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Abstract

In this paper, we consider the FitzHugh-Nagumo system
and obtain by singular perturbation techniques a precise form of
the eigenfunction of the adjoint operator associated with the lin-
earization at a traveling pulse solution. We also show that some
precise properties of the adjoint eigenfunction are useful to study
the behavior of solutions such as interfacial dynamics, the inter-

action of traveling pulses and so on.

1. Introduction

The FitzHugh-Nagumo system is a simplified mathematical model that
describes the generation and propagation of nerve impulses. This system
can be written as

eup = 2Uyy + flu) — o, x € (—00,00),
v = U — Y, x € (—00,00), (1.1)
lim w(z,t) = lm v(z,t) =0,

where f(u) = (1l —u)(u —a) with 0 < a < 1/2, ¢ > 0 is a parameter and
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~ > 01is a fixed constant. It is known that if € > 0 is small enough, then (L.1I)
has two traveling pulse solutions with different speed. It was shown in [3] that
the slower pulse solution is unstable, whereas it was proved independently
by Jones |8] and Yanagida |12] that the fast traveling pulse solution is stable
if € > 0 is sufficiently small.

On the other hand, the following combustion model was proposed by
Mimura and Tkeda [6];

eup = Uy + vk(u)v — au, x € (—00,00),

vy = —k(u)v, T € (—00,00), (1.2)

lim w(z,t) =0, lim o(z,t) =71,
|z| =00 T—r—00

where k(u) is Arrhenius Kinetics defined by

o - { AP0zl

for some constants A,B > 0,6 > 0,7 >0, a > 0 and v > 0. This system is

a limiting equation of a 3-component system

eup = €2Uzy + vk(w)vw — au, x € (—00,00),
vy = —k(u)vw, x € (—00,00),
Wy = Wey — MWy — k(u)vw x € (—00,00),

‘xl‘igloo u(z,t) =0, xli)l}loov(x, t)=1, xgglmw(x, t)=1

(1.3)
as A — oo. In [5], it was shown that there is a linearly stable traveling wave
solution in (L2)) if e > 0 is sufficiently small and other parameters satisfy
suitable conditions. Also, a linearly stable traveling wave solution in (L3])
has been obtained under the same conditions on the parameters as far as A

is sufficiently large.
In this paper, we focus on these two system:
e = gy + f(u,0), x € (—00,00),

v = g(u,v), x € (—00,00), (1.4)
u(£o0,t) =0, wv(—o00,t) =0,
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where the nonlinear terms f(u,v) and g(u,v) are either

(050) w ()

(Later in this section, we shall give a remark on more general nonlinearities.)
With a traveling coordinate system (z,t) = (x + ct, t), (L4) is written as
eup = e2u,, —ecu, + f(u,v) 2z € (—00,00),
vy = —cvy + g(u,v), z € (—00,00), (1.5)
u(+o0,t) =0, v(—o0,t) =0.
Any stationary solution of (ILh) corresponds to a traveling wave solution of
(L4]) with the traveling speed c. Let (u,v) = (u(2),v(2)) be a traveling pulse
solution with the propagation speed ¢ = ¢(g) > 0. Then (u(z),v(z)) satisfies
e2u,, —ecu, + f(u,v) =0, 2z € (—00,00),

—cv, + g(u,v) =0, z € (—00,00), (1.6)
u(£o0) =0, v(—o0)=0.

We fix the translation of the pulse solution by demanding
u(0) =a, u,(0)>0.

Let 8 > 0 be chosen appropriately, and let 7 > 0 be defined by

Then the profile of the solution is as shown in Figure 1. Note that it has

two transition layers near z =0 and z = 7.

Let us consider the linearized equation around (u,v), i.e.

e2P,, — ecP, + fu(u,v)P + fo(u,v)Q =0, =z € (—00,00),
—cQ; + gu(u,v)P + gy(u,v)Q = 0, z € (—00,00), (1.7)
P(00) =0, Q(£00) =0
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Figure 1. The profiles of pulse solutions.

and its adjoint equation

e2P,, + ecP, + fu(u,v)P + gu(u,v)Q =0, 2z € (—00,00),
Q. + fu(u,v)P + gy(u,v)Q = 0, z € (—00,00), (1.8)
P(+o00) =0, Q(xo0)=0.

Differentiating (6] by z, we see that (L.7)) has a bounded solution (P, Q) =
(uz,v,). Hence the adjoint equation (L8] also has a bounded solution. We
will demonstrate that the properties of the bounded solution of the adjoint
system (L&) plays essential roles for several problems concerning the fast

pulse solution, which will be described in the next section.

The main purpose of this paper is to construct the bounded solution
of (L8) when € > 0 is sufficiently small, and obtain the asymptotic profile
of the solution as ¢ — 0. Although the existence of a pulse solution was
proved by Hastings [4] and Langer [9] for the FitzHugh-Nagumo system and
in [5] for the combustion model via geometrical methods, their results are
insufficient for our purpose because more precise information about the pulse
solution is needed to construct an eigenfunction of the adjoint operator and
study the asymptotic behavior as ¢ — 0. In this paper, we adapt a singular
perturbation approach to get more precise information about the waveform
of the fast pulse solution. Using this, we can construct the bounded solution

of the adjoint equation and obtain useful properties of the eigenfunction.
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This paper is organized as follows; In Section 2, we state main results
of this paper and then give several applications of the results. In Section
3, we construct a fast pulse solution via a singular perturbation method.
In Section 4, we construct a bounded solution of the adjoint equation. In
Appendix, we give rigorous proofs of Theorems 3 and 4. Other theorems
can be proved in the same way.

2. Main Result and Applications

We first describe several facts and notations. Under adequate assump-
tions, all conditions below hold true.

e There are vmin < Umaz such that the nullcline of f includes two smooth
curves u = h_(v) and u = hy (v) defined on [Vpin, Vmaz] (see Figure 2).
e The problem

{ <.I.>1—C(i)1+f(<1>1,0) =0, £ € (_00700)7
®y(-00) =0, ®P1(o0) = h4(0)

has a monotone solution ®; with a wave speed ¢ = ¢ > 0, where the
dot “"” represents a derivative of functions with respect to £. We fix
the solution by ®1(0) = «, where 0 < o < h4(0) is arbitrarily fixed.

e The problem

{ ('I')2 - Czk)<b2 + f(<I>2,v) =0, §€ (—O0,00),
Py(—00) = hy(v), P2(o0) =h_(v)

has a monotone solution ®o for v = v* # 0. We fix the solution by
®5(0) = B, where h_(v*) < f < hy(v*) is arbitrarily fixed.
e Let Vo(z) be a solution of

{ CBUI = g(h+(v),v), y > 0)
v(0)=0

and attain v* at y = 75 > 0. Set Uéz) = h+(VO(2)).
o Let VO(?’) be a solution of

{ cgv' = g(h—(v),v), y >0,
v(0) = v*

and set U(g3) =h_( 0(3)).
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Figure 2. Nullclines of f and g. The left figure shows the null cline of the
nonlinearity in the FitzHugh-Nagumo system and the right one does that in
the combustion model. Although not only v = 0 but also v = —7 should be
included in the null cline of g for the combustion model, the line v = —7 is

omitted in this figure.

We may need more conditions for the parameters in order to show the exis-

tence of these functions.

Now we describe our main results in this paper, using these notations. In
the following, we write ¢ = O(9) if a functions ¢ and a small parameter § > 0
satisfy ||¢||x < ¢d for a constant ¢ independent of d, where X is a Banach
space endowed with the norm || - || x. Similarly, if ¢ satisfies ||¢||x/d — 0 as
0 — 0, we write ¢ = 0(d). The first theorem is concerning the existence of a
pulse solution of (L.4]).

Theorem 1. The system (LG) has a pulse solution with the following

properties as € — 0:
(a) The propagation speed c satisfies

c=cy+ O(e).
(b) The pulse width T satisfies

T =15 +O(e).
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(¢) The waveform (u(z),v(z)) satisfies

in X,,z€(—00,0),

5 J-o
u(2) =Ug?(2) +@1(2) = hs (0)+ @2(“—1) = ha (v 1+ Oe),
vu»=wfka—§5é (9(®1,0)—g(h+(0),0))ds inX..2e[0.7],
o | 0@ =gl (07), 0 tolc),

wazﬁ%@+5ﬂm@@mw%mmwmmmu in Xj,e, € (r,00),

where the functional spaces X, X¢, X, . will be defined in Section 3.

In Theorem 1, we only give the information of the lowest order terms
of the propagating speed, the pulse width and the waveform. But in its
proof (see Section 3), we get more specific properties of higher order terms
of traveling wave solution with respect to the small parameter e, which are
necessarily needed to show Theorem 2. Theorem 2 is applicable to many
interesting problems as we shall give several applications below. To show
only Theorem 1, it suffices for us to get lowest order approximations and use
analytic or geometric singular perturbation theory (see [5], [g]).

Since the linearized equation (7)) has a unique solution up to mul-
tiplication by constants, the solution of the adjoint equation (L&) is also
unique up to multiplication by constants by Fredholm’s alternatives. In the
following theorem, we normalize a solution P satisfying P(0) = A/e.

Theorem 2. Fiz A € (—o0,00) arbitrarily. The adjoint equation (L8])
has a bounded solution (P, Q) with the following properties as ¢ ] 0:

P(z)=eP (2) + Ae= % <1>1(§) +sg1(§) +o(e),

@ 5 in X, ., z€(—00,0),
Q(z)=eQg " (2) +em(2) + ofe),
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P(z):gP0<2>(z)+Ae s ci>1(§)+B(A e L by(2=T)to(e),
Q(2) == / Fo(®1,0)e= 55, (s)ds in X.,z€[0,7),
/ fo (g, v*)e 05Dy (s)ds+o(e),

P(z):B(A,E)e—%@(%) + o(e),

Q(z)zs%*’g) /OO fo(@a, v¥)e~ 05Dy (s)ds + o(e?),
Co zgr

in X,,z€(t,00).

Here Po(l),Q(()l) are smooth and decay exponentially as z — —o0, P0(2), 82)

are smooth, and (1 = (1(€) and ny = no(§) are smooth and decay exponen-
tially as &€ — —oo. All functional spaces and functions above will be defined
in Section 4. The constant B(A,¢) tends to 0 as e — 0.

Here we remark the generalization of f and g. Although we consider
only two nonlinearities in this paper, we can show the same results for more
general nonlinear terms with a bistable condition. Then we obtain a different
type of a homoclinic-heteroclinic solution, which means that the function «
of a solution of (6] tends to 0 as |z| — oo and the function v converges to
different values as |z| — co. Those types may not have been considered yet.

VMax ==\esespeeapfas

Figure 3. A nullcline of some nonlinearity for which there is other type
pulse solution in (L4).

In the following, we collect several applications of Theorem 2.
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(A) Transversality of stable and unstable manifolds

In the case of FitzHugh-Nagumo nonlinearity, (I.6]) can be rewritten as
u, =f(ue), ze€ (—00,00),
where we set z — £z and put
¢ € € ¢
Uy =D, u= (U,p,U,C) ) f(u,E) - (p,cp—f(u)—i—’u, Eu_ E’Yva 1) .

Let (u®,v%,c%) be a traveling wave solution of (LO) and W, and Wy are a
two-dimensional center-unstable manifold and a three-dimensional center-
stable manifold of (0,0,0)! and ¢ around ¢°. Since (uf,us,v%, ) is on both
these manifolds, Wy N W,, # ¢ at ¢ = ¢°. It was shown by Evans [2] that if

| wep s 2o
—o0
then W,, and W intersect transversally as ¢ exceeds ¢*, where (P, Q) is an
eigenfunction of the adjoint equation (L&]). Moreover, the sign of the above
integral is closely related to the stability of the fast pulse solution. The
transversality can be proved by Langer [9] using a geometric argument. By
Theorems 1 and 2, we can show that the above integral is positive, which

gives a necessary condition for the stability.

(B) Response to a disturbance

We introduce a traveling coordinate system z = x + ct and do some

suitable scaling. Then (L) is rewritten as

(2.1)

Up = Uzz — cuz + f(u) — v, z € (=00,00),
v = —cuy +e(u—y), =z € (—00,00).

Clearly, any traveling wave solution of (LI]) corresponds to a stationary

solution of this equation.

It was proved independently by Jones [7] and Yanagida [12] that if € is
sufficiently small, the fast pulse solution, denoted by (u,v), is asymptotically
stable in the sense of waveform stability. More precisely, if (U(z),V (z)) is
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bounded, then the solution of (2.I]) with
u(0,t) = u(z) + pU(2), v(0,t) =v(z) + pV(2),
where p is a small parameter, satisfies
tlggo u(z,t) = u(z + pb), tliglo v(z,t) = v(z + pé).

It was proved by Yanagida [13] that the phase shift 0 satisfies

> UP+vVQ)d
0= ;100 ((u P o Q))dz+0(1) as p — 0.

Thus the bounded solution (P(z),Q(z)) of (L8) gives a weight function.

(C) Stability of planar pulse solutions.

Let Q be a bounded domain in R with a smooth boundary. We consider

the equation

{ eup = 2Au — ceu, + f(u,v), (2,9) € (—o0,00) x Q, 22)

v = —Ccuy + g(u,v), (Z7y) € (_00700) x Q.

It is clear that a traveling wave solution of (I.4]) corresponds to a solution of
([22) that is constant in y-direction. Such a solution is called a planar pulse
solution. To consider the stability of the planar solution in the cylindri-
cal domain, called the planar stability, we introduce a linearized eigenvalue

problem with a new parameter [ > 0;

{ (1 + )6 = 20" — cetf + fulw,v)6 + fulu,v)o, 23)

) = —ec)’ + egu(u, v)d + gy (u, v).

By using a similar argument in [12] or [5], it was shown in |11] that there
is no eigenvalue of (23] with a positive real part if [ > 0 is independent of

e > 0.

Moreover, if | converges 0 as ¢ — 0, eigenvalues p of (2.3)) staying in
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{\N € C | ReX > —04} for a small § > 0 must satisfy

l 75 u.Pdz
75 (uaP 4+ v.Q)dz

B~ =

as € — 0. Hence the stability of the planar pulse solution is determined by
the bounded solution of (LS.

In the case of the combustion model, we need to study (Z.3)) in a weighted
Sobolev space because the essential spectrum comes to the imaginary axis
if we consider (2.3]) in a usual Sobolev space or continuous functions space
(see [10], [5]). We shall discuss this in detail in Section 4.

In fact, the authors in [11] also considered the planar stability of a
traveling wave in the FitzHugh-Nagumo system. However, in that paper, the
cylindrical domain depends on € and becomes thinner and thinner as € — 0,
and so it is insufficient to investigate eigenvalues of (2.3)) for any given [ > 0
independent of £. On the other hand, our domain € is independent of ¢ in

22).

(D) Pulse interaction

In Section 3.2 of |1], the author considered the interaction of two stable
1-pulse solutions moving toward the same direction in (1) with f(u) =
u(l —u)(u — a) for 0 < a < %, and demonstrated that the two pulses are
repulsive. He claimed that the distance between two 1-pulses denoted by
h = h(t) is governed by a differential equation

ho~ —M,e "

provided that h is sufficiently large, where h denotes the derivative of h with
respect to t and a > 0, M, are some constants. Moreover we can calculate
the sign of M, by investigating the behaviors of the 1-pulse (u(z),v(z)) and
the eigenfunction (P(z),Q(z)) as |z| — oo, and the sign determines whether
those pulses interact repulsively or attractively. From our theorems, we see
that

{ tHu(z2),v(2)) = e **a™, 2z — oo,

HP(2),Q(2)) — e¥*b™, 2z — —o0,
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where o, a™,b_ are defined by

a= L (7— l) +0(e), a"=-K; <1> +0(e), b =K < ! ) +0(e)

co a a —a

for positive constants K1, Ko. Then M, can be calculated such as
My =eco {a™,b7) + O(%) = —ecoK1Ka(1 — a®) + O(e?) < 0,

which implies that two 1-pulses interact repulsively. Here (-, ) denotes the

usual inner product in R2.

3. Comnstruction of Pulse Solutions
We divide (—o0, 00) into three parts
I = (—O0,0), I, = (077_)7 I3 = (7_7 OO)

for some 7 > 0, and consider the following three problems:

e2u) —ccu + f(u® W) =0, zeq,

—cvt) + g(u®, M) =0, 2, (3.1)
uM(—00) =0, uM(0)=a, '
v (—o00) =0,

20 —ccul® + f(u®, @) =0, €D,

—evl?) + g(u®,v®) =0, 2 €I, (3.2)
u®(0) = a, u?(r) =3, '
v®(0) = v(0),

20l —eccu® + f(u®, 0By =0, eI,

—eo® + g(u®,v®3) =0, z € I, (3.3)
u®(r) =B, u®(cc) =0, '
v® (1) = v@ (7).

The superscript ¥) for k = 1,2,3 means that the functions are defined on
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the interval I;. This notation shall be used throughout Sections 3 and 4.

3.1. The lowest order approximation

We first construct an outer solution of (LLG) that approximates (L6l

outside internal transition layers. Putting ¢ = 0 in (3.1]), we formally get

Fugt vty =o, 2 € (~00,0),
—oVy 4 U ) =0, 2 € (—o0,0),
Vol (—o0) = 0,

that is,
U = h-(Vy"), 2 € (—00,0),
Vi = g(h- (), Vi), 2 € (~o0,0),
Vil (~o0) = 0.

Due to f,(0,0)g,(0,0) — f,(0,0)g,(0,0) > 0, Vo(l)(z) must be identically 0
and then Uél)(z) is also 0. Next, putting ¢ = 0 in (3.2)), we formally get
f(U(g2)7 ‘/0(2)) = 07 z € (077_0)7

/
—coV? +gUP vy =0, ze(0,m),
V2 (0) = vy (0),

that is,
Uy = hye (Vy?), € (0,7),
/
Vi = gy (V) V), z € (0,7),
Va2 (0) = 0.

Finally, putting e = 0 in ([B8.3]), we formally get

FUi vy =, 2 € (79,00),
/

—coV + g0, vy =0, ze (n,00),

V(1) = VP (o),
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that is,
U = h_(v{?), 2 € (70,00),
CO%(fﬂ)’ _ g(h_(‘/})(?’)), 0(3))7 2 € (9, 00),
Vo (10) = V¥ (o).

The outer solutions constructed as above do not satisfy (L) approxi-
mately in neighborhoods of z = 0 and z = 7. So we will construct inner
solutions of (ILG) that approximate (I.6]) in the internal transition layers.

At z = 0, we rewrite (L.G) by the stretched variable £ = z/e and put
¢ = 0. Then we formally get

{ 550 - COQ.SO + f(qb()v 0) = 07 g € (_007 00)7 (3 4)
¢o(—00) =0,  do(o0) =h4(0), (¢0(0) = a).
where the superscript “ 7 denotes the differentiation with respect to £. As

we state in Section 2, there is a unique wave speed, denoted by cy = ¢, such
that ([B.4) has a unique solution ®;(&).

At z = 7, we introduce the stretched variable £ = (z — 7)/e. Then,
similar to the above, we formally get
{ $0—08¢.50+f(¢071)) :07 56 (—O0,00),

Po(=o0) = hy(v), ¢o(co) =h_(v), ($o(0)=p).
(3.5)
As we state in Section 2, there is a unique value v = v* € (Upnin, Umaz) Such
that ®5(§) is a unique solution of (B.5l).

From Section 2, we find that V0(2) (z) is a solution of

Vil = glhy V), V), 2>,
V2 (0) =0

and satisfies the condition the condition

We set
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Moreover, V3)(z) is a solution of

!/

Vo = g(h-(Vg”). V"), = € (5.00),
VY () = v,
and we set
Us”(2) = h-(Vs” ().
From this 0-th order approximation, we can construct the solution of (L.6])

rigorously. But, to show Theorem 1, we must construct higher order approx-

imations.

3.2. The first interval I

In this section, we consider the problem

e2u,, —ecu, + f(u,v) =0, z€ I,
—cv, + g(u,v) =0, z eI,
u(—o0) =0, u(0)=aqa,

v(—o0) = 0.

(3.6)

Outer Approximations

We expand u,v and ¢ as
u=Ug+eUi+--, v=W+eVi+---, c=cyt+eci+---.

Substituting these in (3:6) and equating the power of ¥, we get

f(Uo, Vo) =0, z € I,
—cgV§+9(Uo, Vo) =0, zely,
Vo(—o0) = 0.

From the first equation, we have Uy = h_(Vp). Then we obtain

CSVE)/ = g(h_(‘/b), Vb)? z € I,
Vo(—o0) =0,
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which leads

by the lowest order approximation in Section 3.1.

1

Similarly, equating the power ¢, we get

fu(07O)Ul + fU(07O)‘/1 = 07
—cgV{ + 9u(0,0)U1 + g,(0,0)V1 = 0,
‘/1(_00) = 07

which implies

Inner Approximations

In a neighborhood of z = 0, we expand u and v as

z € I,

z € Iy,

u(z) = do(2) +edr(D) +--, v(z) = evo(2) + -

Substituting these in ([B.6]), putting ¢ = z/e, and equating the power of €,

we get

b0 — chdo + f(¢0,0) =0, €€ (—00,0),

—cibo + g(¢o,0) = 0, € € (—00,0),

¢o(=00) =0,  ¢0(0) = e,
1/}0(—00) =0.

Hence we obtain

£
m@:@@,%@:é/’m@mw

CO — 00

1

Similarly, from the power ", we get

{ b1 — 1 + Fu(@1,0)01 = c100 — fo(®1,0)00, € € (—00,0),

p1(—00) =0, ¢1(0) =0.
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Hence

b1(E 1) ——<I>1/

We will find a solution of ([B.6]) such as

/ 803, (eyy — £, (1, 0)0)dpds.

uM(z;e,¢1) = (1)(5) + 6(;5 (E;cl) + z—:R(l)(E;e,cl),
(1)52 152 € (3.8)
v (z;e,¢1) = ey (2) + eS¢ )(E;E,Cl).

Indeed, we can show the following theorem, which gives a solution of the

form (B.8]).

Theorem 3. Fiz § > 0 and ¢} € (—o0,00) arbitrarily, and put
As ={c1 € (—00,00) | |e1 — | < 6}

Then, there is €9 > 0 such that the pair (uV), v given by BF) for a
function (RM, M) e X, is a solution of (B.6)) for any e € (0,e9), where the
functional space X, is defined by

X, = X2 x X],

X}(—00,0) = { € C(=00,0) | l¢llxy + 9l < oo},

X2(=00,0) = {i € C(=00,0) | llxg+1¢lxg +1¢l1xy < 00, 2(0) =0},

elly = SUp_soceco € E1(€)]

and [ is an arbitrary number satisfying

O<u<,u0_—<—co+\/co 4fu00)>

In addition, (R, SW) = O(e) in X, uniformly in c; € As as e — 0.

This theorem shall be proved in Appendix. Note that R(l)(O; g,c1)=0
and RM (—o0;e,¢1) = SW(—o0;e,¢1) = 0.
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3.3. The second interval I,

In this subsection, we consider the problem

€2u22 — ECUy + f(’LL,’U) =0, z € I,

_Cvz+g(u7v) :07 ZEIQ,
u(0) = a, u(r) = B(e),
v(0) = eyp§ (0) + eSW(0se, ¢1),

(3.9)

where () = B+ o0(g) as € — 0. More precise definition of 5(g) will be given
after stating Theorem 4. By putting y = 752/7 (1 = 7§ + €71), the above

problem is rewritten as

¢ 2
uyy — ec <1 "’57—_1 Uy + (1 +5T_}k> flu,v) =0, ye(0,75),
~eoy+ (1) glu) 0. yeO0.7),
7o
w(0) =a, u(rg) = B(e),
0(0) = " (0) + eSD (05¢,e1)
(3.10)
Outer Approximations
We expand u,v and ¢ as
u=Up+elUi+--, v=VW+eVi+---, c=cyg+ecr+---.
By substituting these in ([8I0), the coefficient of £ is calculated as
f(U()v‘/O):Ov Y€ (077_(3(()7
_CB‘/()/+9(U07%) =0, ye (077_5)7 (311)
Vo(0) =0.

From Section 3.1, we find that Uy = hy(Vp)(= h+(V0(2))) and Vp(y)(=

V0(2) (y)) is a solution of the equation

CSVO/ = g(h+(V0), Vo), y € (0,75),
Vo(0) = 0.
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1

Similarly, from the power £, we have

_CEK]U(/]_'_fu(UO)‘/O)UI +fv(U0,‘/0)‘/1 :0, yE(O,TE)k),

_Czk]vl/_Clvo/‘i‘gu(Um %)Ul +gv(U07 %)‘/14‘%9((]0, Vb) = 07 ye (07 7-6*)’
1 2

Vi(0) = 45" (0) — v§?(0),

(3.12)
where 1/1(()2) is determined later. Integrating these, we get
cUs — fo(Uo, Vo)Va(y; c1,71)
U . — 0~0 ’ y &1
Wienm) fu U0, Vo) |
1 (Y (csgu(Uo, Vo)U] 71 1
Vi (y; = Vi< — 7D V70V 4+ —g(Uo, Vo) | —=d
1(y76177'1) O{CB/O < fu(UO,‘/O) Cl 0+7_6kg( 0, 0) ‘/0/ Xz
1 o (2)
0) — 0))p. 3.13
@8O — v o) (313)

Inner Approximations at y =0

In a neighborhood of y = 0, we expand v and v as

u(y) = Uop(y) +eU1(y) + do(

v(y) = Vo(y) +eVi(y) + etbo(

o <

) e+

)+ (D) + -

o <

Here we note that the e'-th order term appears in the expression of the
function w, while we obtain the £2-th order term for the function v. The
£2-th order term will be just needed in the proof of Theorem 4. This may
result from the influence by the underlying difference of the scaling between
outer solutions and inner solutions with respect to . It is not that we would
like to establish the existence of the traveling wave solution with e2-th order
expansion.

Substituting these in ([B.I0]), putting £ = y/e, and equating the power
0

of €, we get
G0 — o + f(h+(0) + 0, 0) =0, £ € (0,00),
_CSVOI(O) - 681/}0 +g(h+(0) + ¢070) = 07 5 S ( 700)7

$0(0) = a— hy(0) = a—Up(0), ¢o(c0) =0,
1/}0(00) = O.
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Hence we obtain
b0(€) = B1(E) D (0),  Wo(E) = —% /5 " (9(®1,0)—g(h (0),0))ds. (3.15)

1

Similarly, from the power &', we have

$1 — c5d1 + fu(Po,0)p1 = ciUS(0) + <01 + Cé%) %o

—2;—61f<<1>1,0> — fu(®1,0)(€U5(0) + U1 (0))

— fu(@1,0) €V (0) + VA (0) + ¥o), £ € (0,00),
—ciibn — Vi (0) — 1 Vg (0) — eV (0)€ — extho + %9@1, 0)
+90(®1,0)(§V5(0) + Vi(0) + %)

+gu(q)17 0)(§U6(0) + Ul (0) + ¢1) = 07 { € (07 OO)?
$1(0) = =U1(0),  ¢1(o0) =0,
1/11(00) =0.
(3.16)
NOting fu(U07 ‘/O)U(,) + fU(U07%)‘/E]/ = 07 we have
$1(&e1,71)
- by L fe [( *2>._2
= Ul(o)i)l(O) (1)1/0((131)2/8 e P, Cl—I-CO7_6k d, QTgf(q)l,O)

—[o(P1,0)00 — (fu(®1,0) — fu(ht(0),0))(pUS(0) + U1 (0))
(o @1,0) = fulh(0),0))(pV{(0) + VA (0))] dpds,

1(&;e1,71)

- / {e1tho—gu(®1, 0)61 — g (@1, 0) b — - (g(®1,0) —g(h (0), 0))
Co Je 70

—(9u(®1,0) — gu(h+(0),0))(sUs(0) + U1(0))
—(90(21,0) = gu(h+(0),0))(sV5(0) + V1(0)) }ds. (3.17)

Here we note that we do not write ¢; and 71 for Uy(0), V1(0) in (B.17) explic-
itly. In fact, U1(0), V1(0) are independent of ¢; and 71 though the functions
Uy and V7 do depend on these parameters. This is easy to see by substituting
y = 0 into Uy, V; directly.
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Inner Approximations at y = 7§

In a neighborhood of y = 7§, we expand u and v as

* *

u(y) = Uolw) + Vi) + 0oL 8) 21D o

o) = Volw) + Vi) + o)+ 2y (2

*

— T,
0)_|_..._

By substituting these in @3.10), putting & = (y — 73) /e, the coefficient of °
is computed as

$0—08¢.50+f(h+(v*)+¢071)*) :07 56 (_0070)7
—esVi(1g) — ciho + g(hy (v*) + ¢, v*) = 0, £ € (—00,0), (3.18)
$o(—00) =0, ¢o(0) =B —Up(75) = B — hy(v), ‘
o(—00) = 0.
Hence we obtain
1 [¢
$o(§) = P2(§) — hy (v7),  Yo(§) = —*/ (9(®2,0") — g(hy (v*),v))ds.
0 J—o0
(3.19)

Similarly, from the power ¢!, we have

b1 — €1 + fu(®2,0) b1 = UG (75) + <c1 + c;é%) @
0
—2—f(<1>2, v*) = fu(®2,v")(EUH(75) + Ur(75))
—fv(<1>2, VEVY(TE) + Va(rg) + o), ¢ € (—00,0),
_0791/’1 - Covf(To) ClVo(Ték) — oV ( 7)€ — Cl'lbo
+T—§g(q>2,v*) + gu(®o, v*) (EUL(7E)
FUL(15) + 61) + gu(P2,v*) (EVE (15) + Vi(1g) +40) =0, & € (—00,0),
$1(—00) =0, ¢1(0) = =Ur(77),
1/11(—00) =0.

(3.20)
Noting f,,(Uo, Vo)U§ + fo(Uo, Vo)V§ = 0 again, we have

$1(&er,71)

COS .
= —U1(7'07€1,7'1 / e 0P Py
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X [(Cl + )<I>2 - 2—f(<1>2,v*) = Jo(®2,v")tho
0 To
~(ful®@2,0") = Fulhs ("), ) (PTG (78) + Ur (7551, 7))
~(ful®2,0%) = ol (0),0)) (VG (1) + Va (73 e1,71)) | dpds, (3.21)
V1(&;e1,71)
1 5 7 * * * !/ * *
TG /_oo[clwo — (9u(®2,0") = gu o (v"),0"))(sUG(76) + Vs (551, 71))
~(90(®2,0%) = gulh (v"),0)) 8V (75) + VAT 01, 71)) = g (@2,07) 1

—gu(P2,v )wo——o( (P2, v*) — g(hy (v*),v*))]ds.

We will find a solution of ([B.9]) given by

U(2) (y7 &,C1, Tl)

= Us? () + U (e ) +0C5) (657 () + 20 (Zierm)
To

001~ Lo (L) 4 g (LT ey )
70 €

+eR) (yse,01,m1) + e (V) (1) S (g2, 01,0, (3:22)

,U(2) (y7 €,C1, Tl)

= Vo) + VP e m) + 02 67" (2) + e (Zre,m))
0

9, Y —T) 2)r Y — T
+e(1 = ) ) e (e m)

+e5O e e, m) + B D) (SD 036 e1) — 0P (01, m), (3.23)
0

where the superscript “!” means that the functions are given by (B.I5) and
BI7), and “ " 7 is also a superscript given for the functions of (3.19]) and
B21) as well as “! 7. A smooth cut-off function 0(y) € C*[0, 1] is supposed

to satisfy
O(y)=1 forogygi,
0<0(y) <1 for 3 <y<3,
O(y)=0 for 3 <y <1.
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Theorem 4. Fiz 6 > 0 and i, 1y € (—00,00) arbitrarily, and put
= 2
Es={(c1,m1) €R* | |ey — | + |1 — 17| < 0}

Then, there is €9 > 0 such that (u®,v®) given by B22) and B23) for a
function (R®,SP) € X_ is a solution of @IQ) for any e € (0,e0) , where
the functional space X is defined by

Xe = CE(O, 7—g) X C12,a(07 Ték),

C2(0,75) = {9 € C*(0,75) | v(0) =0, ¢(75) =0, [¢llcz < oo},

CEo(0,75) = {9 € C2(0,75) | ¢(0) =0, [lllcz_ < oo},

d\* ‘
— +max
(dy> v [0,75]

In addition, (R®,S®) = o(1) in X. uniformly for (c1,m1) € E5 as e — 0.

and the norms are defined by

d2
e

2 1
ol =3 | (=) o] lley, =3 o
’ i=0 [0.:75] Cl’s [0 76

This theorem shall be proved in Appendix. Note that R(?) (0;e,¢1,71) =

R® (15;€,¢1,11) = 5®3)(0;¢,¢1,m) = 0. Therefore, we constructed a solution

of (BI0) such as

ul? (26, ¢1,71)

= U2 (02) + U (D, m) + 060D ) + 6P (D zsen,m))

2@ %( 7) 2 T2 — 7).
+0(1 7)( 0 )t g (10 i)
+sR<2>(T70z; e,e1,m) + by (V2 )(72))5(2)(7-70z e,c1,m1), (3.24)

v (zie,¢1,m1)

75 1,70
= @2+ V@B zierm) + bW E ) + P Dzien,m)

75 (2 —7)

veo(t = P (BEZT) 4oy e1m)

ET

+e5@ (Laie er,m) +0(2)(SD O 0) — 0P (Oser,m). (3:25)
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The constant 5(e) is given by
B(e) = B+ by (v*)SP(r5e, 01, 7).

3.4. The third interval I3

In this subsection, we find a bounded solution of

2u,, —ecu, + f(u,v) =0, z€ I3,

—cv, + g(u,v) =0, z € I, (3.26)
u(r) = B(e), u(+o00) =0,

v(r) =@ (r),

where

v@ (1) = v*+€V1(2) (19 Cl,Tle¢é2)7r(O)-|-€2 gz),r(o; Cl,Tl)-I-ES(2) (158,61, 71).
If we transform y = z — 7, then this problem is rewritten as

e2uyy —ecuy + f(u,v) =0, y € (0,00),

—cvy + g(u,v) =0, y € (0,00), (3.27)
u(0) = B(e), u(+o0) =0,

v(0) = v@ (7).

Outer Approximations

We expand u,v and c as

u=Ug+eUr+---, v=Vy+eVi+---.

We substitute these in (3:27]), and equate each power of . Then, from the
order €%, we have

f (WU, Vo) =0, y € (0,00),

—c5Vi + 9(Uo, Vo) =0, y € (0,00),
Vo(0) = v*.
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Hence Uy = h_(Vp) and

Vo = g(h—(Vo), Vo), € (0,00),
V0(0) =

From Section 3.1, we find that Vy(y) = V( )(y) is a solution of the above
problem and sct U(s) = h-(Vi(a)(= h- (V" ().

Similarly, from e!-order term, we have
—cgUs + fuUo, Vo)Ur + fu(Uo, Vo)V1 =0, y € (0,00),
—cgVi — a1V + gu(Uo, Vo)Ut + go(Uo, Vo)Vi = 0,y € (0,00),
Vi(0) = = (0) + Vi (s ca,m) + 6”7 (0),

where the function w((]?’) is given later. Since Vj # 0 for any y > 0 in case of
the FitzHugh-Nagumo system,

—fo(Uo, Vo)Vi + c§Ug

Ul (y7 claTl) = f (UO ‘/0) )
1 (Y1 9u(Uo, Vo)U}
Vily;e1,m1) = 744 —/ — <—C V’+C*’70 dx 3.28
1(y;¢1,1) O[CS ) Vo/ 1Yo 0 Fu(Uo, Vo) ( )

AT T O+ ien )+ o).

Since V) = v* in case of the combustion model, U; and Vi are identically
constants given by

Jo(h—(v*),v%)

JoAB=\Y )0y

Fulh—(v*),0%) "

Vily;a,m1) = —71)(3)(0) + V1( )(7'5; c1,71) + 7/’(()2)’T(0)-

Ul(y;c1,m1) = —

Although U; and V; are constants, we use the variable y for these functions
in order to correspond to (3.28)).

Inner Approximations

In a neighborhood of y = 0, we expand v and v as

U(y)ZUo(y)+6U1(y)+¢o( )+6¢1( )+
o(y) = Voly) +eVi(y) + eto( 2 ) e wg)
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Substituting these in ([3.27) and putting & = y/e, we have from e’-order term

b0 — cydo + F(Uo(0) + o, Vo(0)) =0, ¢ € (0,00),
—c5Vi(0) = o + 9(Uo(0) + 6o, Vo(0)) =0, £ € (0,00),
¢0(0) = B —Up(0) =B —h_(v*), ¢o(00) =

Yo(00) =

Hence we obtain

Po(§) = h-(v),
= ——/ {g(P2,v") — g(h_(v"),v")}ds.

Similarly, from the order of !, we have

(¢ — b + fu(®2,0") 1
= cyUp(0) + c10 — fu(®2,v)(EU4(0) + U1(0))
— fo(P2,0")(EV5(0) + Vi (0) + %), € € (0,00),
—c1Vg(0) — gV (0) — c5&Viy'(0) — cien — eando
+gu (P2, v*)(EUH(0) + U1(0) + 1)
+u(P2,v*)(§V5(0) + V1(0) + 1) = 0, ¢ € (0,00),
¢1(0) = =U1(0),  ¢1(o0) =
1[)1(00) =0

Hence we obtain

$1(&;¢1,71)
§ ochs
=—Ui(0;¢1,71) —— 0 %/0 62 / 0P Pyfc1 Do — f,(P2, v*)eh0
—(fu(®2 ) Ju(h—(v*),v"))(pUp(0) + U1(0; ¢1,71))
—(fo(®2,v™) = fo(h—(v"),v™))(pV5(0) 4+ V1(0; ¢1,71))]dpds,
Y1(&e1,11)
~ 1 /OO[CNZJO — gu(P2,v")d1 — go(P2,v™ )1
o Je

—(gu(®2, %) = gu(h—(v"),v")(sU5(0) + U1 (05 c1,71))
—(90(D2,0%) = gu(h—(v"),v"))(sV5(0) + Vi(0; 1, 71))]ds.
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The solution of [B.27) is given by

P (yse,erm) = U )+ U7 (gsen,m) + 66 (2) + 20y (Zren,m)
el (Vo )S® (g1, 1,7) + RO (g2, c0,7),
WO (ieerm) = Vi) + W e, ) +ev (D)
420G erm) — o (01, m)e )

{27 (0501, m1) + £5@ (155, 1, m) e Y
+eSG) (y;e,¢1,71).

(3.30)
Actually, we can show the existence of a solution of ([3.27)) with the above
form and the function (R, S) satisfies HRHXE,E =o(1) and ||S]| 4- = o(1) as
€ — 0 by a similar argument in Sections 3.2 and 3.3, where the functional
spaces Xig and Xﬁa are given in the following theorem.

Theorem 5. Fiz § > 0 and cf, 7 € (—o0,00) arbitrarily, and put
E5s={(c1,m) €R? | |er — ¢f| + [ — 17| < 6}

Then, there is g9 > 0 such that the pair (u®,v®) given by B30) for a
function (R®),S®)) € X, . is a solution of B2T) for any e € (0,20). The
functional space X, . is defined by

X/J”E = XZ?‘E X XE’HE’
Xy ={p € C(0,0) | ¢llx, = supye(,) lo(y)et?| < oo},
X2 ={peC?0,00) | p(0) =0,llellx, +el¢llx, +2ll¢"llx, < oo},

Xie=1{p € C?0,00) | (0) = 0, [ellx, + ¢ lx, +elle”llx, < oo},
and p satisfies 0 < p < po and is fized, where pg is given by

fu(070)gv(070) - fv(070)gu(070) 1 <’Y+ 1>

a

S G3Fa(0,0) G
in the FitzHugh-Nagumo case and it is any positive constant in the com-
bustion model case. In addition, (R®),S®)) = o(1) in Xye uniformly for
(c1,71) € Z5 ase — 0.

This theorem can be shown by the same argument as in the proof of
Theorem 4. So we omit the details.
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Therefore, the solution of (3.26]) is given by

( zZ—T

W (ze,01,m) = U (2= 1) + U (2 = e, m) + 0 ()
420 (Lser m) e (0 (=) (=735 ,m)
+€R(3)(z —Ti€,61,T1),

W (ze,en,m) = @ =)+ eV = e m) +eug” ()
+€2{¢§3)(z — o) — 0P (0:0p, m)eHETY

2P (0501, 71) + 25O (15, 01,71 ) e 1)
+€S(3)(z — T€,C1,T]).

Z—T

Z—T

(3.31)
3.5. The whole interval

We have constructed solutions of (3.6]), (8.9) and ([3.26]) on each intervals.
From the boundary conditions we imposed, we know that

(uV(0),v0(0)) = (u®(0),v(0)),  (@?(7),0®(7)) = (W@ (r), 0@ (7).

In order to obtain a smooth solution of (L)), we match the solutions con-
structed in the previous subsections smoothly, that is, find (c1,71) for which

4,
dz

D(0) = £u(0),

4,
dz

_a.
 dz

O(r) = Zu9(r)

hold. Set

d d
X(egser,m) = Eau(l)(o;fi,cl) - EEU@)(O; £,C1,T1)

— $7(0) + 24" (0;¢1)
0 (U?'(0) + $PH0) + 262 (0; ¢, 7)) + ole)

_Ta‘ +em
= 47(0) - P (0)

(@ O e1) = 6P (Ose1,m) = U (0) + ZP(0)) + oe)
= eXj(c1,m1) + o(e). '

Here we put

] y T1 /
Xi(er.m) = ¢y (0:e1) = 37 (0se1.m) + Z81(0) — U (0)
0
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and recall ®; = ng(()l) for £ <0 and ®; = ngt()z)’l for £ > 0. Note that

0 |
Y —cks (I)
o0 (0;¢1) = / e L1y — £ (@1, 060 ds,

oo ®,(0) |
1) = PO [ ()

=271 (@1,0) = (fu(®1,0) = fulls 0,0) (UL (0) + U 0)
— (@1, 00967 = (£u(®1,0) = £o(h(0), )5V (0) + Vi (0)) s,

Recall that U;(0) and V;(0) are independent of ¢; and 7;. The condition
Xi(e1,m) =0 is written as

’ _035@—1)2 s 006_068((1)—1)2 syc
{/_ooe :10)" +/0 ci>1(0)d} :

0o —eis Ci)l ﬁ _3 > (131(0) -
*{/ ‘ <I>1(o) <Ta‘q’1 /(L0 dr }1

0 _cos @), 21(0)
/ ) G 0y ds + U (0) 5 0]

e
/ *S
0

@, wo h (fu(% 0) — Fulhs (0), 0% (0) + V2 (0))] s
~ui?"0) =o.

[(Ful@1,0)= £u(h40), 0) (sUSY (0)+ U (0)

Here the coefficient of 7; vanishes by (8.14)) so that ¢; = ¢} is determined as

®1(0)
& (0
)

> —CSSE _ s (2 (2
b e g 0= £l 0 06U 0+ U 0)

* 1 0 —c}s (1)1 (1) (2
¢ = Z{/_me 0 mfv(q)lao)?/’o ds — U™ (0 )

~—

o (@1, 005 4 (Fu(@1,0) — £y (0),0)(sVe (0) + V{2 (0))]ds
+U ()},

Here we set A = [%_e™%% (©1)2/®1(0)ds > 0.
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Next set

Y(g;e1,m) = E—u(z)(T’E C1,T1) — Eiu(?’)(v'; £,C1,T1)

dZ dz
* (2),r (2),r
= TO+€T {eUP" (73) + 627 (0) + 297 (0;¢1,71) )

(U (0) + 6§(0) + 6 (05 ¢1, 1)} + ole)

= (627(0) - 40 >} +s{Ué2>’<Ta‘> + 37 (0;00,m1)
—%4382)"“( )= UP'(0) = 6 (051,71} + 0(e)

= eYi(e1,m1) + o(e),

where

/ . r T1 = / .
Yiler,m1) = Ug? () + 877 (0:e1,m) = = (0) = U5 (0) = 817 (051, ).
0

Here we recall &y = (2 " for £ <0 and ®y = q'ﬁé?’) for £ > 0. Note that
o7 (0:e1,m)
dy(0) [0 ., Dy I
- ¥ ey, : +/ e~ “° c1+cp Dy — 2— f(Pg,v*
i T1)<I>2(0) —oo 2(0) [( L 0) ? Tékf( »v")
/
~(ful®@2,0%) = fulhy (), v)) (UL (1) + U (755 01, 70))
/
—(Fol®2,0") = fulhy ("), ) (Ve (1) + VP (753 01, 7))

ol @, 0P | ds,

¢5§3)(0;61771)

= U2 (0;e1,m) %(0 / _COS
®5(0) 0 0)

~(u(®237) = £l )0 U“” <0>+Uf3 (0se1,m))
(h- ("), NV () + Vi (01e1,m))| ds.

12 = £ (@3, 07t

The condition Yi(c}, ) = 0 is written as

D4 (0 o .. ®
U2 (55 ¢5m) {—(DzEO; —/_ e‘cos—%fo)fu(%,v*)ds}
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0 .. ® * 2 1.
+7 {/ e s 2 [C—gqh — Ff(@g,v*)} ds — — B5(0)

S P5(0) L7 0 0
@2 o0 P @2
+u® 0;cf, 7 : —/ e ‘0% Ju(®Pa,v™)ds
Plosci,m) g gt = [ e @)

0 .
—ers Do 2)
- e 0% o (®o, vV (75 ¢, 11 )ds
/_ @2(0)f(2 )WV~ (705 ¢1,71)

X s 2 ®)
- e 0 —— fi,(Po, v )V} (0;¢], 11)ds + Z = 0,

where Z consists of remaining terms independent of 7. Here, the first,

second and third terms vanish by (8.I8)) and (8:29). In addition, from (B13)
and ([B.28), we have

/0 e_casﬂf ((1)2 U*)V(z)(T*'C* Tl)ds
o @2(0) v Y 1 0s“1>
+/OO o—chs P2 Fo(®2, )V P (0 ¢1, 71)ds

0 D5(0)

X s 2 )
= e %% o (Po, vV (7 ¢l,m)ds + Z
[ g ol W i s + 2

= BTl + Z27

where a constant B is independent of 7 and defined by

2 _« o (2) 1,(2) 00 :
B = VE) . (:0) / 0 g(UO 72‘;6 )da:/ e—c(’;s ‘q)2 fU(CI)Q,’U*)dS,

and Z; and Zy consist of remaining terms independent of 7;. Note that

B # 0. Therefore 7{ is determined as

L 22

By the implicit function theorem, there exist a constant €y > 0 and continu-
ously differentiable functions ¢; = ¢1(¢) and 7 = 71(¢) defined for € € [0, &¢)

satisfying

X(eie1,m) =0, Y(eier,m)=0
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and
li =ci, 1l =17.
:—:lﬁ)l ci(e) =¢j, Elﬁ)l T1(e) =1
Thus the proof of Theorem 1 is completed. O

4. Construction of Solutions of Adjoint Equations

Let us consider the linearized equation (L7) and its adjoint equation
(L8). In the case of the combustion model, we should consider the prob-
lem (7)) in a weighted Sobolev space H2, (—00,00) x H, (—00,00) with a
weighted function e #%/¢ for a small x > 0 because essential spectrums of
([L7) come to the imaginary axis if we consider usual Sobolev spaces and
continuous functions spaces. This was pointed out in [10], and (L7) is con-
sidered in [5]. The weighted Sobolev spaces H', (—00, 00) and H?, (—o0, 00)
are defined by

HZ,(—00,00) = {p € Hpe(R) | llll 2, +ll¢'ll 2, < oo},

H?, (—00,00) = {p € Hppo(R) | llell 2, + 1¢llz2, +1¢"ll2 < oo}

and
) 1/2
lellz, = ([ lotereras)
2 .
Differentiating (L@ by z, we see that (7)) has a solution (P, Q) = (u.,v,)
in H?, (—o00,00) x H!, (—00,00). Hence the adjoint equation (LJ) also
has a solution in H2(—o00,00) x H}(—00,00). On the other hand, in the
FitzHugh-Nagumo system, we consider both problems (7)) and (L8] in a
usual Sobolev space H?(—o00,00) x H!(—00,00), that is, we can set x = 0.
In the following, we do not distinguish these cases as far as readers are not

confused.

We shall construct a solution of (L8] by dividing R into three parts
I = (—00,0), I = (0,7), and I3 = (7,00) as in Section 3. By three given
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constants A, B, D, (L)) is respectively written in each interval as

e2P,, + ecP, + fu(u,v)P + gy (u,v)Q =0, =z € Iy,

cQ; + fo(u,v)P + gy(u,v)Q = 0, z €I,
A (4.1)
L Q(_OO) = 07 Q(O) = D7

2P, + ecP, + fu(u,v)P + gy (u,v)Q =0, 2z € I,

cQ: + fo(u,v)P + gy(u,v)Q =0, z € Iy, 43)
A B :
POy =2, pr=",
Q(0) = D,
(2P, + ecP. + fu(u,v)P + gu(u,0)Q =0, z € I3,
cQ; + fo(u,v)P + gy(u,v)Q = 0, z € I, i3
Py =28 peoy =0 )
[ Q(c0) =0,

where it is supposed that B(e) = B + o(¢) as ¢ — 0. We shall determine
A, B, D and B(e) later.

In the following we expand P and @ in each interval and look for outer
and inner solutions as well as in Section 3. Many functions obtained below
may depend on the parameters A, B, D and so we should write these param-
eters for the functions explicitly as in Section 3. Recall that we keep writing
c1 and 11 explicitly for functions depending on these parameters in Section 3
in spite of cumbersome expressions. For it is important to see the parameter
dependency of functions when we determine ¢] and 7 (see Section 3.5). On
the other it is not much important in this section because eventual equations
obtained in Section 4.4 to determine A, B, D seem simpler than in Section
3.5. So we omit writing the parameter dependency of functions in many
cases.

4.1. The first interval I

Outer Approximations

We expand P, (Q as

P(z)=PRy(z)+--, Qz) =Qo(z) - (4.4)
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By substituting these in (1), the lowest approximation is obtained as

fu(oao)PO +gu(070)Q0 :07 Ze—[la
5Q0 + f0(0,0)Py + 94(0,0)Q0 =0, 2 € I,
Qo(—o0) =0, Qo(0) =D —no(0),

where the function 7 is given later. Hence we have

Ro(2) = - 240 ol
and
{%%(ﬁ%ﬁﬁym%mm>%,zeh
Qo(—o0) =0, Qo(0) =D —no(0).

Thus we obtain

Qo(2) = (D —no(0)) exp { <% - gv(0’0)> é} ’
_ 9.(0,0)
B = =00

Inner Approximations

Next, we consider the inner approximations. We expand P, () as

PE) = Bo(e)+ 26D+ (E)+ s Q) = Qole) tmo(C)em(C) 4+

By substituting this in (&I]) and putting & = z/e, it follows from e~ !-order

terms that

o+ 5o + fu(®1,0) =0, € € (—00,0),

oo + fu(¢0,0)¢o = 0, £ € (—0,0),
Co(—00) =0, ((0) =4,
no(—o00) = 0.

Hence we obtain

_ peeie P _ L
G6) = AT O =~ [l 0)ds
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Similarly, from the order of €%, we get

i+ epli + fu(@1,0)G
= —¢1Co — fu(®1,0)Po(0) = fuu(P1,0)¢1¢0
_fuv(q)b 0)1[)0(0 - gu(q>17 0)(@0(0) + 770)7 56 (_007 0)7
csm+cin0+c5Q6(0)+ fu (P1,0)(¢1+Po(0))+ fuu (P1,0) o
+fm)(q)17 O)COQZJO_‘_QU(@I) 0)(QO(O)+770) = 07 56 (_007 0)7
C1(=00) =0, (1(0) = =F(0),
m(—o0) = 0.

Hence we have

2 R 0 —cis s . .
(€)= —Py(0) beﬁo) s /6 ?cT)z /_ Wil + £(1,0) (0

+ fuu(P1,0)01C0 + fun(P1,0)Y0C0 + gu(P1,0)(Qo(0) + 10)]dpds,

3
m©) = [ i+ (1,0~ £,0,0)Po(0)+ £,(1,0)61+ Fun (21,0006

0J—
+fvv(q)17 O)CO% + (gv(q)ly O) - gv(oa 0))QO(O) + gv(q)la O)WO}dS’

where

Go(§) = e 0Py
The solution of ([@.1]) will be represented as

PO(z6,4,0) = P (z:4,D) + 20 (5 4) + (% 4, D)

9(0,0)
J;u(O, 0)

QW(z:5,4,D) = Q¢ (4. D)+ (5 4)
z
+= {nV(E4,0) =V (0: 4, D) |
L +WM(z;e, A, D).

+ZW(z;6,A,D) — W (z;e, A, D),

(4.5)

Theorem 6. Fiz 6 > 0 and A*, D* € (—o0,00) arbitrarily, and put

Qs ={(A,D) e R? | |A— A*| +|D — D*| < 6}.
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Then, there is g9 > 0 such that the pair (PM, QM) given by @) for a
function (ZM W) € X, is a solution of @) for any ¢ € (0,20), where
the functional space X, . is defined by

Xy = X2 x X2,
Xy ={p € C(=00,0) | [[¢llx, =sup.e(—c00) l0(2)|e7* < o0},
Xoe={r e X, [ 90) =0, llelx, +ell¢'llx, +€l¢"llx, < oo},
Xoe={pe X | 0(0) =0, llelx, +1l¢'lx, +elle”llx, < oo},
and v satisfies 0 < v < pg and is fived, where oy was given in Theorem 5.
In addition, (ZM) W) = 0(1) in X, - uniformly for (A, D) € Q5 as e — 0.

This theorem can be shown by the same argument as in the proof
of Theorem 4. So we omit the details. Note that Z(l)(—OO;E,A,D) =
ZW(0;e,A, D) = W (—o0;¢, A, D) = 0.

4.2. The second interval I

In this subsection, we consider the problem ([@.2]). If we set y = 752/,

then this problem is rewritten as

€ Pyy—i-sc(l—i—s—)P +(1—|—5—) (fulu,v)P+gyu(u,v)Q)=0, ye(0,15),
70 70

cQy + (1 —1—57_—&) (fo(u,v)P + gy(u,v)Q) =0, ye(0,75),

POy =2, P =21,

Q(0) =D,

where B(e) = B + o(1) as € — 0, as stated pervasively.

Outer Approximations

We expand P and @) as

Ply)=P(y)+--, Q) =CQoy) +

By substituting these in (4.6]), the lowest order approximation is obtained
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as
fu(U(]v‘/O)PO +gu(U07‘/0)QO :07 RS (077—5)7
CEK]Qé] + fv(U07 ‘/O)PO + gU(U07 ‘/O)QO = 07 RS (077—5)7
Qo(0) = D —no(0),

where the function 7y will be determined later. Hence we have

o gu(U07‘/0)
Py(y) = —WQO(Z/)

and

fu(UO,‘/E]) _gv(U(]aVY())) Q07 ) S (077—5)7

{ CéQé _ <fv(UOaV0)gu(U0yV0)
Qo(0) = D —no(0).

Thus we obtain

Q) = (D-m(O) exp {& [(2E000EI) g (05, v1)) a)

o 7u(U0, Vo)
JulUo, Vo
o) == v

Inner Approximations at y = 0

In a neighborhood of y = 0, we expand P and @) as

P) = P+ 2o +a )+ Q) = Qo)+ +em (D) +-

By substituting this in ([@6) and putting & = y/e, it follows from £~ !-order

terms that
Co+ ¢3¢0 + fu(®1,0)60 = 0, & € (0,00),

o + fo(®1,0)60 =0, ¢ € (0,00),
C(0) = A, Co(c0) =0,
no(o0) = 0.

Hence we obtain

_ pecis B _ L[
G6) = AT i) = [ 100
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Similarly, from the order of ¥, we have

G+ G+ fu(®1,0)G
<Cl + i) do— 271 Ju(®1,0)C0 — fu(®1,0)F(0)

= 9u(®1,0)(Qo(0)+n0) — fuu(P1,0)(EUH(0)+U1(0)+61)Co
_fuv((I)ly )(é‘vi)( )"’_Vl(o) +¢0)<07 fE(0,00),

ciin = —c5@5(0) — o — gu(®1,0)(Qo(0) + o)
— £o(®1,0)(Py(0) + G1) — L £,(@1,0)¢
To
— fun(®1,0) (€U (0) + U1(0) + ¢1)Co

— fou(®1,0)(§V5(0) + V1(0) + 0)Co, £€(0,00),
€1(0) = =P(0),  (i(o0) =0,
n(00) = 0.

Hence

- . £ o—Cs oo
G = —PO(U)%?O)JrCo/O ?60)2/3 ecopCo C1+Co )Co

127 (@1,0)C + Fu(®1,0)P(0) + g(@1,0)Q0(0)
0

+gu(<1>17 0)770 + fuu(<1>17 0)(pU(/)(0) + Ul (0) + ¢1)<0

+Fun(®1,0) (V5 (0) + VA (0) + v)Go }dpds,

m(©) = 2 [ {eio + (0(1,0) - 51 0).0)Q0(0) + (@1, O
FU@1.0) = Folle(0).0) Po(0) + 0u(81.0)Gs + T £,(@1. 006
+fuul®1,0)(SU(0) + U2 (0) + 61)o
o ou (@1,0)(sV5 (0) + VA(0) + v0)Co fds

where

$o(§) = e~ 08Dy,

Inner Approximations at y = 7§

In a neighborhood of y = 7§, we expand P and @ as

y—T19

P) = Poly) + 2020 +

)_|_...,
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QRy) = Qo(y) +no(y_TTg) —i—sm(y_TTék) 4.

By substituting these in (&8]), ¢~ !-order terms satisfy

60 + CSéO + fu((I)Qav*)CO = 07 é. S (_0070)7

68770 + fv(q)%v*)CO = 07 g € (_0070)7
¢(0) =B, (o(—00) =0,
no(—o0) = 0.

Hence we obtain

_ p—cig by _ 1 ¢ »
G©) = BB (@) = [ h@n s

Similarly, from the order of ¥, we have

(G + G+ fu(Pa,v7) G
= <01 + ¢ *> bo—2 ifu(%,v*)Co — fu(P2,v")Py(1y)
0

—gu(P2,0*)(Qo(75) + mo)
— fuu( P2, v*) (EUH(75) + Ut (75) + ¢1)Co

Lo (2, 0*) (EVR (78) + VA(75) + th0)Co, £ € (—00,0),
chin = —ciQ(73) — cirio — 9u(%2.0")(Qu(73) +m)
— Fol @2, v7) (Po(75) + €1) — %fu<¢2,v*><o
— fun (P2, v*) (EUG (75) + Ur(15) + 61)Co
£ €(—00,0),

— fou(®2,v*) (EV (15) + Va(75) + ¢0)Cos
¢1(0) = =Po(15), Ci(—00) =0,
[ m(—00) =0.

Hence we have

C1(§) = PoTo +C0/ ) / eopCo 61 Té:)(o

)CO + fu(q)%v )PO(TO) + gu(q)g,’l) )QO(TS)

+2_*fu(q)27 v
T

0
+9u(®2, 0" )10 + fuu(®2,v*) (pUg(15) + Ur(15) + 61)Co

(@2, 07) (VG (75) + VA(T3) + 0)Co | dpds,
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3
m© =~ [ {eti+ @u@20) — 900, D)
+9(®2,0 )0 + (£2(®2,0%) = Fulh+ (), 0D RO (75) + (2,07

+:—§fv(<1>2,v*)Co + fuu(®2,0") (sUy(15) + Ui (15) + 61)Co
o foul@2,0%) (V3 (1) + VA (78) + Y0)o }s,
where
Go(§) = e 05Dy,
The solution of (6] will be represented as
P (y:e, A, B, D)

= P A.0)+ 00 {26 )+ (P L D)

0 6
_ 1 . _ * r _ *
o) L (T )+ (4.5, D) )
70 3 €
+2(y;e, A, B, D) — I (VS ()W (y;¢, A, B, D), (4.7)

QP (y;e: A, B, D)
= Qé”(y;A, D) +6(%) {né”(y A) + ™ (4:4,0) - P! (0: 4, D))}
To

(2),
{n
e, A, B

where 0(y) is the same cut-off function as given in Section 3.3.

B+ e (48,0

+w® ( ) (4.8)

Theorem 7. Fiz 6 > 0 and A*, B*, D* € (—00,00) arbitrarily, and put
={(A,B,D) | |A—- A"+ |B - B*|+|D - D*| <}

Then, there is g9 > 0 such that the pair (P®,v?) given by @1) and ES)
for a function (Z@®), W) € X, is a solution of [@B) for any 9 > 0, where
X, is the same one as defined in Section 3.3. In addition, (Z®),W®)) = o(1)
in Xc uniformly for (A, B,D) € Ils as € — 0.

This theorem can be shown by the same argument as in the proof of The-
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orem 4. So we omit the details. Note that Z(2) (0;A,B,D) = A (15:A,B, D)
= W®(0; A, B, D) = 0. Therefore, we constructed a solution of 2) such
as

= ROz a,0) 1002 (Bz )+ (D4, D)

+9(T—Z){§ 62),7’(@.B) +€(2),r(@.f1 B D)}

.
+Z(2)(T70z;5,A,B,D) K, (VA (2 . ))W(2)(?z e,A,B,D), (4.9)

Q®(z;¢,A,B,D)

— 0@(T0 . 4 D)+ 0(Zy @40
Q) (24, D) + 0 {2

(2070 . _ @y,
e[ (X 4,0) - P (0:4,D)] }

z; A)

T—Zz r Tz —T 2z — T
+0( ){77(()2)’ (()(577_)§A,B,D)+577§2) (0(577_)3A,B,D)}

+w® (02 A B, D). (4.10)
T

The constant B(e) is given by B(e) = B— hﬁr(V0(2) (15)) W (1556, A, B, D),
which leads to B(e) = B 4 o(¢) as ¢ — 0.

4.3. The third interval I3

In this subsection, we consider the problem ([{3]). If we put y = z — 7,

then the above problem is rewritten as

2P, + ecP, + fu(u,v)P + gu(u,v)Q =0, y € (0,00),

Q. + fU(’LL,’U)P + gv(qu)Q =0, Y€ (0, OO)) (4 11)
)= Py =0, |
Q(o0) = 0.

Outer Approximations

We expand P and Q@ as

Ply)=Po(y)+--, Qy)=Qoly)+---
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By substituting these in (4.I1]), the lowest order approximation is obtained

as
Ju(Uo, Vo) Po + gu(Uo, Vo)Qo = 0, y € (0,00),
Q0 + fo(Uo, Vo) Po + 9u(Uo, Vo)Qo = 0, y € (0,00),
Qo(o0) = 0.
Hence
«(Uo, Vi
L Yok
and

—ngo,%)) Qo. € (0,00),

x fU(Uo,Vb)gu(Uo,Vb)
{ o < fu(Uo, Vo)

Qo(00) = 0.
Thus we obtain

o) — a0 { (fv(U?UXf)[;fu‘(/()[f)o,%) ) ngo,vo)) %}

_ gu(UOaVO)
Po(y) = —WQO(W'

Since fu(U07V0) < 0 and fu(U07 VE))QU(U07VO) - gu(U07V0)fv(U07VO) > 0 for
sufficiently large y > 0, we have

Inner Approximations at y = 0

In a neighborhood of y = 0, we expand P and @) as
L.y Yy Yy Yy
Ply) = —¢o(2 Iy ... — (Y Yy ...
=10+ Qw=m®) +em®+
By substituting these in (4.I1]) and putting £ = y/e, it follows from the order
of e7! that

Co+ cilo + fu(@2,0%)G0 =0, &€ (0,00),
como + fo(®2,v*)(o = 0, ¢ € (0,00),
C(0) =B, (o(o0) =0,

no(o0) = 0.
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Hence we obtain

_ gt P2 N :
G©) = BB (@)= 2 [ @)

Similarly, from the order of €%, we have

G+ ¢+ fu(@o,v*) G = —cio
—9u(P2, 0" )10 — fuu(P2,v*)(EUH(0) + U1(0) + ¢1)¢o
_fuv(q>2yv*)(£vb/(0) + VI(O) + ¢0)C07 E € (07 00)7
com = —ciMo — go (P2, v )00 — fo(P2,0*)(1
— fuo (P2, v*) (EUH(0) 4+ U1(0) + ¢1)Co
_fvv(q>2av*)(£‘/0,(0) + VI(O) + 71)0)(07 5 € (07 00)7

G1(0) =0, ¢Gi(o0) =
1 (00) = 0.

Hence we have

13 —cos
1) = — @2 +C0/ / €OPC0 C1Co+gu(<1>2, “)no

+ fuu(P2, v )(PUo +U1( ) + ¢1)C
+Fun (®2,0°) (05 (0) + Vi(0) + )0 fdpds,

1 [e.e]

mi€) = o | {ciio+ (@0 m o+ 1206y

€
+fuv(<1>2, U*)(SU(S(O) + UI(O) + ¢1)C0
oo @2,0%) (VG (0) + VA(0) + ho)Go s

where

Go(€) = ey,
The solution of ([@.IT]) will be represented as
1
POy, A,B,D) = =" (2:B) + ¢V (£; B)

1 (Vo (7))W O (e, A, B, D)e™¥/* + 20)(Z5¢, A, B, D),

Q(yie, A, B, Dy=n” (Z: B)+eni” (2: B)+eW® (£:2, 4, B, D),
(4.12)
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where v is a constant independent of €, given as well as p in Theorem 3.
Theorem 8. Fiz 6 > 0 and A*, B*, D* € (—00,00) arbitrarily, and put
II;={(A,B,D) | |A— A*|+ |B — B*|+ |D — D*| < §}.

Then, there is €9 > 0 such that the pair (P®),Q®) given by @IZ) for a
function (ZB3), W) € X, is a solution of @II) for any ¢ € (0,0). The
functional space X, is defined as well as in Section 3.2 and v satisfies 0 <
v < o, where pg was given in Theorem 3. In addition, (Z®), W®)) = o(1)
in X, uniformly for (A,B,D) € Il5 as ¢ — 0.

The solution of ([4.3)) is represented as

Z—T Z—T

; B)

PO(z:e,4,8,0)= ¢ (2T B) + ()
L (VD ()W P (55, A, B, D)e*0/e 4 Z6)(

Z—T

;E7A7B7D)7

QW (16, A, B, D)= (" B)ten” (1 B)+eW O ("1, A, B.D).

4.4. The whole interval

In summary, we have

{P<1><z>Pé”<z>+icé”<j>+c£”<j>+ L sen,

Q) =@ @+ O e C) +-- ze

POIE) = AP(B ) + 02 { 21D + (P B2
o5 {2 BTy (@ BEEh e

() = Q) (B +0C) {(E2) + nf (22
+9(T;Z){(()2),r(7—6k(2; T))+ :(L2)7T(T0(z€7—_7—))}+ e

POG) = 1@E) +@PET) 4 zek,

Q) =) (D) +en (=) + o zels
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It is clear from the construction of the above solutions that

QW(0) = Q®)(0),
PO (1) = PO)(r).

Hence we will determine A, B, D by the following three conditions:

X(A,B,D;s) = 0) P<2 (0)
Y(A,B,D;e) =

Z(A,B,D;e) = Q<2 (1) — Q<3> (t) =0.

/\/‘\

Since éo(l)(O) = 60(2)71(0), we have

X(4B.Di2) = 216" 0= 03+ 04 0+ 2P o)+ 000
= XO(A7 B, D) + 0(6)7

where

. . T* .
Xo(4, B, D) = {{M(0) = ¢2(0) + 245 0).
0

Here we calculate

Wiy = pOo) [ s BOY O B
{0 = -5 <o>< o+¢1(0)> | g ad

+ Fu(@1,0) P (0)+ Fuu (@1, 001 ¢V + fu (@1, 005V ¢V

+9u(®1,0)(QY” (0)+) ds

0 . ) .

_ ];31(()){0 1(0) = §1(0) + $1(0) — cyb1(0)}
oW 9(21(0.0) [0 1 e (1) ()
QO (O) @1(0) /—00(1)1(0){ 1(0 +fuu((1)170)¢1 Co

(@1, 000 ¢SV 4 g (@1, 0155 Vs

W md(@10,0) O D (1) (1)
- 0 (O) (131(0) /;ooci)l(o){clco +fuu((1)170)¢1 Co

(@1, 001 ¢V + g (@1, 0)n s
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Here we note that
) =D -5 (),
O i 20 g o (D) RFRN)

—00

0 . 1 0
/ b1y (®1,0)n " ds = g(@1(0),0)n(Y (0) + = / g(®1,0) f,(®1,0)¢V ds

oo ey J oo

On the other hand, (;Sgl) satisfies

oM — it 4 (1,068
= b1 — fuu(@1,000 Dy — £,(D1, 0005 = Fuu(@1,0)B1 0.

Multiplying this by (él), integrating it on (—oo, 0) and using 1/.)((]1) =g(®1,0)/c5,

we get

1(0)

A0 - 46D ) 0

/Co {E D1 — fuu(®1,0)05 Mo

—C—*fv<<1>1,o>g<<1>1,o>—fuu<<1>1,o><i>1wé”}ds.
0

Using these relations, we obtain

W — D 9(21(0),0) )
G0 = —(0 = (0T — 6 0) O
0 8106470
&1 (0) (£1(0))?
I ICORO R Do) 31004 (0)
= P A O AR T A o)

Next we calculate C}z)’l(O).

210 = -rPo) (- g1 o)

P < *f> L, 071 @)1
—l—/ - C+C—* C 7+2—*fuq),0< ’
; @1(0){ 0 (®1,0)¢y

+u(@1,0)P8 (0) + gu(®1, 0)( (2)<0) + )
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+Fua@1,0) (U (0) + U (0) + 6
Lo @1,0)(5V2(0) + V2 (0) + wP )P s

@1(0) ’ 9 ! ’
/0 (I) (10){<C )CO ékfu(Ilyo)ClF :

+9u(®1,0) (() + fuu(®1,0 )(SUé )( )+U1(2)(0)+¢g2),l)<(()2)l
(@1, 005K (0) + 2 (0) + w2 s

Here we note that

/ (i)léo(Q)JdS = —d(0) éz)J(O) _/ (.131(0(2)71(187
0 0
| i@ omas = @100 0)

1 o
+— / 9(®1,0) fu(®1,0)¢5" ds.
€ Jo
Also, ¢§2)’l satisfies

B G (1,000

* . . / .
= (c*{+cé%)<1>1—2;fu(<1>1,o)<1>1—fw(<1>1,0)(5U(§2> 0)+U2 (0)+¢P)d,
0 0

! !
—fu(@1,0 )%m(%ﬁa@mM@fW)+% (0) + ¥y
ol @1, 0) (V2 (0) + ).
Multiplying this by Céz)’l, integrating it on (0,00) and using CSVE]@)/(O) +
%, 1(2)0
coy” = g(®1,0), we get

@) L@, 21(0)
Ap177(0) + Ay (0)@(0

_ /000452)’l{<61+co *)q>1_2 fu(<I>1, 0)®1

—nA¢h>@U@<>+UP<>+¢1> — £u(®1,00782"(0)
~Fun(@1,0) (V3> (0) + V(0) + myr—n@h><@nﬁw.

~—
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Using these relations and noting

d1(0) /°° @),
A = fu(P1,0) 7 ds,
<I>1(O) 0 ( 1 ) 0
we obtain

6(2)71(0) — (2)(0)g(h+(0)70) —g((I)l(O),O) B <c>1k —I-CST—f) é2),l(0)

0

) 0
@0y 9@10.,0) 0 1067 (0)
L e N TR X(0):
(0 ey
Eopl @

Substituting these into Xo(A, B, D) and using ®1(0) = a — h4(0) and

QP (0) = D — 1" (0), we get

Xo(4, B, D)
- —D%ﬁ%’m — i () + A gl)((oo)) A(I)l(g)f(o(;;go)
_[ (()>(0)9(h+( ), q))1(0£;(<1>1(0),0) —%”QO)%(%’O)
—(c1+c :—;)C ‘0 )+A‘5§j’é$)—Aél((g))lééz));(o)—A(sll((oo)))ng”’(o)

0 0= @<m+%¢mm
B0 sy @ @ ey (2 9(1(0),0)
((1)1(0))2(5251 (0) =177 (0) = Up™ (0)) = (D —my " (0)) 3,0)

Here, by noting

*

. . T1 .
o) - P%m+2%¢um:a

*

. . / .
D 0) = ¢ 0) = U (0) + Ly (0) = 0,
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we obtain
24(0)) 9(h.+(0),0)

Xo(A,B,D) = —(D — 1 o)

Thus we obtain

_ @iy A/°° Ly Dy
D—?] 0) =~ e 07~ fv(I) ,0 ds.
o (0) ; 3,(0) (®1,0)

Secondly, we calculate Y (A, B, D;¢). Since C.éz)’r(O) = Cég)(O), we have

Y(4,B,Di2) = {27 0) - PO} + 27 0) - (00

—Z—gc‘é”*’”(m} +0(e)
YYO(Av B7 D) + O(E),

where
. r . T* . r
Yo(4, B, D) = {27 (0) = &7 (0) = 27 (0).
0

From the similar argument, we have

(2) (%
- T T * * *
&§27(0) = LU0 (40, (1), 0) = 9(@2(0).07))

®4(0)

0 - " .
— @2 * *T_l '(2)77“ T_l . (2)7T
/_oo <I>2(o){(cl +Cng)C0 +278<fu(<1>2,v )¢
r " ro. . R .
(@201 + Funl(@2,0) UG () + U (75) + 677057

!/ - ,
L @20 (V3D () + VIO (35) + 606" s

Here we note that

0 0
/ bo{Pds = B2(0)¢7(0) — / bo¢s? " ds,

— 00 —00

0
| agu(@a )i ds = g@2(0). 0 (0)

—00

1 ° * * r
+C_*/ Q(CI)272) )fU(QDQ,v ) 62)’ ds.
0 J—o0
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Also, gzbgz)’r satisfies

cee 2 T % . e % . T
T — DT 4 £ (@9,07)

T* T* . .
= <Cl +COT*> q)g 2—1]’”((1)2,21 )(1)2
0 To

— Fun(®@2, )€U (1) + UP (1) + 627 )y
— Ful(@2, 0 U (7)) = Funl @2, 0") (VP (1) + VP (73)
FP )y — £o(@a, ) (V) (1) + 0P,

/
Multiplying this by Céz)’w, integrating it on (—o0,0) and using 631/'0(2) (5) +
« 7(2),r *
gty = g9(P2,v%), we get

L) (@), P2(0)
B 0)—-B 0)=
4070 - B 02
0 *
T * T
= /_OO C(g% {<C1 ‘1‘007_—%)@2 _2_fu Dy, v*) Dy

— Fun(®@2,0") (U (7 >+Uf’<o>+¢>1 )by — fu( @, v U (1)

ol ®2,0°) (V2 (1) + VI (75) 40 Vb (@0, 07)g(@2,0) .
0

Noting

/ (O £, (@, 07)ds

and using the relations above, we get

Dy oy I ) 0) = g(@2(0)0) (LT Lo
&0 = o) 0 (d+a) w0
D8 @20.0) | pd(O0)  pda(0)dr” (0)
@(0) @(0) (92(0))
L $(0) oy o
Bl ()

Next we calculate dg’) (0).

@ [ P (3 (3)
Cl (0) - /0 (132(0)( +gu((1)27 )0
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+ Fun( @3, 0% (sUSY (0) + U (0) + 6
+ Fun (@2, %) (VD (0) + VP (0) + 4§ )¢ ) ds.

Here we note that

/ by ds = —dy(0)¢P(0) — / bycPds,
0 0

/O‘I’zgu(%w s = —g(®2(0), v ng” (0)+ — /09(<I>2,v ) o (@2, 0°)¢ ds.
0

Here we note

39— 26 4 fu(@s, ")
= ciba— Fuul(@2,0) (VY (0) + U (0) + 0% )b — (@, o) TG (0)
~ Fun(®@2, )€V (0) + VD (0) 440Dy — £ (@2, ) (VD (0) 13 P).

Multiplying this by (0(3), integrating it on (0, c0) and using CSVO(S)/(O) +c§¢83)

= g(Pg,v*), we get

i) :3) 1y 22(0)
5?0+ 5 01340

o0 .. / .
- /0 G (e = fuu(®2,07) (sUg" (0) + U (0) + 7)o

— Ful@2, )T (0) = Fun( @3, 0") (VP (0) + VP (0) + 4§ s

1
_C_*fv(<1>27 U*)g(Cbg, U*)}dS.
0

Using these relations, we obtain

(3) 7(3) 2 o) 1(3)
13 0) = —erc®(0) — ,) 1o (0) 0) 5 22(00¢,"(0)
177(0) = 1¢o 7 (0) — g(P2(0), )ég(O) +B£2(0) B (<I>2(01))2
o A3)
— v* 3’ s.
/0 oy (o0 0

Moreover, by noting

®2(0) _ [~ 3 .
B(I)z(()) —/0 CO fu(q)%v )dC7
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we get

0) = —eic?) - 1T

WO 80070 5 90 oy

+B - .
P5(0) (92(0))? (92(0))2
Thus
Yb(A,B,D)
@ 9 (v7),0%) = g(®2(0), %) LT
—QOQ(TO) * 3(0) 2 —B(Cl‘*‘CoT—%)
@ 9(@2(0),07) A (0) L 85(0)657(0)
w00 TP e P @0
g 0 ey o 1 g @ 0(@20).0) | 87(0)
G () = [ =Bl = O o= + B
o 0800) L 82000 ey 1 T . $200)
Bamor  Pamop Ol -Bs(-ar50)
@ 9 (), 07) —g(P2(0),0) @) 0y (3) oy 9(D2(0), %)
= Q. (%) %0 (1" (0) =" ) == T
o RN .
1(0) L @2(0)8777(0) L @2(0) () o
50 @op  C@op
A0 805870 $(0) U(gy(o)] i $3(0)
$5(0) (@2(0))? (@2(0))2 " 75 $5(0)

Furthermore, by noting

537 0) — ¢ (0) — 222 8, (0) = 0,

1 7_0
7 0) 40 t7) = Tt - U5 (0) - 67 0) =0
we obtain
_ (2)/_x g(h+(v*),v*)—g(q>2(0),v*)
YE)(A’B’D) - Qo (7_0) @2(0)
— (" (0) nég)(o))%. (4.13)
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Thirdly, we calculate Z(A, B, D;e¢).

Z(A,B,Die) = QP (75) + 5" (0) — i (0) + O(e)
= ZO(A7 B, D) + 0(6)7

where

Zo(A, B, D) = Q) (v5) + " (0) — ¥ (0).

Easy calculations give us

e (2) 1,2 (2 v,(2)
(2)(7_*) = (D- ()1 1 [ foUp” s Vo™ )gu(Uy™, Vo)
= o (0)) exp { =
0o 0 {CO 0 ( fu(UéQ), 0(2))

—QU(U(2), 0(2))>da;},

B 0 e_casfv(®27v*)d)2

(2),r
no o (0) = —— ds,
0 ¢y J-o ®49(0)
B [ _ . fo(®g,v*)®
7783)(0) = — e—coswd&
o Jo $,(0)
Therefore

| [T f U(2)7 (2) Ou U(2),V(2)
Zo(A,B,D) = (D—nff)’l(o))exp{—/ ( oo <3> (<2> )
0 fu(UO 7VO )

B [® _ . f,(Po,v*)d
_/ e—cosf(‘2v) 2d8.

(2) /(2
—g,(Uy~", V, dr ¢ — —
( 0 0 )) } €y J— (1)2 (0)

From the equations

(4.14)

we obtain

A > . o
Dt — 1@ :_/ e (D1, 0)——ds, B* =0.
0= ) f(®L005 )

Also, (AI3]) implies that

Yo(A, B*, D*) = 0.
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Now we apply the implicit function theorem to the equations

X(A7B7D;€) = 07
Z(A, B, D;e) = 0.

Then, for any constant A, there exist

B=B(g;A)  (B*=B(0;A)),
D= D(g;A)  (D* = D(0; A)),

such that
X(A,B(g;A),D(g; A);e) =0,
Z(A,B(g; A), D(e; A);e) = 0.

Since the adjoint equation must have a bounded solution that is unique (up

to multiplications by constants), the equality
Y(A, B(e; A), D(g; A);e) = 0

must automatically hold. Thus the proof is complete.
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Appendix

In Appendix, we shall show Theorems 3 and 4.

First we show Theorem 3. Putting £ = z/¢, we set

u(&ie,c1) = po(§)+ed1(§5e1)+eR(Ee,c1),  v(€se,cr) = eo(§)+eS (&, ).
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Substituting these into ([B.6]), we put

(o + ed1 +eR) — é(cé +ec1)(po + ed1 + €R)
—i—éf((;ﬁo +ep1 + R, etpg + £S5),

To(t;e,c1) = (¢4 ec1)(S + o) — g(¢o + €p1 + eR, 3 + €8S)

1
Tl(t;e,cl) = E

and consider the boundary conditions

Here we put t = (R, S) and T'(t;¢,c1) = (T1,T3) for simplicity of notations.
Then T'(t;e,c1) is a continuous mapping from X, x (0,00) x As to Y}, and
continuously differentiable with respect to ¢, where X, and As were given in
Section 3.2, and Y, = Xg X XS.

Now we outline the proof of Theorem 3. From Lemma 1 given below,

we have the invertibility of T3(0;¢,¢1) and set

F(ta 6701) = T(t7€7 Cl) - T(Oa 6701) - E((LE, Cl)t7
G(t;e,c1) = T; 1(0;6,¢1)[T (05, ¢1) + F(t;6,¢1)).

Then G : B,(0) = B,(0) is a contraction map with respect to ¢, where B, (0)
is a closed ball in X, with a radius v > 0 and a center at 0 for a small v > 0.

Indeed, if ¢ is sufficiently small,
1
IG(tose,c1)llx, < 2Ke, [|G(tise,c1) = Gltzie, 1), < 5t —t2]lx,

for any ||¢;]|x, <7 fori=0,1,2, ¢; € As, where K > 0 is a constant inde-
pendent of ¢, given in Lemma 1. Therefore G(¢;¢,¢1) = t, namely, T'(t;¢,¢1)
has a unique solution t(e, ;) in B4 (0) for small € > 0 by contraction map-
ping theorem. In the following lemma, we shall use | - |[x,, a norm for X,
defined by [t]|x, = [ Rllxz + [|S]x2 for t = (R, S).

We follow the argument above and show Theorem 3. At first, we com-

pute the Fréchet derivative of T7 and Ty with respect to ¢ and have

Ti4(0;¢, ¢1)[R, S]|= R~ (cj+ec1) R+ fu(po+edpr, e0) R+ fo(do + £b1, )5,
T5¢(0;¢,¢1)[R, S]= (¢} +€cl)5—€gu(¢o+5¢1, ety)R—egy(do+ep1,ebp)S.
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We see the invertibility of 7;(0;¢,¢1) by the next lemma.

Lemma 1. T3(0;e,¢1) : X — Y is invertible. Moreover, there is a con-
stant K > 0 independent of € > 0 such that |T; 1 (0;¢,¢1)|| < K uniformly

in c1 € Ay and small € > 0, where || - || represents the usual operator norm.

Proof. Since ||T3(0;0, ¢1) —T(0; ¢, ¢1)| is small, it is sufficient to see that
T:(0;0, c1) is invertible. Set T3(0;0,¢1)[R,S] = 0. Then We have

R~ iR+ fu(¢0,0)R + fu(¢0,0)S =0,
S = 0.

The second equation and boundary condition imply that S = 0. Any solution
of the first equation must be a multiplicity of ®; so that R = 0 because
®; > 0 and we impose the boundary condition of R(0) = 0. Hence T3(0;0, ¢;)

is one-to-one. Thus it is clear that T;(0;0,¢1) is onto. O
The following lemma is obvious from the definition of 7.

Lemma 2. Fiz § > 0 independent of ¢ and c1. Then, |T(0;¢,c1)|x, =
O(e) uniformly in ¢y € As as e — 0.

Finally, we obtain the following lemma, which complete the proof of
Theorem 3.

Lemma 3. Fix § > 0. Then, there exists g > 0 such that the equation
T(t;e,c1) =0

has a unique solution t(e,c1) € By(0) for any ¢ € (0,e9) and c¢1 € As,
Moreover,

[t(e; e)llx, = O(e)

uniformly in c¢1 € As as € — 0.

Next we prove Theorem 4. We denote 0'(y) = 6(y/7;) and 0"(y) =
6((1 —y)/75). Substituting these into ([BI0), we get

Ty (t;e,c1,11)
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— Uy +<Us +0' (6 + 6} ) + 0" (& +67) + R + bl (Vo) Sy

(5ot (1422 ) (U +2Us +0' (6 +01) 407 (05 + 200
0

1 2
+eR + eh!, (Vo)S}y + B (1 + 6%) F(Uo + Uy + 04 (dh + )
0

07 (¢ + %) + R + eh!, (Vo) S, Vo + eV + 0! (1} 4 vt
+e6" (5 + e) + &S +26' (S (0) — e¢41(0))),
Tg(t'a? 61,7’1)
_ ! ~(c5 +ee){Vo+ Vi + 6" (vh + 61[)1) +e6” (U + eyf)

#25 4 (SV0) — kO~ £ (142 ) ot + <03
0
+0L(dh + ed!) + 07 (¢h + edh) + eR 4 el (Vo) S, Vo + Vi

+e0' (4 + ey) + 207 (f + v) + 25 + 6 (S1(0) — ¢4 (0)))
with the boundary conditions
R(0) = R(my) = S(0) = 0.

Here we put t = (R, S) and T' = (T3, T3) for simplicity. We regard T'(¢; ¢, ¢1,71)
as an operator from X, x (0,00) x Z5 to Yz, where X, and =5 are given in
Section 3.3, and Y. = C(0,73) x C(0,7¢) and

1
c2.7) = {e e C'0,7) | Igllcs = Y max
i—0 [077—0}

()

We prove Theorem 4 by the same argument as in the proof of Theorem
3. We first show the invertibility of 73(0;¢,c1,71).

<oc)

Lemma 4. Fiz § > 0, and let o« — h(0) and B — hy(v*) be sufficiently
small and fized. Then there exists a constant g > 0 such that T3 (0;e,¢1,71) :
X: — Y. is invertible for any € € (0,e0) and (c1,71) € E5. Also, there exists

a constant M > 0 independent of €,c1 and 11 such that

175 (058, e1,m) || < M.
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We divide T;(0; ¢, ¢1,71) into two parts such as
Tt(0;€, 6177—1) =L+ Kv

where L is a main part of T3(0;¢, ¢y, 1) defined by

I R _ LR —ecjh! (Vp)S'
S —guR LQS

and K is a small part of 73(0;¢, ¢, ) and satisfies
1K < e + ] + |65)-
The differential operators L; and Lo are defined by
LiR=¢*R"—eciR' + fuR, L2S=c}S" — (9uh'. (Vo) + g0)S
and fy, gu, gy are defined by

fu= fu(Uo + 0'dh + 0767, Vo),
Gu = gu(UO + 9l¢0 + 9T¢07 ‘/0)7
9o = gu(Uo + 0'¢0 + 0", Vo).

If both o« — hy(0) and S — hy(v*) are small, we know that ||K]|| is small
for small € > 0. From the above calculations, it suffices to show that L is
invertible and ||L~!|| < K. We first consider L.

Proposition 1. Li(g,c1,m1) : C2(0,75) — C(0,75) is invertible. More-

over, there is a constant M > 0 independent of € such that ||L1_1|| <M.

Proof. Note that
fu<O (5.1)

in [0, 75] because a — hy(0) and S — hy(v*) are small. Suppose L1 R = 0.
Multiplying R to the both sides of L1 R = 0 and integrating it by parts, we
obtain

7'6* 7'6‘
52/0 |R’|2dy—/0 FulRI2dy =0,

which implies that R = 0. From the Fredholm’s alternative, L; is invertible.
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Next we assume that for ' € C., there is a solution of 1R = F in

R € C2. If R has a maximum at 7 € (0,7]), we have
fuR>F

because of R” < 0 and R’ =0 at 7. From (5.1)), R < C||F||1~ for a constant
C > 0 independent of . Similarly, if R has a minimum in 7 € (0, 7),
R > —C||F||r> holds. Therefore we have |R| < C||F||p~ in [0,75]. From

the same argument and using L1 R = F', we prove
eR| < C||F|re, [e*R"| < O F[1=.
This completes the proof. O

Proposition 2. Ls(e,c1,7) : Cia(O,To) — C0,70) is invertible.
Moreover, there is a constant M > 0 independent of € such that HL2_1H <M.

Proof. The invertibility of Ly is obvious. We suppose that for h € C,
there is a solution S € Cig such that

c5S" = (guh (Vo) + g0)S = h.

This equation can be written as an integral form of

s) = [ e { [ (outt,(0) + aas} s

0
Hence

1S(y)] < Clh]| Lo
Similarly, we have
1S ()| < CllhllLe=,  [e8"(y)] < Cllhlcs-
This completes the proof. O

From the above two propositions, we can prove Lemma 4.

Proof. Consider L[R,S] = (F,G) for any given F' € C(0,7;) and G €
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C(0,7g). Then,

e?R" —ectR + fuR —ecih, (Vo)S' = F,
oS = (guh’y (Vo) + 90)S — gult = G.

From the second equation,
1
§' = = {{gul. (Vo) + 90)S + 9uR + G}
0

Substituting this into the first equation, we have
ehl, (Vo)
*

Co

LR~ {(9uh’y (Vo) + 90)S + guR + G} = F.
Since L is invertible,
~ eh!. (Vg
Li=1L - #Qu
o
is so. We solve the first equation with respect to R, having

~ B, (V¢
R L [P G 06 + 0.5 + Gy + 7
0

We substitute this into the second equation. The result equation is

- - h(V ~ K. (V
28— gL R gt () + )5 = G+ it (6 ).
0 0

Since Lo is invertible, this equation can be solved and the solution (R, S)
satisfies

[Rllcz0,m5) < CUF Nz~ + 1Gller o))

HSHciE(o;g) < C([|F e + 1Gllcx0,7))-

From Lemma 4, we know that T;(0; &, 1, 71) is invertible. The following

lemma is obvious from the definition of 7.

Lemma 5. Fiz § > 0, and let o« — h(0) and B — hy(v*) be sufficiently
small and fized. Then, ||T'(0;e,c1,71)|ly. = o(1) uniformly in (c1,71) € Es

as € — 0.
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The proof of this lemma contains only simple calculations and shall be

given below.

Thus we obtain the following lemma by the same argument as in the

proof of Lemma 3.

Lemma 6. Fiz § > 0, and let o« — h(0) and B — hy(v*) be sufficiently

small and fixed. Then, there exists €y > 0 such that , the equation
T(t, €, 0177—1) =0

has a unique solution t(e,ci,m) € X for any ¢ € (0,e0) and (¢1,71) € Es.

Moreover,
(e, c1,71)l[x. = o(1)
uniformly in (c1,71) € E5 as € — 0.
We prove Lemma 5.

Proof. We first estimate 71(0; ¢, ¢1,71). Since f is continuously differen-

tiable,

T1(0;¢€,¢1,71)
1 . . N . . T W\
= E(QSO —cppo) — coUy + ¢1 — cop1 — | a1 + FCO o

0

1
+ —f(Un + U1 + 60 + 261, Vo + €Vi + etn) + 22 F(Uo + 6o, Vo) + O(e)
0

iny € [0,7¢/4]. Recall that § = 1 and " = 0 in y € [0,75/4]. The

superscript “ ! ”

(Uo + ¢0, Vo) as

is omitted for notational convenience. We expand f around

f(Uo +eUr + ¢o + €1, Vo + Vi + evbo)
= f(Uo+¢0, Vo) +e fu(Uo+ o, Vo) (Ui +é1) +e fo (Uo+ o, Vo) (Vi+10) +o(e).
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From the equations (3.14]) and (3.16]),

T1(05¢,¢1,71)

= (1 22 {0+ 60, Va) — F(U(0) + 00,0}
0

+{fo(Uo+¢0, Vo) — fu(Uo, Vo) }Vi+{fu(Uo(0)+¢o, 0) — f,(Up(0), 0) } V1 (0)
+{fo(Uo(0)+ 0, 0)— fu(Un(0)+ 0, 0) }tho +{ fu(Uo+ o, Vo)

— fu(Uo, Vo) }U1 + { fu(Uo + 0, Vo)Vo — fu(Uo(0) + ¢0,0)Vo(0)}é1

— {fu(Uo(0) + ¢0,0) — fu(Uo(0), Vo) }U1(0) + O(e).

We estimate each terms of the right-hand side of the above equality. Ex-
panding f(Uy + ¢o, Vo) around Uy as

ol
ﬂ%+m%ﬁﬁw@%m+é<%—mwwwam@

we have

f(Uo + ¢0, Vo) — f(Uo(0) + ¢0, Vo) = (fu(Uo, Vo) — fu(Uo(0),0))po

%o
+ /0 (¢0 - t)(fuu(UO +1, VO) - fuu(UO(O) +1, 0))dt'

If a—h, (0) is small, there is sufficiently small o > 0 such that |¢g| < oe ¥/
for a constant x > 0 independent of . Moreover, there is a constant C' > 0
independent of ¢ such that | f,,(Uy, Vo) — fu(Up(0),0)| < Cy. Hence we readily
see that

1 Ry
g\fu(UmVO) — fu(Un(0),0)||o] < Ca%e : < Co.
Similarly, it holds that

o
1/O |60 — t]] fuu(Uo + t, Vo) — fuu(Uo(0) +t,0)|dt < Co.

€

We readily see that T1(0;¢,¢1,71) = O(e) in y € [75/4,75/2] by using
(BII), (3I2) and the similar arguments above. Additionally, it is shown
that 71(0;e,¢1,75) is small in y € [75/2, 7] from the same argument as in

y €10,75/2].

Next we claim that T5(0; e, ¢, 71) is small in 01275. Since g is continuously
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differentiable,

1 * ' * h
T2(0; g, 01,7'1) = ECO(VOI + 7[)0) + (Clvol + con’ + 611[)0)
1
- EQ(UO + U + ¢o + €1, Vo + Vi + o)

1
- FQ(UO + ¢0, Vo) + O(e),
0
iny € (0,75 /4] where “!” of functions is omitted for notational convenience.
From the similar argument to the above, it is easy to see that |T5(0; ¢, c1,71)|

is small for sufficiently small € > 0. On the other hand,

1 . . .
e(Ty(0;e,¢1,m)) = CSW'+E(CS+EC1)¢0+CS¢1—gu(Uo-Hﬁo, Vo) (Ug+¢1)
1 .
- - <1+e%> gu(Uo+eUr+do+epr, Vo+eVi+eo)do

0

— 9u(Uo + ¢0, Vo) (Vg + o) + O(e).

Differentiating the both sides of (B11]), (3:12]), (314]) and (BI6]), we have
e(Tx(0;¢,c1,71))
= {gu(U0(0) + 90, 0) — (U + 60, Vo) }do
+ {Guu(Uo(0) + ¢0,0)(U1(0) + 61) — guu(Uo + b0, Vo) (U1 + 1)} o
+ {9us (U0(0) + 0, 0)(V1(0) + o) — guu(Uo + do, Vo) (Vi + 1) Yo
+ Z—éi{guwo(m +60,0) — gu(Uo + 60, Vo) } o
+ {90 (Uo(0) + ¢0,0) — gu(Uo + o, Vo) o
+ {gu(Uo(0) + ¢0,0) — gu(Uo + 0, Vo) }o1
+ {gu(U07 VO) - gu(UO + ¢07 VE))}U(S + {QU(U07 VO) - gv(UO + ¢07 VE))}VOI
+ {9u (U0 (0) + ¢0,0) — gu(Un(0), V5(0))}Uq(0)
+ {9v(Uo(0) + ¢0,0) — gu(Un(0), V5(0))} V5 (0)
+ {9uu(Uo(0) + 60, 0)U (0)gus (Un (0) + 0, 0)V§ (0)} o + Oe).

From the similar argument to the above, it is easy to see that e(T2(0;&,¢1,71))

is small for sufficiently small € > 0. This completes the proof. O
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