u2∂v
∂5f1

∂u2∂v3 − 5
( ∂4f1

∂u2∂v2

)2

135
( ∂3f1

∂u2∂v

)2

)∣∣∣∣∣
τ=iηj

.

(6.10)

Lemma 6.2 follows from implicit differentiation.

6.1. γj nondegenerate and ηj is not an integral multiple of π

Here we have three cases.

6.1.1. j even

In (6.5) we choose ǫj such that ηj+1 /∈ suppϕj. Now

Ij =

∫ ηj+1

ηj

e
−f1(0,v)

t ϕj(iv)V (0+ + iv)idv+

∫ ηj

ηj+1

e
−f1(0,v)

t ϕj(iv)V (0− + iv)idv

= 2Re e(
π
2
+βj)i

∫ ∞

0
e

−f1(0,v+ηj )

t ϕj(i(v + ηj))
( v + ηj

| sin(v + ηj)|
) 1

2 dv
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As t→ 0, we have

Ij ∼ − e−
f1(0,ηj )

t

( ηj

| sin ηj|
) 1

2
( 2t

a2

) 1
2 sin βj×

{√
π +

√
2√
a2

[1

2
(

1

ηj
− cot ηj) −

a3

3a2

]
t

1
2

−
√
π

a2

[ a3

4a2
(

1

ηj
− cot ηj) +

1

8a2
(a4 −

5

3

a2
3

a2
)

− 1

8
(2 + 3 cot2 ηj −

1

η2
j

− 2
cot ηj

ηj

)]
t+ · · ·

}
,

(6.11)

where a2 = ∂2f1

∂v2

∣∣
iηj

, a3 = ∂3f1

∂v3

∣∣
iηj

, a4 = ∂4f1

∂v4

∣∣
iηj

. Note that a2 > 0 by the

fact that f1 is strictly increasing on Γ+ and iηj is a double point of f .

Remark 6.3. By Lemma 6.1, Ij ≡ 0 if j ≡ 0 or 4 mod(8).

6.1.2. j odd, j ≤ N and ηN−1 < ηN if j = N

So ηj is a double point of f . Here we choose ǫj in (6.5) such that vj(u)

in Lemma 6.2 is a C∞ function of u ∈ [0, ǫj ]. Now

Ij = 2Re

∫

γ+
j

e−
f1(u,vj(u))

t ϕj(τ)V (τ)dτ

And as t→ 0, we have

Ij ∼ e−
f1(0,ηj )

t

( ηj

| sin ηj|
) 1

2
(2t

b2

) 1
2

×Re
(
eiβj

{√
π − i

√
2√
b2

[1

2
(

1

ηj
− cot ηj) −

b3
3b2

]
t

1
2

(6.12)

+

√
π

b2

[ b3
4b2

(
1

ηj
− cot ηj) −

1

8b2
(b4 +

5

3

b23
b2

)

−1

8
(2 + 3 cot2 ηj −

1

η2
j

− 2
cot ηj

ηj

)]
t+ · · ·

})
,

where b2 = ∂2f1

∂u2

∣∣
iηj

, b3 = ∂3f1

∂u2∂v

∣∣
iηj

, b4 = ∂4f1

∂u4

∣∣
iηj

. By the same reason as in

6.1.1, b2 is a strictly positive number.

6.1.3. j odd, j = N and ηN = ηN−1 = αN −1

2

> ηN−2

Here ǫj is chosen as in 6.1.2. Note that ηN is a triple point of f . So we
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need (6.10) in calculating the small time asymptotics of IN . Similar to 6.1.2

IN = 2Re

∫

γ+
N

e−
f1(τ)

t ϕN (τ)V (τ)dτ

As t→ 0,

IN ∼
2

3
t

1
3
(9

√
3

4b3

) 1
3 e−

f1(0,ηN )

t

( ηN

| sin ηN |
) 1

2 Re
(
eiβN

×
{
Γ(

1

3
) + Γ(

2

3
)
(9

√
3

4b3

) 1
3

[
− i

2
(

1

ηN
− cot ηN ) +

b4
b3

(−2

9
i+

1

3
√

3
)
]
t

1
3

−
(9

√
3

4b3

) 2
3

[(b4
b3

)2
(
i

6
√

3
+

1

144
) +

b4
b3

(
1

ηN
− cot ηN )(

1

6
+

i

4
√

3
) (6.13)

+
1

8
(2 + 3 cot2 ηN − 1

η2
N

− 2
cot ηN

ηN

)
− b5
b3

(
2i

15
√

3
− 1

20
)
]
t

2
3

+ · · ·
})
,

where b3 = ∂3f1

∂u2∂v

∣∣
iηN

, b4 = ∂4f1

∂u4

∣∣
iηN

, b5 = ∂5f1

∂u4∂v

∣∣
iηN

. Note that b3 > 0.

Remark 6.4. Observe that in 6.1.1 and 6.1.2 all the powers in t are

multiples of 1
2 which is due to the fact that iηj is a double point of f . For

the similar reason, the powers of t in 6.1.3 are multiples of 1
3 .

6.2. ηj ≡ 0 mod(π), j < N

The cases include a = b = 0 and a = 0 or b = 0 with j < N . For j

odd, γj degenerates to the point j+1
2 π; hence we only consider j even with

ηj = j
2π. Observe that f is regular at iηj , while V is singular at iηj .

6.2.1. y > 0, a = b = 0

We choose ǫj such that suppϕj ⊂ {τ | |τ − iηj | < 1
2}. Now

Ij =

∫

γj

e−
vy
t ϕj(τ)V (τ)dτ

= 2e−
jπy
2t Re

{
e(

π
2
+βj)i

∫ π

0
e−

vy
t ϕj(i(v −

jπ

2
))

( jπ
2 + v

| sin v|
) 1

2 dv
}
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Remark 6.5.

(i) For the same reason as Remark 6.3 we have Ij ≡ 0 if j ≡ 0 or 4 mod(8).

(ii) The integrand in Ij is integrable.

As t→ 0

Ij ∼ −
(2jπt

y

) 1
2 e−

jπy
2t sin βj

{√
π +

t

2j
√
πy

(6.14)

+

√
π

16y2
(1 − 6

j2π2
)t2 + · · ·

}
.

6.2.2. y > 0, x = x0 6= 0, j < N (b = 0)

In this case, Ij ≡ 0 by Remark 6.3 or Remark 6.5(i).

6.2.3. y > 0, x = −x0 6= 0, j < N (a = 0)

Here ϕj is chosen as in 6.2.1 and j ≡ 2 or 6 mod(8), or ηj ≡ π mod(2π).

As t→ 0

Ij ∼ −
(jπt
c

) 1
2 e−

jπy
2t sin βj

{
2
√
π +

1

c
(

2

j
√
π

+
3
√
πx2

0

c
)t

(6.15)

+

√
π

2c2
[
1 − 6

j2π2
+

30x2
0

c
(

1

jπ
+
jπ

12
) +

105x4
0

2c2
]
t2 + · · ·

}
.

where c = 2y − j
2πx

2
0 = 2∂f1

∂v

∣∣
iηj
> 0 since j < N . Note that ∂2f1

∂v2

∣∣
iηj

= −x2
0,

∂3f1

∂v3

∣∣
iηj

= − j
4πx

2
0.

Remark 6.6. In (6.14) and (6.15), the term t
1
2 in front of the braces

comes from V . The gap of the powers in t inside the braces is one which is

due to the fact that f is regular at iηj .

6.3. j = N , ηN = ηN−1 = ηN−2 = N−1

2
π > ηN−3, a = 0 or b = 0

This case is a mixture of 6.1 and 6.2. Here ηN is a double point of f

and V is singular at ηN too. ǫj is chosen as in 6.1.2. We have

IN = 2Re

∫

γ+
N

e−
f1(τ)

t ϕN (τ)V (τ)dτ.
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As t→ 0,

IN ∼ 4
((N − 1)π

b2

) 1
2 e−

(N−1)πy

2t t
1
4 Re e−i N−2

4
π

×
{
1 + i

√
π

2
√
b2

( −1

(N − 1)π
+

b3
4b2

)
t

1
2 +

2

b2

[
− b4

6b2
− 1

12
(6.16)

+
5b3

12(N − 1)πb2
− 25

96

b23
b22

+
1

2(N − 1)2π2

]
t+ · · ·

}
,

where bk are defined in 6.1.2.

Remark 6.7. In (6.16), the power 1
4 in front of the braces is due to the

singularity of V and the fact that iηN is a double point of f . The gap 1
2 of

the powers of t in the braces of (6.16) is due to the fact that iηN is a double

of f .

6.4. Some observations

We want to find out the possible relations among the different types of

small time asymptotics discussed in the previous sections. The cases 6.1.3

and 6.3 are of distinct types. We can only look at the rest cases.

In the following, we assume, for simplicity, that y is fixed and let a or b

tends to zero.

(A) In 6.2, by Remark 6.5(i) we see that when j ≡ 0 or 4 mod(8), both

6.2.1 and 6.2.2 are identically zero. So in this case 6.2.1 is the limit of 6.2.2

as x0 → 0. As for 6.2.3, if we let x0 → 0 in (6.15), it is easy to see that the

limit is (6.14). Therefore, when j ≡ 2 or 6 mod(8), 6.2.1 is the limiting case

of 6.2.3 as x0 → 0.

We then seek the relations between 6.1 and 6.2.

(B) Suppose η2j−1, η2j are not intgral multiples of π and η2j−1 ր jπ (resp.

η2j ց jπ) as a2 ց 0 when j is odd or b2 ց 0 when j is even. Necessarily,

η2j−1 (resp. η2j) is a double point of f . Direct computation shows that

∂kf

∂τk

∣∣∣
iη2j−1

= O
(
|η2j−1 − jπ|−k+1

)
as a2 ց 0, k = 1, 2, . . . . (6.17)

(
resp.

∂kf

∂τk

∣∣∣
iη2j

= O
(
|η2j − jπ|−k+1

)
as b2 ց 0, k = 1, 2, . . . .

)
(6.18)
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We write down a few derivatives of f :

∂2f

∂τ2

∣∣
iηj

=
1

4

(
a2 sec2 vj

2
+ b2 csc2 vj

2

)

(6.19)
+
vj

8

(
a2 tan

vj

2
sec2 vj

2
− b2 cot

vj

2
csc2 vj

2

)
.

∂3f

∂τ3

∣∣
iηj

=
3i

8

(
− a2 tan

vj

2
sec2 vj

2
+ b2 cot

vj

2
csc2 vj

2

)

− ivj

8

[
a2

(1

2
sec4 vj

2
+ tan2 vj

2
sec2 vj

2

)
(6.20)

+b2
(1

2
csc4 vj

2
+ cot2

vj

2
csc2 vj

2

)]
.

∂4f

∂τ4

∣∣
iηj

= −1

2

[
a2

(1

2
sec4 vj

2
+ tan2 vj

2
sec2 vj

2

)

+b2
(1

2
csc4 vj

2
+ cot2

vj

2
csc2 vj

2

)]

(6.21)
+
vj

8

[
− a2

(
2 tan

vj

2
sec4 vj

2
+ tan3 vj

2
sec2 vj

2

)

+b2
(
2 cot

vj

2
csc4 vj

2
+ cot3

vj

2
csc2 vj

2

)]
.

From (6.19)– (6.21), for example, the coefficient of t
1
2 in the braces of (6.11)

(resp. (6.12)) is not null, it blows up at the order

|η2j − jπ|− 1
2 (resp. |η2j−1 − jπ|− 1

2 ) (6.22)

as η2j ց jπ (resp. η2j−1 ր jπ). As a result, we can not find a connection

between (6.11), (6.12) and the small time asymptotics in 6.2 for these terms.

(C) However, let us look at the first term in (6.11) and (6.12).

For j even, we have as j ց jπ
2 ,

lim
ηjց jπ

2

|a2 sin ηj| = ηjB
2
j , where B2

j =
4y

jπ
− x2

0 > 0, (6.23)

by (6.19) and (2.14).

For j odd, we have as j ր j+1
2 π,

lim
ηjր j+1

2
π
|b2 sin ηj | = ηjB

2
j , (6.24)

Thus, in view of (6.23), the first of (6.11) becomes, as η2j ց jπ, (or, b→ 0
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if j is even and a→ 0 if j is odd),

−e− jπy
t

( 2t
2y
jπ − x2

0

) 1
2 (sin β2j)

√
π. (6.25)

Similarly, as η2j−1 ր jπ, the first of (6.12) becomes,

e−
jπy

t

( 2t
2y
jπ − x2

0

) 1
2
√
πRe eiβ2j−1 . (6.26)

By Lemma 6.1, β2j + π
2 = β2j−1, or we get (6.25)= (6.26). It follows that

the sum of (6.25) and (6.26) is

−2e−
jπy

t

( 2t
2y
jπ − x2

0

) 1
2 (sin β2j)

√
π. (6.27)

Observe that

(i) (6.27) equals the first term of I2j in (6.15) when a = 0.

(ii) (6.27) equals 0 when 2j ≡ 0 or 4 mod(8). So it is the same as 6.2.2.

(iii) When a = b = 0, or x0 = 0 in (6.27), the first term of I2j in (6.14) is

exactly (6.27).

6.5. Conclusions

We have computed the first three terms of the small time asymptotics

of the heat kernel of Grusin operator at every critical point of the complex

action f . We also find out some relations between these coefficients. We

may say that

(i) all the geodesics determine the geometry;

(ii) all the informations of the geodesics are contained in the complex func-

tion f ;

(iii) one can then use f to construct the fundmental solution and the heat

kernel of the Grusin operator;

(iv) a thorough understanding of the action f enables one to compute the

small time asymptotics of the heat kernel at every critical point of f ;

(v) the information contained in f is revealed in these asymptotic expan-

sions.
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7. Connection with the Heisenberg sub-Laplacian and Brownian

Motion

As we have seen in Section 1, the Grusin operator is

∆G =
1

2
(X2

1 +X2
2 ) =

1

2

[( ∂
∂x

)2
+

(
x
∂

∂y

)2
]
.

We can compare it to the operator

L =
1

2

(
X̃2

1 + X̃2
2

)
=

1

2

[( ∂

∂x1
+
x2

2

∂

∂t

)2
+

( ∂

∂x2
− x1

2

∂

∂t

)2
]

on the Heisenberg group H1. It is easy to see that the operator L is left-

invariant translation under the group law on H1:

(x1, x2, t) ◦ (y1, y2, s) =
(
x1 + y1, x2 + y2, t+ s+

1

2
(x2y1 − x1y2)

)
.

The fundamental solution for L with singularity at the origin is

K(x1, x2, t; 0, 0, 0) =
1

π2

∫ ∞

−∞

csch(τ)dτ

(x2
1 + x2

2) coth(τ) − i4t
.

Set

x1 = x, x2 = z, t =
xz

2
− y

Then the operator L transforms to

∆H1 =
1

2

[( ∂
∂x

)2
+

(
x
∂

∂y
+

∂

∂z

)2
]

∆H1 is translation invariant in y and z. Hence it suffices to have the singu-

larity at (x0, 0, 0).

(x0, 0, 0)
−1 · (x, z, xz

2
− y) =

(
x− x0, z,

(x0 + x)z

2
− y

)
.

Therefore,

K̃(x, z, y;x0, 0, 0) = K(x1, x2, t;x0, 0, 0)

=

∫

R

π−2csch(η)

[(x− x0)2 + z2] coth(η) − i[2(x0 + x)z − 4y]
dη.
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Note that the fundamental solution for ∆G may be obtained from the fun-

damental solution for ∆H1, using the Hadamard method of descent, by in-

tegrating the K̃(x, z, y;x0, 0, 0) for ∆H1 with respect to z. Recall

∫

R

dλ

aλ2 + bλ+ c
=

2πsgn(a)√
4ac− b2

, λ ∈ R

if a 6= 0 and aλ2 + bλ+ c 6= 0 ∀λ ∈ R. Hence

KG(x, x0, y)

=
1

π

∫

R

[
sinh(η) cosh(η)

]−1/2
dη√

(x− x0)2 coth(η) + 4iy + (x+ x0)2 tanh(η)
.

We may also look at this connection by the other method. Let H1 be the

Heisenberg group whose Lie algebra h has a basis {X̃1, X̃2, T} with the

bracket relation [X̃1, X̃2] = −T . Then

−1

2

(
X̃2

1 + X̃2
2

)

is the sub-Laplacian on H1. Let NX̃2
= 〈X̃2〉 = {aX̃2}a∈R be a subgroup

generated by the element X̃2. The map ρ : H1 → R
2 defined by

ρ : H1 → R
2 ∼= h ∋ g =x1X̃1 + x2X̃2 + zT

=(x1, x2, z) 7→ (u, v) ∈ R
2

where

u = x1, v = z − 1

2
x1x2

realizes the projection map

H1
∼= R

3 → NX̃2
\ H1

∼= R
2.

In fact, this is a principal bundle and the trivialization is given by the map

NX̃2
× (NX̃2

\H1) ∼= R × R
2 ∋ (a;u, v) 7→ (x1, x2, z) ∈ R

3 ∼= H1

where

(a;u, v) 7→
(
u, a, v +

1

2
au

)
.
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So the operator ∆H1 = 1
2

(
X̃2

1 +X̃2
2

)
on H1 and Grusin operator ∆G commute

each other through the map ρ:

∆H1 ◦ ρ∗ = ρ∗ ◦ ∆G.

The heat kernel PH1(t, g) ∈ C∞(R+ ×H1) is given by

PH1(t, g) = PH1(t, x1, x2, z) =
1

(2πt)2

∫
e

4iηz−η coth
η
2 (x2

1+x2
2)

4t
η

2 sinh η
2

dη (7.1)

Hence

∫ +∞

−∞
PH1(t, (x1, x2, z), (u, a, v +

1

2
ua)) da

(7.2)
= PG(t, (x1, z −

1

2
x1x2), (u, v))

that is, the fiber integration of the function PH1(t, g, h) along the fiber of

the map ρ gives the heat kernel of the Grusin operator.

7.1. About the bicharacteristics and geodesics

Consider now the bicharacteristics of ∆G and of ∆H1 . We have the

following table.

1. Thus a bicharacteristic of H1 such that ξ2 ≡ 0 projects by

(x1(s), x2(s), y(s), ξ1(s), ξ2(s), η) → (x(s) = x1(s), y(s), ξ(s) = ξ1(s), η)

on a bicharacteristic of Grusin operator.

Table 1. Comparison of the Hamitonian systems between ∆G and ∆H1

(x1, x2, y) ∈ H1, ∆H1 (x = x1, y) ∈ R
2, ∆G

H = 1
2(ξ21 + (ξ2 + x1η)

2) H = 1
2(ξ2 + x2η2)

dx1
ds = ξ1,

dξ1
ds = −(ξ2 + x1η)η

dx
ds = ξ, dξ

ds = −xη2

dx2
ds = ξ2 + x1η,

dξ2
ds = 0

dy
ds = (ξ2 + x1η)x1,

dη
ds = 0 dy

ds = x2η, dη
ds = 0
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2. Conversely, a bicharacteristic of Grusin operator is the projection of a

bicharacteristic of H1 with ξ2 = 0. And these are the only possibilities.

7.2. About the Brownian motion for Grusin operator

The stochastic process for the Grusin operator is

xω(t) = x0 + bω(t), yω(t) =

∫ t

0
xω(u)dβω(u)

Here bω and βω are independent Brownian motions starting from 0 so that

xω(0) = x0 and yω(0) = 0 (which we can always assume).

The heat kernel for Grusin operator is

Pt(x, y
∣∣x0, 0) =E

{
δ(x− xω(t))δ(y − yω(t))

}

=E
{
δ(x− x0 − bω(t))δ(y −

∫ t

0
xω(u)dβω(u))

}
.

Write

δ(y) =

∫
eiyη dη

2π

as the inverse Fourier transform of the function 1. Thus

Pt(x, y
∣∣x0, 0)

(7.3)

=

∫
dη

2π
eiyηE

(
δ(x − x0 − bω(t)) exp(−iη

∫ t

0
xω(u)dβω(u))

)
.

The expectation E is the Wiener integral over bω(t) and βω(t). In the formula

(7.3), one can first integrate over the Brownian motion β, due to the fact

that xω(u) is independent of βω(u), so that

Eβ

(
exp

(
− iη

∫ t

0
xω(u)dβω(u)

))
= exp

(
− 1

2
η2

∫ t

0
(xω(u))2du

)

and consequently we have reduced the heat kernel to

Pt(x, y
∣∣x0, 0) =

∫
dη

2π
eiyηE

{
exp

(
− 1

2
η2

∫ t

0
(xω(u))2du

)
δ(x− x0 − bω(t))

}
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with xω(u) = x0 + bω(u). Then the Wiener integral becomes a path integral

which is quadratic in the exponential and can always explicitly calculated,

one way or another.
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