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SOME RESULTS ON HARMONIC BOEHMIANS

BY

DENNIS NEMZER

Abstract

Some classical theorems for harmonic functions, such as

Liouville’s theorem, are extended to the space of Boehmians. Also,

existence and uniqueness theorems for Poisson’s equation ∆u = F ,

with F a Boehmian, are established.

1. Introduction

Solutions to Laplace’s equation ∆u = 0, where ∆ = ∂2

∂x2
1

+ . . .+ ∂2

∂x2
d

, are

called harmonic functions and appear in many areas of mathematics, as well

as in physics.

By expanding our domain to the space of Schwartz distributions [9], no

new solutions of Laplace’s equation occur. However, if we consider the space

of generalized functions known as Boehmians, new solutions to Laplace’s

equation, called harmonic Boehmians, exist (see [2], [5]). In this note, we

will extend some classical theorems for harmonic functions to the space of

harmonic Boehmians. More specifically, a uniqueness theorem and a Liou-

ville type theorem will be established. Also, in the last section we consider

Poisson’s equation ∆u = F , where F is a Boehmian.

2. Preliminaries

Let C(Rd) denote the space of all continuous functions on R
d, and let

D(Rd) denote the subspace of C(Rd) of all infinitely differentiable func-
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tions with compact support. Let α = (α1, . . . , αd), where αj is a non-

negative integer, be a multi-index. Then, |α| = α1 + α2 + . . . + αd and

Dα = ( ∂
∂x1

)α1 . . . ( ∂
∂xd

)αd . If x, y ∈ R
d, then x = (x1, x2, . . . , xd), y =

(y1, y2, . . . , yd), x · y = x1y1 + x2y2 + . . .+ xdyd, and ||x|| = √
x · x .

A sequence ϕn ∈ D(Rd) is called a delta sequence provided:

(i)
∫
ϕn = 1 for all n ∈ N,

(ii)
∫
|ϕn| ≤M for some constant M and all n ∈ N,

(iii) For every ε > 0, there exists nε ∈ N such that ϕn(x) = 0 for ||x|| > ε

and n > nε.

A pair of sequences (fn, ϕn) is called a quotient of sequences if fn ∈
C(Rd) for n ∈ N, {ϕn} is a delta sequence, and fk ∗ ϕm = fm ∗ ϕk for all

k,m ∈ N, where ∗ denotes convolution:

(f ∗ ϕ)(x) =
∫

Rd

f(x− u)ϕ(u)du, (2.1)

Two quotients of sequences (fn, ϕn) and (gn, ψn) are said to be equiv-

alent if fk ∗ ψm = gm ∗ ϕk for all k,m ∈ N. A straightforward calculation

shows that this is an equivalence relation. The equivalence classes are called

Boehmians. The space of all Boehmians will be denoted by β(Rd) and a

typical element of β(Rd) will be written as F =
[
fn
ϕn

]
.

The operations of addition, scalar multiplication, and differentiation are

defined as follows:
[
fn

ϕn

]
+

[
gn

ψn

]
=

[
fn ∗ ψn + gn ∗ ϕn

ϕn ∗ ψn

]
(2.2)

γ

[
fn

ϕn

]
=

[
γfn

ϕn

]
, where γ ∈ C (2.3)

Dα

[
fn

ϕn

]
=

[
fn ∗Dαϕn

ϕn ∗ ϕn

]
(2.4)

Define the map ι : C(Rd) → β(Rd) by

ι(f) =

[
f ∗ ϕn
ϕn

]
, (2.5)

where {ϕn} is any fixed delta sequence.
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It is not difficult to show that the mapping ι is an injection which pre-

serves the algebraic properties of C(Rd). Thus, C(Rd) can be identified with

a proper subspace of β(Rd). Likewise, the space of Schwartz distributions

D′(Rd) can be identified with a proper subspace of β(Rd). Using this iden-

tification, the Dirac measure δ corresponds to the Boehmian
[
ϕn

ϕn

]
, where

{ϕn} is any delta sequence.

For ψ ∈ D(Rd) and F =
[
fn
ϕn

]
∈ β(Rd), F ∗ ψ is defined as

F ∗ ψ =

[
fn ∗ ψ
ϕn

]
. (2.6)

Let Ω be an open subset of Rd. A Boehmian F is said to vanish on Ω,

provided that there exists a delta sequence {ϕn} such that F ∗ ϕn ∈ C(Rd)

for all n ∈ N, and F ∗ϕn → 0 uniformly on compact subsets of Ω as n→ ∞.

The support of a Boehmian F is the complement of the largest open set

on which F vanishes. The space of all Boehmians with compact support will

be denoted by βc(R
d).

Since βc(R
d) will be important later on, we present Theorem 2.1 be-

low, which, among other things, will show that βc(R
d)\E ′(Rd) is nonempty

(E ′(Rd) is the space of distributions with compact support).

The series
∑

α∈Nd cαD
αδ(x1, x2, . . . , xd) is said to converge in β(Rd) if

for some delta sequence {ϕn}, for each k ∈ N,
∑

|α|≤n cαD
αϕk(x1, x2, . . . , xd)

converges uniformly on compact sets of Rd as n→ ∞.

Theorem 2.1.(See [7]) The series
∑

α∈Nd cαD
αδ(x1, x2, . . . , xd) con-

verges in β(Rd) provided that CI{ 1
νn
} is not quasi-analytic, where

νn = max{|cα1α2...αd
| :

d∑

j=1

αj = n}.

For an introduction to the notion of quasi-analytic classes, the reader is

referred to [8].
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By using the definition of support, it is clear that if

F =
∑

α∈Nd

cαD
αδ(x1, x2, . . . , xd), (2.7)

then the support of F is the origin. If F is a distribution with support the

origin, then F has a representation similar to equation (2.7). However, only

finitely many of the cα’s are nonzero.

3. Harmonic Boehmians

Both Burzyk [2] and Mikusiński [5] showed that there exist Boehmian

solutions to Laplace’s equation that are not classical solutions. In this section

we will extend some of the classical theorems for harmonic functions to

harmonic Boehmians.

Let L2(Rd) denote the class of all complex measurable functions f on R
d

such that
∫
|f(x)|2dx <∞. A Boehmian F =

[
fn
ϕn

]
is an element of βL2(Rd)

provided that fn ∈ L2(Rd), n ∈ N. By using the mapping (2.5), L2(Rd) can

be considered a subspace of βL2(Rd).

A complex-valued function f is called slowly increasing if there exists

a polynomial p on R
d such that f(x)

p(x) is bounded. The space of all slowly

increasing continuous functions on R
d is denoted by T (Rd). A Boehmian

F =
[
fn
ϕn

]
is an element of βT (R

d) provided that fn ∈ T (Rd), n ∈ N.

Elements of βT (R
d) are called tempered Boehmians. By using the mapping

(2.5), the space T (Rd) as well as the space of tempered distributions [9] can

both be considered subspaces of βT (R
d).

Both βL2(Rd) and βT (R
d) contain objects which are neither functions

nor distributions. Indeed, βc(R
d) is a subspace of both spaces. This can be

seen by using the fact that if F =
[
fn
ϕn

]
∈ βc(R

d), then for each n ∈ N the

support of fn is compact.

Theorem 3.1. If u ∈ βL2(Rd) and ∆u = 0, then u = 0.

Proof. Suppose f ∈ L2(Rd) such that ∆f = 0. Since L2(Rd) ⊂ D′(Rd),

f is a classical harmonic function. By applying Hölder’s inequality to the

mean-value property with respect to volume measure [1, p.6] and then taking
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the limit, we see that f = 0. Thus, the theorem is valid for any harmonic

L2 function.

Now, let u =
[
fn
ϕn

]
∈ βL2(Rd) such that ∆u = 0. Thus, fn ∈ L2(Rd)

such that ∆fn = 0, n ∈ N. From above, fn = 0 for all n ∈ N. Hence u = 0.

�

The Fourier transform may be defined for each tempered Boehmian.

The following will be needed for the proof of Theorem 3.5.

A complex-valued infinitely differentiable function f is called rapidly

decreasing if

sup
|α|≤m

sup
x∈Rd

(1 + x21 + . . . + x2d)
m|Dαf(x)| <∞ (3.1)

for every nonnegative integerm. The space of all rapidly decreasing functions

on R
d is denoted by S(Rd).

Let f ∈ T (Rd). The Fourier transform of f , denoted f̂ , is the distribu-

tion defined by f̂(ϕ) = f(ϕ̂) where ϕ ∈ S(Rd) and ϕ̂(x) =
∫
Rd ϕ(t)e

−ix·tdt.

Definition 3.2. (See [6]) Let F =
[
fn
ϕn

]
∈ βT (R

d). The Fourier trans-

form of F , denoted F̂ , is defined as F̂ = limn→∞f̂n, where the limit is taken

in D′(Rd).

The above limit exists and is independent of the representative. The

Fourier transform of a tempered Boehmian has similar properties as the

Fourier transform of a tempered distribution.

Lemma 3.3. Suppose F =
[
qn
ϕn

]
∈ β(Rd), where qn is a polynomial.

Then, F is a polynomial.

Proof. Since F =
[
qn
ϕn

]
∈ β(Rd),

deg qn = deg qn ∗ ϕk = deg qk ∗ ϕn = deg qk, for all k, n ∈ N.

By using the Fourier transform and the above, there exist m ∈ N, and for

each n ∈ N, a set of complex numbers {cαn}α∈Nd (|α| ≤ m) such that, for
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each ϕ ∈ D(Rd),

∑

|α|≤m

cαnD
αϕ(0) = q̂n(ϕ) → F̂ (ϕ) as n→ ∞. (3.2)

Since (3.2) is valid for all ϕ ∈ D(Rd), we obtain that cαn → aα as

n→ ∞, where aα is a set of complex numbers (|α| ≤ m). Thus,

F̂ (ϕ) =
∑

|α|≤m aαD
αϕ(0), ϕ ∈ D(Rd). Hence, F is a polynomial. �

A sequence of tempered Boehmians {Fn} is said to be δ-convergent to

a tempered Boehmian F , denoted Fn
δ→ F , if there exists a delta sequence

{ϕn} such that Fn ∗ ϕk, F ∗ ϕk ∈ T (Rd) (k, n ∈ N), and for each k ∈ N,

there exists a polynomial pk such that Fn∗ϕk−F∗ϕk

pk
→ 0 uniformly on R

d as

n→ ∞.

It can be shown that if Fn
δ→ F , then F̂n → F̂ in D′(Rd). Thus, by

examining the proof of the previous lemma, we obtain the following propo-

sition. Although the proposition is not about harmonic Boehmians, it is an

interesting result about Boehmians.

Proposition 3.4. Let m ∈ N and {qn} be a sequence of polynomials

such that deg qn ≤m. If qn
δ→ F for some F ∈ βT (R

d), then F is a poly-

nomial. Moreover, qn → F uniformly on compact subsets of Rd as n→ ∞.

Theorem 3.5. Let F be a harmonic Boehmian. Then, F is tempered

if and only if F is a polynomial.

Proof. Suppose that

F =

[
fn

ϕn

]
∈ βT (R

d) (3.3)

such that

∆F = 0 (3.4)

By (3.3) and (3.4),

∆fn = 0 (3.5)

and

|fn(x)| ≤ |pn(x)|, (3.6)
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where pn(x) is a polynomial.

From the classical theory of harmonic functions, we obtain

fn = qn, (3.7)

where qn is a polynomial.

Thus, by the previous lemma, F is a polynomial.

The other direction is routine. �

Let L∞(Rd) denote the class of all essentially bounded (with respect to

Lebesgue measure) functions on R
d. A Boehmian F =

[
fn
ϕn

]
is an element of

βL∞(Rd) provided that fn ∈ L∞(Rd), n ∈ N. Elements of βL∞(Rd) are said

to be bounded. By using the natural mapping (2.5), L∞(Rd) can be viewed

as a subspace of βL∞(Rd). Moreover, the space of bounded distributions on

R
d [9] can be thought of as a subspace of βL∞(Rd).

Theorem 3.6. (Liouville) Every bounded harmonic Boehmian is con-

stant.

Proof. Let F =
[
fn
ϕn

]
∈ βL∞(Rd) such that ∆F = 0. Thus, fn ∈

L∞(Rd) ⊂ D′(Rd) and ∆fn = 0, n ∈ N. By the classical Liouville’s theorem,

there exists a sequence of complex numbers {cn} such that fn(x) = cn, for

all n ∈ N and all x ∈ R
d.

Now, for all k, n ∈ N,

cn = cn

∫

Rd

ϕk(t)dt

=

∫

Rd

fn(x− t)ϕk(t)dt

=

∫

Rd

fk(x− t)ϕn(t)dt

= ck

∫

Rd

ϕn(t)dt = ck.

Thus, F =
[
fn
ϕn

]
=
[
c∗ϕn

ϕn

]
, for some constant c. This completes the proof. �
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4. Poisson’s Equation

In this section we investigate solutions to Poisson’s equation ∆u = F ,

where F is a Boehmian. For convenience, we consider β(R3). However, the

results in this section are valid for β(Rd), d ≥ 3.

A Boehmian F =
[
fn
ϕn

]
is an element of βS(R

3) provided that fn ∈
S(R3), n ∈ N. Elements of βS(R

3) are called rapidly decreasing Boehmians.

By the natural mapping (2.5), S(R3) can be viewed as a subspace of βS(R
3).

The space of rapidly decreasing distributions [9] can also be identified with

a subspace of βS(R
3) by using the mapping (2.5).

Convolution can be extended to βS(R
3) × βT (R

3). Let F =
[
fn
ϕn

]
∈

βS(R
3) and G =

[
gn
ψn

]
∈ βT (R

3). Then F ∗ G =
[
fn∗gn
ϕn∗ψn

]
, where fn and gn

are viewed as elements of S(R3) and S ′(R3), respectively, and the convolution

is defined as in distribution theory.

Let F,G ∈ βS(R
3) and H,J ∈ βT (R3). Then,

(i) F ∗H ∈ βT (R
3) (4.1)

(ii) F ∗ (G ∗H) = (F ∗G) ∗H (4.2)

(iii) F ∗ (H + J) = F ∗H + F ∗ J (4.3)

(iv) Dα(F ∗H) = DαF ∗H = F ∗DαH. (4.4)

Theorem 4.1. Let F ∈ βS(R
3). Then

(a) There exists a tempered Boehmian u such that ∆u = F.

(b) If u1, u2 ∈ βT (R
3) such that ∆uj = F (for j = 1, 2), then there exists a

unique harmonic polynomial p such that u1 = u2 + p.

Proof. Let E be the fundamental solution of Laplace’s equation. That is,

E(x) = −1
4π||x|| ∈ S ′(R3) and ∆E = δ. Now, let F ∈ βS(R

3) and u = F ∗ E.

Then, u ∈ βT (R
3) and ∆u = ∆(F ∗ E) = F ∗ ∆E = F ∗ δ = F . This

completes the proof for part (a).

For part (b), let F ∈ βS(R
3). Suppose that uj ∈ βT (R

3) such that

∆uj = F , for j = 1, 2. Then, ∆(u1 − u2) = 0 and u1 − u2 ∈ βT (R
3). So,

by Theorem 3.5, u1 − u2 = p, for some polynomial p. Thus, u1 = u2 + p,
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where p is a harmonic polynomial. Clearly, the polynomial p is unique. This

completes the proof of the theorem. �

The class of all continuous functions on R
3 which vanish at infinity is

denoted by C0(R
3). A Boehmian F =

[
fn
ϕn

]
is an element of β0(R

3) provided

that fn ∈ C0(R
3), n ∈ N. Elements of β0(R

3) are said to vanish at infinity.

C0(R
3) can be thought of as a subspace of β0(R

3).

Comparing the various spaces used in this paper, we have

βc(R
d) ⊂ βS(R

d) ⊂ β0(R
d) ⊂ βL∞(Rd) ⊂ βT (R

d) ⊂ β(Rd)

where the inclusions are proper.

Theorem 4.2. Let F ∈ βc(R
3). Then there exists a unique u ∈ β0(R

3)

such that ∆u = F .

Proof. Let F ∈ βc(R
3). Then, u = F ∗ E, where E is the fundamental

solution of Laplace’s equation, is the desired solution.

Suppose uj ∈ β0(R
3) and ∆uj = F , for j = 1, 2. Thus, ∆(u1 − u2) = 0

and u1 − u2 ∈ β0(R
3) ⊂ βL∞(R3). By Liouville’s theorem, u1 − u2 = c, for

some constant c. Since c = u1 − u2 ∈ β0(R
3), c = 0. This shows uniqueness

and completes the proof. �

Let F ∈ βc(R
3). When does the equation ∆u = F have a solution in

βc(R
3)? Notice that ∆E = δ,E(x) = −1

4π|x|| 6∈ βc(R
3). E(x) is the unique

solution in β0(R
d).

For distributions, we have the following theorem.

Theorem 4.3.(See [4]) If f ∈ E ′(R3) then the equation ∆u = f has

a solution u ∈ E ′(R3) if and only if
f̂(z1,z2,z3)
z2
1
+z2

2
+z2

3

is an entire function. The

solution is then uniquely determined and ch supp u = ch supp f . (ch A

denotes the closed convex hull of A.)

Conjecture: Let F ∈ βc(R
3). There exists u ∈ βc(R

3) such that ∆u = F

if and only if F̂ (z1,z2,z3)
z2
1
+z2

2
+z2

3

is an entire function. In this case, ch supp u = ch

supp F .
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Burzyk [3] proved a Paley-Wiener type theorem for βc(R
d), where d = 1.

What is needed to prove the above conjecture is the Paley-Wiener-Burzyk

theorem for βc(R
3). The proof would then follow by using the Paley-Wiener-

Burzyk theorem for βc(R
3) in conjunction with Lemma 7.3.3 in [4].
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