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ON KAN EXTENSION OF HOMOLOGY
AND ADAMS COCOMPLETION

BY

AKRUR BEHERA AND RADHESHYAM OTA

Abstract

Under a set of conditions, it is shown that the Kan ex-
tension of an additive homology theory over smaller admissible
subcategory is again a homology theory. Furthermore, using a
Serre class of abelian groups, it is shown that a homology theory
over the category of simply connected based topological spaces
and continuous maps arising through Kan extension process from
an additive homology theory over a smaller subcategory always

admits global Adams cocompletion.

1. Introduction

Let .7 be the category of based topological spaces and base point pre-
serving maps. A subcategory # of .7 is said to be admissible if it is
nonempty, full, closed under the formation of mapping cones and contains
(based) homotopy types [12]. It is evident that an admissible subcategory
of 7 contains singletons and is closed under suspensions. We denote by j
the homotopy category of #.

A homology theory h on an admissible category _# is a sequence of
functors h,, : ¢ — (L where (L is the category of abelian groups, together
with natural transformations o, : by, — hyp11% (X denoting the suspension)
satisfying the homotopy, suspension and exactness axioms:

(1) If f() ~ f1 then hn(f()) = hn(fl)
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(ii) oy : hp = hpi1 2.
(iii) If f: X — Y isin _# and Cy is the mapping cone of f and Py : Y — Cf

is the canonical embedding then

hn(f) hn(Py)
hn(X) — hp(Y) — h,(Cy)

is exact.

Let #y and _#; be two admissible subcategories of .7 with 7y C _#;
and let h be a homology theory defined on _#j. The left Kan extension of h
over Z1, say I, is a functor on _#; having values in the category of abelian
groups. In this note we give a set of conditions under which the functor
I’ is a homology functor. It may be recalled that Deleanu and Hilton have
considered this question for cohomology theories [1, 2, 9] and Piccinini [12]
has considered the same question for homology theories on stable categories.
It will be evident from the conditions imposed and the method of proof of
the main result that the description given here is largely dualization of the

results obtained in [2].

2. The Extension Procedure

We assume that the categories #p and _#; have the following three

properties:

(i) jo has weak local push-outs relative to jl; that is, given a commuta-

tive diagram in jl

(0
Y — Y

o s

Vi —> X
Lh

with Yy, Y7 and Y in _#; , there exists a diagram
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Uo
Yy — Y

wl e\

Y — 7

U1
fl\ \ g
X

in ¢ with Z in _#.
(ii) The suspension map ¥ : jl — jl is locally left jo—adjunctable,
which means that condition (a) and (b) below are satisfied.
(a) Given f:Y — XX in jl with Y in _#, there exists an object Z
in/oandg:ZHXinjl andu:Y%EZinjosuchthat
f=(Eg)u.

ol Sy 1

X7 Z
(b) Given diagrams
VA Z
U by
/ % a0
Y XX X
m Az g2
VA Z

with Z;, Z3 and Y in _#j and (£g1)u1 = (Xg2)us in jl, there exist
v1:Z = Z1,v9: 2 — Zoandu:Y — NZ in gy with gyv; = gava,
(Xv1)u = u; and (Xwv2)u = ug. Thus we have the commutative

diagrams
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Al VA
g1 U Yg1
U1 Yy
u
A X Y — 37 XX
s / \ 27/
92 u2 292
Zy VA

(iii) #o is closed under finite sums i.e., if Y7 and Y5 are in _#y, then so is
Y1 VYs.

We now describe the extension procedure. Let X be an object of #;.
Form the category jm(X ) of all jo—objects over X: An object in this
category is a morphism f : Y — X in jl with Y in _#5; a morphism
u : fi — fo in this category is a morphism u : Y7 — Y5 in jo such that the

diagram

is commutative in jl. It is easy to check that jm(X ) is a category. The

left Kan extension h), of the homology functor h,, is defined as follows:

n(X) = “7“‘><hn<y>, (1)),

It is obvious that k!, is an extension of h,, and defines a covariant functor on

jl with values in the category of abelian groups.

An alternative description of the groups h/,(X) can now be given. Let
PuX)={(a, /)f:Y - X in # with Y in g5, € h,(Y)}.

In P,(X) define a relation ~ by the rule: (a1, f1) ~ (ag, f2) if and only if

there is a commutative diagram
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Y

\Q
up

in 71 with Y in %, u1, ug in _Zo, fur = f1, fuz = fo and hy(ui)og =
b (ug)as.

Proposition 2.1. Under the assumptions (i), (ii) and (iii), ~ is an

equivalence relation on P,(X).

Proof. Only transitivity is in question. Suppose that (a1, f1) ~ (a9, f2)

and (a2, f2) ~ (a3, f3). We then have two commutative diagrams in ¢ as

follows:
Yi Yo
f1 fo
(75} V2
/
s / v /
fo f3
Ys Y3

with Y and Y’ in _#;. Moreover, hy(ui)ar = hy(u2)as and hy(ve)as =
hy(v3)as. By condition (i), the commutative diagram

V2
Yo — Y’

o
Y —f—> X

can be embedded in a diagram
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v2
Yo — Y’

NP

Y —> 7

NG N\
X

in jl with Z in _#y. Now consider the diagram

Y

{

VU

v'vg /
f3

which is clearly commutative. Moreover h,(vui)a; = hy(v)hy(u1)on =
B, (V) b, (ug) g = hy (Vug ) g = by, (V'v2) g = hyy (V') iy (v2) g = hy (V') B (03) g
= hy(v'vs3)as. Hence (aq, f1) ~ (as, f3). This completes the proof of Propo-

sition 2.1.

We denote the equivalence class of (a, f) by [, f] and denote the set
of such equivalence classes by E,(X). Now define ‘addition’ on E,(X) as
follows: Given [aq, f1] and [ag, fo] in E,(X) with f; : Y7 — X and fy: Yy —
X,leti1:YT - Y1 VYs and io : Yo — Y7 V Y, denote the usual injections.
Define

[, f1] + [ag, fa] = [hn(i1)on + hn(iz)az, f1V fo

where f1V fo : Y1 VY — X is defined as usual. This ‘addition’ is easily
checked to be well-defined, associative and commutative. The additive iden-
tity of the group is easily seen to be the element [0,i] where i : x — X is
the map that takes the singleton * to the base point of X. We note that

[, f] = [0,7] if and only if we have a commutative diagram
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N
u
Yo — X
Jo
in jl with Yy € _#y and hy(u)a = 0. The additive inverse of an element
[a, f] is easily seen to be [—a, f]. E,(X) is thus a commutative group.

For a given f : ¥ — X in jl with Y in _#y, define iy : h,(Y) —
E,(X) by the rule if(a) = [o, f]. En(X) together with the maps {is} has
the required universal property; thus, E,(X) = hl(X). Note also that if
g:X — X'isin _#y, then hl,(g) = g« : hl,(X) — Rl (X') is defined by the
rule g.[a, f] = [, gf].

3. The Suspension Axiom

We now show that h’ satisfies the suspension axiom. First identify the
suspension map o : hy(Y) — hpp1(XY) in _Zj as follows: o[a, f] = [oa, X f].
We then define the suspension isomorphism o’ : h; (X) — hj,(3X) for any
X in _#; by the rule o'[a, f] = [oa, X f].

The map o’ is onto: If we take [3,g] € h;,,;(XX), then we have a map
g:Y — XX for some Y in ¢, and § € h,41(Y). By assumption (ii) we
can factorize this map g = (Su)k : ¥ -5 $Z =% $X with Z in _#y. Then

the commutative diagram

Y

N

Yu
>7——3¥X

1sz /
Yu

XZ

shows that [, g] = [hn1 (k) B, Zu]=[00"  (hpu (k)B), Su]l =0’ [0~ (hpu (k) 3),
u]. Thus ¢’ is onto.
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To show that ¢’ is one-one, assume that o'[a, f] =0, f : Y — X and

a € hy,(Y). We then have a commutative diagram

XY

SN

Y — 33X
g1

with Y7 in jo and hp41(u1)(oa) = 0. We can now factorize g1 = (Xg)us :
YlﬂzZiEX. We thus have a diagram

XY

ﬁ‘
uy

Y —3¥X
g1
u9 /
2g

VA

Let u = ugu7; then we have a commutative diagram

Y

TN

*Z7—3%X
g

Moreover, hy+1(u)(oa) = hpt1(uz)hpi1(ur)(oca) = 0. Consider the commu-

Y
Y ¥ X
N
Y7

By assumptions (ii)(b), we have commutative diagrams

tative diagram
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XY Y

1yy Xf f
Sk k
vy —Y% »7 $X T X
/!

N
U dg

X7z A

with T in _#,. Consider the element hy11(v)(ce) € hypi1(XT). Since o :
B (T) S hpy1(ST) is an isomorphism, it follows that hyy1(v)(ca) = of for
some 3 € hy,(T). Moreover, 1lyy = (Xk)v, so that ca = hyq1(lyy)(oca) =
hps1(Zk)hpt1 (v) (o) = hpy1(Zk)hpy1(08) = ohy(k)(B), showing that o =
hn(k)(B). Consideration of the diagram

T

]

Y — X

shows that |3, fk] = [a, f]. On the other hand we have h,1(3Xm)(cf3)

st (Em)has1 (0)(00) = 1 (u)(00) = 7(hn(u)(@)) = 0. Thus, hy(m)(5)
= 0. Considering the diagram

T

| N

Y — X
g

we arrive at the conclusion that |3, fk] = 0, so that [«, f] = 0. Thus, ¢’ is
also one-one and this completes the proof of the suspension axiom.

4. The Exactness Axiom

We shall show now, using the suspension axiom (proved above), that
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the functor h!, satisfies the exactness axiom, i.e., h!, carries every cokernel
sequence A% X ng in jl into an exact sequence. Let [, f] € ker hl,(P,)
with f : Y — X. This implies that [a, P;f] = 0 so that we have a map
u:Y — Yyin jo and a map fo : Yo — Cy in jl such that h,(u) = 0.
Consider the diagram

g P, dg
A x —5> ¢, A SX
fT foT flT EfT
Yy — Y, B Cy, 0N Y o XYy

where f; and X f are induced maps between the corresponding terms of
the Puppe sequences. Since o : hyp(Y)>h,1(XY) is an isomorphism, it
follows that hy,y1(Xu)(ca) = 0. But the homology functor on the bot-
tom Puppe sequence is exact; so there is an element 8 € h,11(C,) such
that hp41(Qu)8 = oa. From the third sequence, we therefore deduce that
18,(29) f1] = [oa,2f]. If v = [B, fi] € hjy1(BA), then R (3g)(7) =
h, 1 (E9)[8, f1] = [8,(Eg)f1] = [ca, Bf] = o'[a, f]. Since we have an iso-
morphism o’ : hl,(A)Sh, 1 (A) we take 6~ = (0/)7(7), so that h/,(g)(5) =
h(9)(0") 1) = (o) hi 1 (B9)(7) = (o) Hoa, Bf] = (o) 'o'[er, f] =
[, f]. This shows that ker A}, (P;) C Image h,(g). To show that Image h;,(g)
C ker h},(P,), it is enough to show that for any element [«, f] € h},(A),
h,(Py) h,(9)le, f] = 0, ie., [o, Pygf] = 0. In the following commutative
diagram

P

A — x 25 ¢,

fT ng Tk

VoY
it is clear that [o, Pygf] = [hn(P(1y))hn(1y ), k]. But the bottom Puppe se-
quence is carried by h,, into an exact sequence so that h,(P(1y))h,(ly)a =
0. Thus we have the desired result.
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5. Examples

We present some examples where the assumptions made on the cate-
gories _Zy and _¢; are valid.

Example 5.1. In the stable categories, the suspension functor is an
isomorphism, so that there is no difficulty in proving that the three axioms
hold in such categories (see [9, 14]).

Example 5.2. Let ¢, to be the set of all based topological spaces
having the homotopy type of finite C'W-complexes and _#; to be the set of
all spaces having the homotopy type of CW-complexes. It is easy to prove
that the three axioms are true in this case.

Example 5.3. Let _#; be the category of 1-connected based topological
spaces having the homotopy type of a CW-complex and _#j be the subcate-
gory of spaces whose homotopy groups are all finitely generated and P-local,
where P denotes a fixed set of primes. Then any cohomolgy theory h on ¢y
extends to a cohomolgy theory h; on ¢; through the Kan extension process
[10].

Example 5.4. Let C be a Serre class of abelian groups and %(C) be
the subcategory Js (the category of 1-connected spaces) consisting of spaces
whose homotopy groups belong to C in the sense of Serre [15]. Then any
cohomology theory h on %(C) extends to a cohomology theory h; on Jg
through Kan extension process ([9], Theorem 4.1).

Note 5.5. Example 5.3 is a sort of variant of Example 5.4.

Example 5.6. Let C#¢cr and C#¢ be the categories of connected finite
based C'W-complexes and connected based CW-complexes respectively. Let
h be a homology theory on C#¢r. Then the Kan extension hy of h to C#¢
is also a homology theory; indeed, it is naturally equivalent to a homology
theory defined by a spectrum [13].

Example 5.7. Let 7 be a triangulated category and let h, k be two
homology theories on 7. Let X in .7 admit the Adams h-completion Xj,
and form the triangle XthQCeiEX in 7. Let 9 be the full subcategory
of .7 whose objects are those Y such that h(Y) = 0. It is plain that % is a
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triangulated subcategory of .7. Let k¥ be the restriction of k to 5. Then
the Kan extension k! of k¥ is given by kL (X) = k,11(Ce) ([3], Theorem 4.1).

Example 5.8. Let S be the stable CW-category and let Sy be the full
subcategory consisting of spaces in the Serre class Cp of P-torsion groups.
Let k& be a homology theory on S. The Kan extension k' to S of the
restriction of k to Sp, for X in S, is given by kL(X) = ky11(X;Zp=) ([3],
Theorem 4.4).

6. Adams Cocompletion for the Homology Theory h’

Next we show that a homology theory over the category of simply con-
nected based topological spaces and continuous maps arising through Kan
extension process from an additive homology theory over a smaller subcate-
gory always admits global Adams cocompletion. We do it in the context of
Serre class of abelian groups. We recall the following.

Let C be a category and S a set of morphisms of C. Let C[S~!] denote
the category of fractions of C with respect to S and F : C — C[S™!] the
canonical functor. Let S denote the category of sets and functions. Then
for a given object Y of C, C[S™1](Y,—) : C — S defines a covariant functor.
If this functor is representable by an object Ys of C, that is, C[S™!(Y, —) =
C(Ys,—), then Yg is called the (generalized) Adams cocompletion of Y with
respect to the set of morphisms S or simply the S-cocompletion of Y. We
shall often refer to Ys simply as the cocompletion of Y [5].

Let .7, # and j be as in Section 1. Let h be a generalized homology
(cohomology) theory defined on j . Let S be the set of morphisms of j
which are carried into isomorphisms by h. If every object of j admits a
cocompletion with respect to S, then we say that the homology theory h
admits global Adams cocompletion. Deleanu [6] has shown that any addi-
tive theory h on the homotopy category of based C'W-complexes and based
continuous maps admits global Adams cocompletion.

In this note, we show that every homology theory on an admissible
category arising from an additive homology theory on a smaller admissi-
ble category through Kan extension process (see Deleanu and Hilton [1, 2],
Hilton [11]) always admits global Adams cocompletion. More precisely, let
Fo and _Z; be admissible complete categories with ¢y C _¢; and jl be



2009] ON KAN EXTENSION OF HOMOLOGY AND ADAMS COCOMPLETION 59

small % -category, where % is a fixed Grothendieck universe. Let h be an
additive homology theory on _# such that its Kan extension h’ over jl
is also a homology theory; then we show that A’ admits global Adams co-
completion. The proof of this result depends mainly on the particularly nice
description of the homology group h/ (X) as described in Section 2 and ad-
ditivity of the functor h. We shall use the following theorem for showing the
global existence of the Adams cocompletion of the homology theory h'; the
result is essentially Theorem 1 in [7] (also see, Theorem [12]).

Theorem 6.1. Let C be a complete small U -category (% is a fized
Grothendieck universe) and S a set of morphisms of C that admits a calculus
of right fractions. Suppose that the following compatibility condition with
product is satisfied:

(P) If each s; : X; — Y, i € 1, is an element of S where the index set I

is an element of %, then
eI~ I
1€l 1€l 1€l
is an element of S.
Then every object X of C has an Adams cocompletion Xg with respect

to the set of morphisms S.

We now apply this result to the category jl. Let S be the set of
morphisms of jl which are carried into C-isomorphisms in all dimensions
by the homology functor i’ where C is a Serre class of abelian groups which
is moreover an acyclic ideal of abelian groups.

It is well known that jl is complete. We prove the following proposi-
tions.

Proposition 6.2. S is saturated.
Proof. This is evident from Proposition 1.1 ([5], p. 63).
Proposition 6.3. S admits a calculus of right fractions.

Proof. Clearly S is closed under composition. We shall verify conditions
(a) and (b) of Theorem 1.3* [5]. For this, it is enough to prove that every
diagram of the form
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A

la
C—7Y+B

in jl with v € S, can be imbedded in a weak pull-back diagram

D——5—>A

ol e

C—Tyé'B

with § € S. The essential idea, as has been explained in [8], is to factorize
these maps in terms of fibrations and then taking the pull-back of these
fibrations. Suppose a = [f] and v = [s]. We replace the maps f and s by

fibrations to get the following diagram

fT\L?“
D—p>Pf

R

C == P, —> B
t S

where f’ and s’ are fibrations; r and t are mod-C homotopy equivalences; T
and t are mod-C homotopy inverses of r and t; Py and P, are mapping tracks
of f and s; D is the usual pull-back of f’ and s’ and p, q are the respective
projections. So we have f = f'r and s = s't. Let § = [Fp|, 5 = [tq]. Thus
ad = [f][Fp] = [f7p] = [f'r7p] = [f'p] = ['q] = [s'tlq] = [stq] = [s][tq] = 70
Moreover, if ap = rA; let w : U — A, v : U — C be in the classes p,
A respectively so that fu ~ sv or f'ru ~ sv. Let I : U x I — B be a

homotopy with Fy = f'ru and F; = sv. Consider the following diagram
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Py

0,/ |

U——F?'B

Since f’ is a fibration there exists a homotopy G : U x I — Py such that
(a) f'Gy = F, (b) Gop = ru. Thus f'Gy = F; = sv = s'tv. Consider the

following diagram

U
A&

tQN D—p>Pf

oW

P, —> B
S

By the pull-back property of D, there exists a map k : U — D such that
pk = G1 ~ ru and ¢k = tv. Thus if p = [k] : U — D, then dp = [Fp|[k] =
[Ppk] = [Fru] = [u] = p and Bp = [tq][k] = [tqk] = [ttv] = [v] = A.

It now remains to be shown that § € S. We assume that the map

a: A — B is a fibration with fiber F'; then F is also the fiber of the map

G : B — D and from the commutative diagram

C —'Y> B
we have the following commutative diagram

= Tt 1(C) = T (F) — (D) — mp(C) — 11 (F) —---
T | J o v
o > Tpy1(B) = i (F) = mp(4) = m(B) = o1 (F) —- -

The mod-C Five lemma [15] implies that J, is a C-isomorphism for all m > 0.
Thus 6 € S. O
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Proposition 6.4. Let {s; : X; — Y;, i € I} be a subset of S. Then

IIé%i II‘Xf_%:[I}Q

i€l i€l i€l
is an element of S, where the index set I is an element of % .

Proof. First we prove that the homology theory h’ satisfies the wedge
axiom. For each ¢ € I, let p; denote the homology class of the projec-
tion map [] X; — X;. Thus we have group homomorphisms »/(p;) :

jel
(Il X;) — R'(X;). We need to prove that the group homomorphism
jel
{W(p:i)}: W(I] X;) — ] M(X;) is a C-isomorphism.
jel i€l
We first show that {h/(p;)} is a C-monomorphism, i.e., Ker {h/(p;)} € C
(see [15]; p. 505). Let o, f] be class in A/ (][] X;) such that {1/ (p;)}([e, f]) =
J€el
0,ie., (o, fp;] =0foreachi € I, where f: Y — [] X;isin #; withY € #j
jel
and o € h(Y'). Hence for each i € I, there exists a space Y; in _#y and maps
u; Y —Y;in jo and f; : Y; — X; such that the following diagram

Y

X

Y; —> X
i
commutes, i.e., fiu; = p;f and ho(u;)(o) = 0. Let ¢; : [[Y; — Y; denote
J€el
the homotopy class of the projection map. By the universal property of the

product, there exists a map u : Y — [] Y; making the diagram
J€el

Y

N

I1 i o
Jjel .
qi
commutative, i.e., g;u = u;. Hence for each i € I, h(g;)h(u)(a) = h(u;)(a) =

0. Since h is an additive homology theory, we note that {h(q;)} : h([] Vi) —
el
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[ ~(Y:) is an isomorphism and hence h(u)(a) = 0. In the following diagram
el

1Y

jel

&

,H X —_ X;
jel . v
b
by the definition of the product, there exists a map v : [[ Y; — [] X in

jel jel
F1 such that p;v = f;q;. Thus p;vu = fiqsu = fiu; = p;if i.e., the following

diagram
Y
u;
l u
[1Y; :

e N
v
Y 5 x
jel . ¢
bi
is commutative and by the universal property of the product we have vu = f.
Thus we have the following commutative diagram

Y
1Y 11X
Jjel v jel

with u € £y and h(u)(a) = 0. Hence [a, f] = 0. Thus Ker{h'(p;)} is a
trivial group and hence by Theorem 9.6.1 [15], Ker{h/(p;)} € C.

Next we show that {h'(p;)} is a C-epimorphism, i.e., Coker{Rh/(p;)} €

C. Consider an arbitrary element {[c;, fi]}ier in ] 2'(X;) where for each
icl

i € I, the class [ay, f;] is represented by f; : ¥; — X; with Y; € _#; and
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a; € h(Y;). Since {h(g;)} : A([]Y:) — [] h(Y;) is an isomorphism, the
iel el
element {«o;} € [] h(Y;) corresponds to some element o € h([]Y;) such
i€l i€l
that {h(q;)} () = {a;}. Thus for each i € I, h(g;)(a) = .

In the following diagram

I1Y;

jel

qi Y;

the two triangles commute and for each i € I, h(ly,)(a;) = o = h(q)(a).
Hence [oy, fi] = [, fiqi], for each ¢ € I. By the universal property of ¢; in

the following diagram

jel
X, x,
jel .
2
there exists a unique map g : [[ Y; — [[ X, such that p;g = fiq;. Consider
Jel Jjel
the class [, g] € W' (]] X;). For each i € I, we have h/(p;)([cv, g]) = [, pig] =

jel
[, figi] = [ev, fi]. Hence {h'(pi)}[c. g]) = {[ov, filbier- So Im{h'(pi)} =
[T 7' (X;); thus Coker{h/(p;)} is a trivial group and it is in C by Theorem
el
9.6.1 [15].
Now we prove that A’ satisfies the compatibility axiom with products.

Consider the commutative diagram
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h’( 11 XZ-> {M} [1#(Xi)

el el

h’( I si) [T 7' (s:)

icl el

W(IY:) —— 1P
ey T

Since h'(s;) is a C-isomorphism, so is #'([] s;). By the wedge axiom, as
proved above, it follows that {h’(p;)} and {Zhe’ép;)} are C-isomorphisms. Thus
it follows that A’/ (H s;) is a C-isomorphism. This completes the proof of
Proposition 6.4. !

Hence from Propositions 6.2, 6.3 and 6.4, it follows that all the condi-

tions of Theorem 6.1 are satisfied and so we obtain the following theorem.

Theorem 6.5. The homology theory h' admits global Adams cocomple-

tion.
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