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ON A FUNCTIONAL EQUATION ASSOCIATED
WITH THE TRAPEZOIDAL RULE

BY

PRASANNA K. SAHOO

Abstract

In this paper, we find the solution fi, f2, f3, f4, f5,91: R —
Rof fi(y) —g1(x) = (y — @) [f2(x) + f3 (sz + ty) +fa (tz + sy) +
f5(y)] for all real numbers z and y. Here s and ¢ are any two
a priori chosen real parameters. This functional equation is a
generalization of a functional equation that arises in connection
with the trapezoidal rule for the numerical evaluation of definite
integrals and is a generalization of a functional equation studied
in [10].

1. Introduction

Let R be the set of all real numbers. The trapezoidal rule is an ele-
mentary numerical method for evaluating a definite integral ff f(t)dt. The
method consists of partitioning the interval [a,b] into subintervals of equal
lengths and then interpolating the graph of f over each subinterval with a
linear function. If a = z, < &1 < 29 < -+ < x, = b is a partition of [a, b]
into n subintervals, each of length b_T“, then

/abf(t)dtfvb

This approximation formula is called the trapezoidal rule. It is well known
that the error bound for trapezoidal rule approximation is

[f(l'o) + 2f($1) +oe 2f($n—1) + f(xn)] :

—a
2n

K (b—a)?

b —a
[ =2 ) + 20 4+ 2 ) + )] < T
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where K = sup {| f ) (z)| | = € [a,b]}. It is easy to note from this inequality
that if f is two times continuously differentiable and f®)(z) = 0, then

b b—ua
/af(t)dt: -

This is obviously true if n = 3 and it reduces to

[f(xo) + 2f($1) Tt 2f($n—1) + f(l'n)] :

b —a
| @y = " w0 + 20(e) + 2f(0) + faa).

Letting a =z, b =y, 1 = 2m;y and o9 = mJgfy in the above formula, we

obtain
/xyf(t)dt = ygm [f(a:)+2f <2m;y> yof <x§2y> —i—f(y)} Y

This integral equation ([II) holds for all z,y € R if f is a polynomial of degree

at most one. However, it is not obvious that if (I]) holds for all z,y € R, then
the only solution f is the polynomial of degree one. The integral equation

(@) leads to the functional equation

o) —ot0) = L2 ) +2r (L) w2 (B2 4| @

6 3

where g is an antiderivative of f. The above equation is a special case of the

functional equation

f1y) —q1(z) = (y — @) [fa(z) + f3 (sz + ty) + fa(tx + sy) + f5(v)]  (3)

where s,t are two real a priori chosen parameters, and f1, fo, f3, f4, f5, 91 :

R — R are unknown functions.

It should be noted that if we consider n = 2 in the approximation

formula, then the functional equation

o) o) = (155) [r0r+ 27 (52 + 500

arrises analogously and it is a special case of

9(y) — g(x) = (y — ) [p(x) + ¢ (y) + h(sz + ty)].
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This functional equation was treated by Kannappan, Riedel and Sahoo [6]
(also see [9]) without any regularity conditions. Interested reader should see

[1-9, 11-12] for related functional equations whose solutions are polynomials.

The present paper is a continuation of the author’s works in [10]. In
this paper, our goal is to determine the general solution of the functional
equation (B]) assuming the unknown functions g1, f1, fo, fs : R — R to be
twice differentiable and f3, f4 : R — R to be four-time differentiable.

2. Some Auxiliary Results

The following result from [10] will be instrumental in solving the func-

tional equation (3]).

Lemma 1. Let s and t be any two a priori chosen real parameters.
Suppose g : R — R and f : R — R are twice differentiable and k : R — R
is four time differentiable. The functions f,g,h,k : R — R satisfy the

functional equation B)), that is

9(y) — h(z) = (y — 2) [f(x) + 2k (sz + ty) + 2k (tz + sy) + f(y)]

for all z,y € R if and only if h(z) = g(x) and

((ax?® 4+ b +c ifs=0=t

ar? +br +c ifs=0,t#0

ar? +br +c ifs#0,t=0

3ax* + 2bx® + cx® + (d + 2B)x + « ifs=t#0

2023 + cx? + (28 — d)r + « ifs=—-t#0
3

ZZai ist [s72 72 2t

glx)=q =2

+2) b+ (s )ala T 4 2z teo  if s2£LR, (s —t)2£st
. =0

QZCM ist[s72 41172 2t
=2
+2Z[bi—|—(sl+tl)ai]ajz+l—|—2b0$+co if s2 £ 12, (s—t)?=st

=0
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aa:+b_4Tq7(0) ifs=0=t
aa:+%—217(t:1:) ifs=0,t#0
aa:+%—217(8:£) ifs#0,t=0
2az3 + bz? + (c — d)z + 3 ifs=t#0
fla)= 3ax? + cx + B ifs=—t#0

3
2> “a;[ist(s" 2+ %) = (s'+1') |’ +2by 2+ 2y if s2H£L2, (s—1) £ st
2> “a;[ist(s" 2+ %) = (s'+1') |’ 4 201w+ 20y if s2 £, (s—t)2 = st

i=2
n(z) ifs=0=t
n(z) ifs=0,1t#0
n(z) ifs#0, t=0
a X 3 X 2 X -
(%) t%@)*&5§+% fs=t#0
a)={ —5(5) —§—k(-2) if s=—t#0
3
Zai z’ if 2 £ 12, (s — )% # st
i=0
5 .
Zai x' if 2 £ 1% (s —t)? = st
\ =0
where 1 : R — R is an arbitrary function, and a; (i = 0,1,2,...,5),b; (i =

0,1),a, b, ¢, d, co, 0, B, § are arbitrary real constants.

Lemma 2. Let s and t be any two a priori chosen real parameters.
Suppose ¢ : R — R is twice differentiable. The functions ¢, : R — R

satisfy the functional equation

(y— ) [(z) + ¢ (sz+ty) — ¢ (tx + sy) —P(y)] =0 (4)

for all z,y € R if and only if

—w(te) +a+p ifs=0,t#0

—w(sz)+a+p ifs#0,t=0
P(x) = ¢ « ifs=t

ar+« ifs=—-t#0

a(t?—sH?2+b({t—s)z+a ifs?#t
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w(z) ifs=0,t#0

w(x) ifs#0, t=0
o(z) = § w(z) ifs=t

—a %+ ¢(—x) ifs=—-t#0

ax’ +br+ec if 82 # t2

where w : R = R is an arbitrary function, and a,b,c,a, B are arbitrary real
constants.

Proof. From (d]) we have

Y(x) + ¢ (sz+ty) = ¢ (tr + sy) + Y(y) (5)

for all z,y € R with x # y. It is easy to see that ({) also holds in the case
T =1y.

Letting y = 0 in (5), we obtain
U(x) = ¢(tw) — d(sz) + a (6)
where « is a constant given by a = 1(0). Letting (@) into (5), we see that
P(sz + ty) — p(sz) — o(ty) = ¢(sy + tx) — ¢(tx) — d(sy) (7)

for all z,y € R with = # y.
Now we consider several cases.

Case 1. Suppose s =0 and ¢ # 0. Then from (6l), we have

P(x) = o(tx) +  + (8)

where the constant ( is given by 8 = — ¢(0). In this case, letting this ¢ (z)
in () into (@), we see that () is a solution for any arbitrary function ¢(z).

Case 2. Suppose s # 0 and ¢ = 0. This is case symmetric to Case 1 and
hence we have

Y(z) = ¢(sz) + B+ and @(z) = w(z) (9)

where the constant § is given by 5 = — ¢(0) and w(x) is an arbitrary func-
tion.
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Case 3. Suppose s = t. Then from (@), we have
Y(z) =« (10)

where the constant « is given by a = 1(0). In this case, letting this ¢(x) in
@) into (@), we see that ¥ (x) is a solution for any arbitrary function ¢(z).

Case 4. Suppose s = —t # 0. Then from (G), we have
U(x) = ¢(—sz) — ¢(sz) + (11)
where the constant o is given by o = 1(0). From (T), we have
¢(s(z —y)) — d(=s(z —y)) = d(s7) — d(—s7) — (d(sy) — ¢(—sy)) (12)

for all x,y € R with = # y. Defining

for all z € R, we have from (I3)
Az —y) = Ax) — A(y) (14)
for all x,y € R with z # y. Letting = 0 in (I4]), we obtain
A(-y) = — A(y). (15)
Replacing y by —y in (I4]) and using (I5]) we have
Az +y) = A(z) — A(—y) = A(z) + Ay) (16)

for all z,y € R. Hence A : R — R is an additive function. Since ¢ is
differentiable, A : R — R is also differentiable and hence

A(z) = ax (17)
where a is an arbitrary constant. From ([3]) and (7)) we have

oe) =a’ +o(-a) (18)
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for all z € R, and from (II]) we obtain

Y(x) = —ax + a. (19)
Replacing a by —a, we have the asserted solution

o(z) = —ag +¢(—x) and Y(x) =ax+ .

Case 5. Suppose s? # t2 # 0. Differentiating (7)) twice, first with respect
to x and then with respect to y, we obtain

¢ (s + ty) = ¢ (sy + tx) (20)

for all z,y € R. Since s # t2, letting u = sz + ty and v = sy + tx we see
that v and v are linearly independent and (20) yields

¢"(u) = ¢"(v) (21)

for all u,v € R. Hence ¢"(u) = 2a, where a is a constant. Integrating we
have

o(r) =az® +bx+c (22)

where b, ¢ are constants of integration. Using (22]) in (@), we obtain
(x) =a(t® —s*) " +b(t—s)z+c (23)

Letting ¢(x) in (22]) and ¢(z) in [23) into (@), we see that ¢(x) and ¥ (z)

satisfy the functional equation with arbitrary constants a, b, c. O

Remark. For the case s = —t, the unknown function ¢(x) could not be
determined explicitly. We have found the explicit form of ¢(z) — ¢(—z). As
the referee noticed, in this case the unknown function ¢(x) is an arbitrary
function satisfying ¢(z) — ¢(—x) = —a %. One can rephrase in this way to
avoid explaining “ignotum per ignotum” but it is basically the same as what
we have in the lemma.

3. Main Result

Now we present the solution of the functional equation (3)).
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Theorem 1. Let s and t be any two a priori chosen real parameters.

SUppOS@ glaf17f27f5 :

four time differentiable.

the functional equation (3)), that is

fily) —q1(z) = (y -

for all z,y € R if and only if g1(x) = f1(x) and

(az? + bx + c)
(az? + bz + ¢)
(az? + bx + c)
(

NI= DNl= Nl= Nl—= D=

5 (202 +ca®+ (28— d)z + a)

+y+2ax+0x+e

Sast(s3 + t3)x0 + 4bst(s? + t?) 2"
+3cst(s + t)xt + ddstx?
+ [y +e(s+ )]z + [y + 20z
+ox+¢

(am +a+ b= 477(0)

(az + 5 —2n( t:n)+w(t:n)+a+ﬁ)
(a:v+ —2n(sz) + w(sz) + o+ )
(2a2® 4+ b2 + (c — d)z + B+ a)
(3az? + cx + B+ bx +¢)
[3st(s + 1) — (82 4 t3)]a®
+ddst — (2 + )] 22 +yz + 9
+1[AE? - Y a® + B (t -
a[5st(83 +13) — (85 + 7)) 2
+bdst(s? +1%) — (sT + t4)]x4
+c[3st(s +t) — (83 +13)]a3
[4st — (s +t2)]a; +yz+9

O NI N NI N N

+d
+3[A? - %) a? + B(t -

3axt + 2bx3 + cx? + (28 + d)x + @),

3est(s + t)at + ddstad + [y + e (s + t)]2?

s)z+ D] if s* # %, (s

R — R are twice differentiable and f3, f1: R — R are

The functions glaf17f27f37f47f5 :

R — R satisfy

z) [f2(z) + f3 (s7 +ty) + fa (tx + sy) + f5(y)]

ifs=0=t
ifs=0,t#0
ifs#0, t=0
ifs=t#0
ifs=—t#0

if 2 £ 12, (s — 1) # st

if 2 £ 1% (s —1)? = st

ifs=0=t
ifs=0,t#0
ifs#0,t=0
ifs=t#0
ifs=—t+#0

— )2 #£ st

s)z+ D] if s> # %, (s—t)? = st
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2 (2n(z) + w(z)) ifs=0=t
2 (2n(z) + w(z)) ifs=0,t#0
3 (2n(2) + w(z)) ifs#0,t=0
fola) — §(§>3+%g§)2+%§+%+%w<m> fa=t#0
5(—&(%) —d— bm) fa(—x) if s=—t+#0,
ca®+dr’+er+a+ 5(Aa? + Bo+C) if 2 £ 12, (s — t)? # st
axd+bat+cad +da? +ex+a
+3(A2?+ Bz +C) if s2#£ 12, (s —t)? = st
L @n(e) - w(z)) ifs=0=t
L @n(e) - w(z)) if5=0, 140
3 (2n(z) —w(z)) ifs#0,t=0
A = {HETPIE TR de =i
s(—a(2)"—d+b2) — f3(—x) if s=—t#0
cad+dr’+er+a—3(Ax? + Br+C) if 2 £ 12, (s — t)? # st
axd+bat+cad +da? +ex +a
— (A2’ + Bz +C) if 2 #t2, (s —t)? = st
%(ax— %) ifs=0=t
3 (az +§—277ta:)—w(t:n)—oz B) ifs=0,t#0
%(aaz+§—2nsa})—w(8:p)—a—ﬁ) ifs#0,t=0
1 (2023 4+ b2 + (c— )z + B — ) ifs=t#0
%(3&1’ +cx+ f—br —e) ifs=—t#0
c[3st(s +1) — (s2 + t3)]2®
folw) = +d[ast — (s> + )] 2? + yz + 6
—3[A(P - ) 2>+ B(t—s)a+ D] if s> # % (s—t)> # st
a[5st(s3 +13) — (s° +°)] 2P
+ b [4st(s? + t2) — (s* +t*)]z?
+c[3st(s +t) — (83 +13)]x3
+d[dst — (s> + )] 2* + yz + 6
—2[AP - s?)2® +B(t—s)a+ D] ifs>#t% (s—t)> =st

wheren,w : R — R are arbitrary functions and A, B,C, D,a,b,c,d, e, a, 3,7,9,&
are arbitrary real constants.
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Proof. Letting x = y in [B) we see that fi(z) = gi(z) for all z € R,
Hence (3] yields

f1(y) = fi(z) = (y — @) [fa(w) + f3 (sz + ty) + fa(tx + sy) + f5(y)] (24)

for all z,y € R. Interchanging x with y in the functional equation ([24)), we
obtain

fily) = fi(x) = (y — =) [foly) + f3 (sy +tx) + fa (ty + s2) + f5(x)]  (25)

for all z,y € R. Adding (24]) and (25]), we get

9(y) —g9(x) = (y — @) [f(w) + 2k (sz + ty) + 2k (tz + sy) + f(y)]  (26)

where

k(z) = 3 [fs(@) + fa(@)] (27)

Similarly, subtracting (25) from (24]), we get

(y—z) () + ¢ (sz +ty) — ¢ (tr + sy) —¢¥(y)] =0 (28)

for all x,y € R, where

Now we consider several cases.

Case 1. Suppose s = 0 = t. Then from 27)), (29)), Lemma 1 and Lemma 2,
we obtain

2f1(x) = ax® + bz + c

o) + fo(x) = az + =40100)

fs(@) + fa(z) = 2n(x) (30)
fo(z) = f5(2) = @

fs(@) = fa(z) = w(z),
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where 1,w : R — R are arbitrary functions and a, b, ¢, « are arbitrary con-

stants. Hence from (B0) we have

7

8

(az? + bz + ¢)

(aa: +a+ b 477(0))
2n(z) + w(z))
2n(z) — w(x))

( o+ b— 477(0)) .

=

8

8

> 2T

— — /g — —
— e
[T T i T T Nl T

8

\

(31)

Case 2. Suppose s = 0 and ¢t # 0. Then from 7)), (29), Lemma 1 and

Lemma 2, we obtain

((2f1(z) = az® + bz + ¢
fa(x) + fs(x) = ax + § — 21)(tx)
fs(@) + falz) = 2n(x)
fo(z) = f5(z) =w(te) + a+ 3
fs(x) = fa(@) = w(z),

where n,w : R — R are arbitrary functions and a,b,c,«, 8 are arbitrary

constants. Hence from (B2]), we get

fi(z) = 3 (az? —i—bx—i—c)
fo(z) = 1 (az + & — 2n(tz) + wltz) + a + B)
fa(2) = 5 2n(z) + w(2))
fa(z) = 5 2n(z) — w(z))
f5(x) :% (ax+§—2n(taz) —w(tz) —a—p).

Case 3. Suppose s # 0 and t = 0. Then from (27), (29), Lemma 1 and

Lemma 2, we obtain

fa(x) + f5(x) = ax + § — 2n(sz)
f3(x) + fa(z) = 2n(z)

fo(z) = f5(z) =w(sz) +a+ B
f3(x) = fa(z) = w(2),

where n,w : R — R are arbitrary functions and a,b,c, o, 8 are arbitrary
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constants. Hence from (34]), we get

7

fi(z) = 5 (az? +bx+c)
fo(z) = 4 (az + 5 — 2n(sz) + w(sz) + a + B)
fa(z) = 5 2n(z) + w(z))
fa(z) = 5 2n(z) — w(z))
f5(x) = 5 (az + § —21(sz) —w(sz) —a —f).

[March

(35)

Case 4. Suppose s =t # 0. Then from 27)), (29)), Lemma 1 and Lemma 2,

we obtain
2f1(x) = 3axzt + 2bx3 + ca? + (28 + d)z + «
fa(z) + f5(x) = 2az® + ba? + (c — &)z + B
fola) + fi@) =2(3 (5" +§ () + §5+9)
fa(x) = f5(z) = a
f3(x) = fa(z) = w(z),

where w : R — R is an arbitrary function and a,b,c,d, «, 8,6 are arbitrary

constants. Hence from (36]), we get

( f1(z) = 3 (3az* 4 2b2® + ca? + (28 + d)z + )
fo(z) =3 (2a2® +ba® + (c — Sz + B+ a)
@) =4 (3 +3(3) +15+9+ 50
@) =4 ()" + 55+ 15+ - e

( f5(2) =% (2a2® + b2® + (c = O)z + B — a)

(37)

Case 5. Suppose s = —t # 0. Then from (27)), (29), Lemma 1 and Lemma

2, we obtain

2f1(r) =2a23 +cz’+ (28 —d)z + «
fa(z) + f5(x) = 3az? + cx + B

J3(@) + fa(@) + fa(=2) + fa(—2) = —a (2)° ~d
fa(z) = f5(x) =bx + e

f3(z) = fa(z) — f3(—=2) + fa(—2) = = b,
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where a, b, c,d, e, a, f are arbitrary constants. Hence from (B8], we get

filz) =3 (2a2% +c2?+ (28 —d)z + @)

fo(z) = % (3a2® + cx + B+ bz +¢)

fa(@) = 5(=a ()" =d=b%) — fa(~a) (39)
Ji@) = 5(=a ()" = d+b%) ~ fs(~a)

fs(x) =3 (3az® +cx + B — bz —e).

Case 6. Suppose s? # t2 # 0 and (s — t)? # st. Then from 27), 29),

Lemma 1 and Lemma 2, we obtain

2f1(z) = 2{3cst(s + t)z* + 4dsta® + [y + e (s + t)]2?
+y+2a)z + 6z +¢€}
fa(x) + f5(x) = 2¢[3st(s +t) — (83 + t3)]23
+2d [4st — (5% + t2)] 2% + 2y x + 20 (40)
fa(x) (z) =2(ca® + dz* + ex + @)
fo(z) — fs(x) = A(t? —s?)2 2+ Bt —s)z+ D
fa(x) — fa(zx) = Ax®> + Bx + C,

+
=

where ¢,d, e, A, B,C, D, «, 3,7, 0, e are arbitrary constants. Hence from (40,
we get

( f1(z) = 3cst(s + t)a* + ddstad + [y + e (s +t)]x?
+Hy+2a]x+dx+e
fa(z) = c[3st(s + 1) — (83 + t3)]2 + d [4st — (s? + t2)] 22
+yz+6+3[A(2—s?)a? + B(t—s)z+ D]
f3(x) =cad+di® +ex+a+ 3(Az? + Bz +C)
fa(x) =ca®+da® +ex+a—3(A2x?+ Ba +C)
f5(z) = c[3st(s +t) — (83 + t3)]23 + d [4st — (s* + %)] 22
{ +yr+6—3[A(t2—s2)a? + B(t—s)z + D].

(41)

Case 7. Suppose s # t2 # 0 and (s — t)2 = st. Then from 27), 29),
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Lemma 1 and Lemma 2, we obtain

2f1(x) = 2{bast (s + t*)a0 + 4bst(s* + t*)x"
+3cst(s + t)at + ddstxd + [y + e (s + t)]2?
+lv+2a)z + 6z + ¢}
fa(x) + f5(x) = 2a [5st(s> +13) — (85 +9)] 25
+2b [4st(s? + %) — (s* + t1)]2?
+2¢[3st(s +t) — (83 + t3)]23
+2d [4st — (s + t2)] 22 + 2y + 20
f3(z) + falx) =2(az® + bat + cad + da® + ex + @)
fo(z) — fs(x) = A(t? —s?)2 2+ Bt —s)z+ D
fa(@) = fa(w) = Aa? + Ba +C,

where a,b,¢,d,e, A, B,C, D, a, 3,7,0,¢ are arbitrary constants. Hence from

(@), we get

f1(z) = bast(s3 + 3)2° + dbst(s? + )2’ + 3cst(s + )zt
+ddsta® + [y +e(s+O)]x? + [y +2alr + 5z +¢

fo(x) = a[bst(s® +13) — (s® + t7)] 2° + b[dst(s® +t2) — (s* + t4)]2?
+c[3st(s +t) — (83 +t3)]a3 + d[4st — (52 +t2)] 22
+yr+ 0+ 3[A(2—s*) 22+ B(t—s)z+ D]

f3(x) =az®+bat+cad +da® +ex+a+ (A2’ + Bx + C)

fa(w) =ax® +bat +cad +da® +ex+a— 5(Az? + Bx+C)

f5(x) = a[bst(s® +13) — (s® + t°)] 2° + b[dst(s® +t2) — (s* +t4)]2?
+c[3st(s +t) — (83 + )23 + d[4st — (s> +12)] 22
+yz+6—3[A(t2—s?)a?+ B(t—s)z+ D].

(43)

Since there are no more cases are left, the proof of the theorem is now
complete. O

Problem 1. In Theorem 1, we have assumed that the functions fy, fs, f5 :
R — R are twice differentiable and f3, f4 : R — R are four time differentiable.
The proof of Theorem 1 heavily relies on this differentiability assumption.
Thus we pose the following problem: Determine the general solution of the
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functional equation (B without any regularity assumptions on the unknown
functions f17 f27 f37 f47 f5-
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