
Bulletin of the Institute of Mathematics
Academia Sinica (New Series)
Vol. 3 (2008), No. 4, pp. 585-601

A NESTED SEQUENCE OF TRANSITIONS FOR

COLLISION DYNAMICS IN DISSIPATIVE SYSTEMS

BY

Masaaki Yadome, Kei-Ichi Ueda, Takashi Teramoto,

Masaharu Nagayama and Yasumasa Nishiura

Dedicated to Professor Masayasu Mimura on his 65th birthday

Abstract

We study the dynamics of head-on collisions of traveling

pulses for a three-component reaction diffusion system. A variety

of outputs with large deformation such as annihilation, repulsion,

and fusion are observed after collision, however it remains open

for a long time that what kind of mathematical structure controls

the input-output relation at collision point. A series of works

[18, 19, 20, 24] clarify some aspect of scattering dynamics that a

network of unstable patterns called scattors forms a backbone of

the traffic control of input-output relations. Namely the unsta-

ble manifolds of those scattors constitute a network and compli-

cated deformation processes and their transitions are controlled

by rewiring those connections depending on parameters. In this

article, by employing a three-component reaction diffusion sys-

tem, we numerically show that there occurs a nested sequence of

outputs among annihilation, repulsion, and fusion as parameters

are varied in an appropriate way. It turns out that there exists

a time-periodic unstable solution that plays a role of scattor and

two heteroclinic connections are detected between the unstable

periodic solution and other unstable stationary scattors which are

responsible for the nested output of periodic type.
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1. Introduction

Localized patterns such as traveling pulses and spots are the representa-

tive patterns in reaction-diffusion systems and are observed experimentally

and numerically, for instance, in gas-discharge systems, CO oxidation pro-

cesses, and various chemical reactions ([6, 11, 14, 17]). One of the interesting

phenomena is the transient dynamics through intrinsic instability, such as the

creation and destruction of localized patterns, for example, in self-replicating

patterns [12, 21], spatio-temporal chaos [4, 22], localized spots [3, 5, 23], and

so on. It is known that intrinsic instabilities and strong interactions between

these patterns cause the emergence of more complex and dynamic patterns,

for instance, self-similar patterns [10] and complex patterns [15]. The dy-

namics of interaction between two localized patterns gives a fundamental

information for the understanding of such transient dynamics.

In recent years, several rigorous approaches to interaction dynamics have

been proposed. A rigorous method for weakly interacting pulses have been

proposed [7, 8], and is applied to the collision dynamics between two slowly

propagating traveling pulses and allows us to reduce to finite dimensional

ODEs. A challenge is to understand the real strong interaction between

localized patterns with large deformation, which is still uncultivated area

except for a scalar bistable reaction-diffusion equation for colliding fronts

[16, 25] in which annihilation process was clarified by using comparison ar-

guments. A variety of outputs are produced after strong interaction includ-

ing fusion and repulsion for a large class of reaction diffusion systems. In

order to understand strong interaction dynamics, a computer-aided analysis

is quite useful. Argentina et al. predicted that, in some dissipative systems,

output patterns after head-on collisions between two localized patterns are

described by the global behavior of the unstable manifold of the separator

[1, 2]. More systematically Nishiura et al. showed that a network consist-

ing of unstable solutions and their unstable manifolds control the collision

dynamics; the solution orbit approaches an unstable solution called scattor,

and the change of final output is governed by the basin-switching of the or-

bit as parameters vary [18, 19, 20, 24]. These observations indicate that the

final output after a head-on collision is controlled by the global behavior of

the unstable manifolds of the scattors.
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In this article, we consider the output patterns after a symmetric head-

on collision in the following three-component reaction diffusion system:

ut = Duuxx −
uv2

1 + k3w
+ k2(1− u),

τvt = Dvvxx +
uv2

1 + k3w
− (k1 + k2)v,

θwt = Dwwxx + k4(v − w),

t ≥ 0, x ∈ [−L,L], (1)

where u = u(t, x), v = v(t, x), w = w(t, x),Du = 5.0 × 10−5,Dv = 3.0 ×

10−5,Dw = 4.0× 10−5, k2 = 0.032, k3 = 1.0, k4 = 0.01, θ = 5.0, and L = 1.0.

One of the interesting phenomena in (1) is the existence of nested transition

sequences of output patterns after head-on collisions. As shown in Fig. 1,

the annihilation and fusion patterns appear densely, and the output pattern

changes sensitively depending on the parameter values near the boundary

of the repulsion region. Furthermore, we can find small repulsion regions

between the annihilation and fusion regions. The purpose of this article is

to clarify how such output pattern sequences appear and predict the exact

sequence.

In [20], by performing careful numerical experiments with respect to

the system (1), it has been clarified that the orbit comes sufficiently close

to the heteroclinic orbit connecting two scattors by taking parameter values

close to a triple junction where the boundaries of the annihilation, repulsion,

and fusion regions are in contact. That is, the solution orbits after head-on

collisions are sorted by more than two scattors near the triple junction. How-

ever, in their numerical results, no nested sequences including annihilation

and fusion regions have been observed.

In this article, in order to clarify how nested output sequences and small

repulsion regions appear, we numerically showed that there exist three un-

stable solutions (one periodic solution and two stationary solutions), and the

heteroclinic orbits connecting them are responsible for the sequence.

This article is organized as follows. In Section 2, we show the phase

diagrams of the output patterns after head-on collisions, and find the pa-

rameters associated with the onset of the nested sequence. In Section 3,

we numerically detect a scattor near the onset of a nested sequence, and
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consider how the output sequence appears by investigating the dynamical

behavior of the unstable manifolds emanating from the scattor.

2. Phase Diagram and Bifurcation Diagram

The system in (1) is the same as that in the Gray-Scott model [9] if w is

ignored, i.e., for k3 = 0. The variable w is an inhibitor of the production of

u. In this article, we consider the symmetric head-on collision between two

traveling pulses. Therefore, in the numerical simulation, we investigate the

output patterns after collision with a Neumann (no-flux) wall. The initial

data is taken to be close to a stable traveling pulse solution, and k1 and τ

are taken as control parameters.

The phase diagram of the outputs is shown in Fig. 1. Taking τ = 1.21

and increasing k1 from the repulsion region of the leftmost side, the nested

sequence of the fusion and annihilation patterns can be observed as shown

in Fig. 1. The width of the stripes increases as k1 increases. Investigating

the sequence more carefully, two small repulsion regions are observed (R(11)

and R(13) in Fig. 1(c)). That is, as precisely as possible by using a numerical

method, the sequence changes as R(1)→A(2)→F(3)→A(4)→F(5)→A(6)→

F(7)→A(8)→F(9)→A(10)→R(11) →F(12)→R(13)→A(14), where A, R, and

F are abbreviations of annihilation, repulsion, and fusion, respectively.

It is convenient to show the global bifurcation diagram of pulse solution

in order to consider the origin of the transitions of output patterns (see

[18]). Figure 2 shows the global bifurcation diagram of a half-pulse solution

located at a boundary wall for τ = 1.21. The branches of the periodic

solution are detected by using the shooting method [13]. We note that the

existence region of the branch in the bifurcation diagram is equivalent to a

symmetric single pulse solution when the domain size is twice as large as that

of this system. Bifurcation points of asymmetric instabilities of single-pulse

solutions, such as drift instability, are depressed for half-pulse solutions, and

therefore no branches of the traveling pulse and the traveling breathers exist

in the diagram. The upper branch in Fig. 2, corresponding to a stationary

pulse solution, bifurcates from the stationary steady state, and the amplitude

of the pulse increases as k1 increases. The pulse solution generates a saddle-

node (SN) bifurcation at k1 ≈ 0.057555 (SN1) and a second SN bifurcation

at k1 ≈ 0.051059(SN2). After SN2, the depth of the dimple of the pulse
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Figure 1. (a) Phase diagram after a symmetric head-on collision. Red: Repulsion.

Green: Annihilation. Blue: Fusion. Yellow: Stable standing pulse. Light blue:

Splitting. The solid line indicates the pitchfork bifurcation line. The traveling pulse

solution bifurcates subcritically from stable standing pulse solution and recovers

its stability by saddle-node bifurcation. Stable traveling pulse solutions exist in

red, green, and blue regions. (b) The magnified figure of the dashed box in (a).

(c) A schematic figure of the phase diagram for τ = 1.21. A nested sequence of

annihilation and fusion is observed near the boundary of R(1). Small repulsion

regions (R(11) and R(13)) are found between A(10) and F(12), and F(12) and

A(14), respectively.
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Figure 2. Bifurcation diagram of a half-pulse solution for τ = 1.21. The solid (dot-

ted) line indicates stable (unstable) stationary solutions, and the gray line indicates

periodic solutions. Also, H and SNj (j = 1, 2, 3) indicate Hopf and saddle-node

bifurcation points, respectively. Furthermore, the number in the diagram denotes

the number of unstable eigenvalues, and the vertical dashed line is k1 ≈ 0.052516,

where nested sequence appears.

increases as k1 increases. The amplitude of the pulse decreases after the

SN bifurcation k1 ≈ 0.053969 (SN3). We refer to the stationary single pulse

solution as SSGP (small single-horn pulse) before SN1, as LSGP (large single-
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horn pulse) between SN1 and SN2, and as LTWP (large twin-horn pulse)

between SN2 and SN3. Since the profile is independent of time constant τ ,

we consistently use the same notations for any τ in this article.

3. Global Connections between Scattors

It has been numerically shown that an unstable solution referred to as

scattor plays the role of a traffic controller of the solution orbit near the

transition point ([18, 19, 20]). That is, the final destination of the solution is

characterized by the behavior of the unstable manifold emanating from the

scattor. In this section, in order to clarify the mechanism of emergence of the

nested sequences A and F, as well as that of the small repulsion regions which

are observed between A(10) and A(14), we numerically find the scattors and

investigate how the solution orbits are sorted around the scattors.

First, we consider how the nested sequence emerges from the boundary

of the right side of R(1). In order to find a scattor responsible for the

emergence of a nested sequence, we take the parameter near the boundary

and investigate the scattering dynamics near the boundary, which is shown

in Fig. 3. It is numerically confirmed that the solution orbit comes closer

and closer to the periodic solution as k1 is taken closer to the boundary.

The periodic solution, for example, P (t, x), coincides with the one which

emanates from the Hopf bifurcation point of LTWP (Fig. 2). The unstable

oscillatory standing pulse P has one unstable mode, i.e., the monodromy

matrix of P has a Floquet multiplier λ1 ≈ 50.95 > 1. The profile of the

snapshot of P and that of the eigenfunction Φ(x) corresponding to λ1 is

shown in Fig. 4(a). Next, we add a small perturbation to scattor P and

observe the output patterns and their phase dependency. That is, the initial

data P̃ (x) is taken as follows:

P̃ (x) = P (0, x) + ǫ0Φ(x), (2)

where ǫ0 ∈ R takes a small value. Figure 4 shows the output pattern se-

quence when ǫ0 is varied, where a nested sequence of fusion or annihilation

is observed for ǫ0 > 0, and repulsion is observed for ǫ0 < 0. This result

indicates that the determination of the solution is strongly sensitive with

respect to changes, depending on its phase of oscillation when the solution
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Figure 3. Bird’s-eye view of the pulse dynamics near the boundary of R(1). The

solution orbit comes closer and closer to a periodic solution as k1 is taken closer to

the boundary of R(1). Only the v-component is displayed.

approaches P . Furthermore, since an unstable manifold emanating from

P leaves by winding around it, it is found that the output pattern changes

periodically by selecting larger values for ǫ0 (Fig. 5), and the winding number

around P before the solution goes to the final destination decreases as the

initial data is taken far from P , i.e., when ǫ0 is large. It should be noted

that the winding number also decreases as k1 is taken far from the boundary

of R(1) (Fig. 6), which suggests that the origin of the nested sequence is

dependent on the flows of the unstable manifold.
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Figure 4. (a) A snapshot of P and the eigenfunction Φ corresponding to λ1. (b)

A schematic phase diagram of the output patterns for small perturbations of Φ to

P . (c)(d) [(e)(f)] Dynamic behavior when a small perturbation is applied to P near

the point marking the transition from F to R [from R to A] in (b). It is observed

that the solution orbit approaches LTWP (large twin-horn pulse) [SSGP (small

single-horn pulse)] before it arrives at the final destination.

Next, we consider how small repulsion regions appear between A(10)

and F(12) and between F(12) and A(14). Hereafter, we focus exclusively on

the transition from F(12) to A(14) since the transition from A(10) to F(12)

can be described by using parallel arguments.

Now, we observe the scattering dynamics near the transition points be-

tween R(13) and A(14) and between F(12) and R(13). By taking the pa-

rameter value close to the transition point between R(13) and A(14), it is

observed that the solution orbit approaches P and then SSGP after colliding

with the boundary wall. Also, the solution orbit approaches P and then
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Figure 5. A schematic figure of the orbital behavior of an unstable manifold

corresponding to the scattor P . Since an unstable manifold emanating from the

scattor leaves it by winding around it, the output changes periodically by changing

the initial position transversally to the flow of the unstable manifold. When the

initial data is taken by varying ǫ0, the output pattern changes periodically.
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Figure 6. Time series of the solution orbit near R(1). Since the solution orbit

comes closer to P by taking k1 closer to the boundary of R(1), the winding number

around P decreases as k1 goes far from the boundary. The black, dark gray, and

gray lines show the time sequence when the parameter value is taken from region

A(4), A(6), and A(8), respectively.
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Figure 7. (a) [(b)] Pulse dynamics near the point marking the transition from

F(12) to R(13) [from R(13) to A(14)]. The solution orbit approaches P and LTWP

(large twin-horn pulse) [P and SSGP (small single-horn pulse)] after a collision.

LTWP when k1 is taken near the transition point between F(12) and R(13)

(Fig. 7). From these observations, we can predict that final destinations

change when the solution orbit crosses the separatrix (the stable manifold)

of SSGP and LTWP, and their unstable manifold are responsible for the final

destinations. Furthermore, we can predict the existence of two types of het-

eroclinic orbits, one connecting P and SSGP, and the other one connecting

P and LTWP.

We show that the destinations of the unstable manifolds of the SSGP

are in fact repulsion and annihilation. The unstable solution has one positive

eigenvalue λ1
1 ≈ 0.0519, and the profile of the eigenfunction φ1

1 is shown in

Fig. 8(a). The behavior of the unstable manifold corresponding to λ1
1 is

confirmed by adding a small perturbation to the unstable solution, i.e., the

initial data S̃SSGP is taken as follows:

S̃SSGP = SSSGP + ǫ1φ
1
1, (3)

where SSSGP is the SSGP for the transition point between R(13) and A(14),

and ǫ1 ∈ R has a small value. It is observed that, as shown in Fig. 8(b), the

outputs are annihilation and repulsion depending on the sign of ǫ1, i.e., the

destinations of the unstable manifold are repulsion and annihilation.

Similarly, we investigate the behavior of unstable manifolds correspond-

ing to the LTWP. The unstable solution has three unstable eigenvalues,

which consist of one positive real λ2
1
= 0.010 and one complex pair λ2

2
=



596 YADOME ET AL. [December

ε > 0
x

t

0.6 1
0

900

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0.6  0.65  0.7  0.75  0.8  0.85  0.9  0.95  1

u

v
w

L

S

w

x

t

0.6 1
0

900

-4

-3

-2

-1

 0

 1

 2

 3

 4

 5

 0.6  0.65  0.7  0.75  0.8  0.85  0.9  0.95  1 L

φ

u

v

w

u

ε < 01 1

1

SSGP

1

(a) (b)

Figure 8. (a) The respective profiles of SSSGP and φ1
1. (b) The output patterns

for a small perturbation of φ1 to SSSGP. Repulsion and annihilation is observed for

negative and positive ǫ1, respectively.

4.91 × 10−5 ± 0.016i. Since the real part of λ2
2 is much smaller than λ2

1,

we can ignore the unstable direction corresponding to λ2
2, and therefore we

investigate the output patterns by taking the initial data S̃LTWP as follows:

S̃LTWP = SLTWP + ǫ2φ
2
1, (4)

where SLTWP is the LTWP for the transition point between F(12) and R(13),

and ǫ2 ∈ R takes a small value and φ2
1
is an unstable eigenfunction corre-

sponding to λ2
1
. The profile of φ1

2
is shown in Fig. 9(a). Repulsion and fusion

dynamics is observed for positive and negative ǫ2, respectively. That is, the

output pattern is repulsion or fusion depending on which side of the unstable

manifold the solution orbit belongs to (Fig. 9(b)). From these experiments,

we find that small repulsion regions emerge when the solution orbit crosses

the stable manifold of SSGP or LTWP.

By performing similar numerical experiments, we can confirm that the

solution orbit approaches SSGP and LTWP near the transition point be-

tween A(10) and R(11) and that between R(11) and F(12), respectively.

Also, the output pattern changes when the orbit crosses the stable manifold

of SSGP or LTWP.



2008] A NESTED SEQUENCE OF TRANSITIONS FOR COLLISION DYNAMICS 597

(a) (b)

Figure 9. (a) The respective profiles of SLTWP and φ2
1. (b) The output patterns

for a small perturbation of φ2
1 to SLTWP. Fusion and annihilation is observed for

negative and positive ǫ2, respectively.

We show that the origin of the output pattern sequence A→R→F→R→A

is described by the global behavior of the unstable manifold of P . In this case,

small perturbations of Φ are applied again to P , and the output patterns are

carefully observed for ǫ0 ∈ [3.67× 10−5 , 3.68× 10−5], where two annihilation

regions and one fusion region are observed (Fig. 4). As shown in Fig. 4,

it is clear that two small repulsion regions exist between the annihilation

and fusion regions, i.e., the following transition sequence A→R→F→R→A

is observed by varying ǫ0 (see Fig. 10). Furthermore, the global behavior

near the points marking the transition from A to R (from R to A), and the

points marking the transition from R to F (from F to R) are qualitatively the

same as those shown in scattering dynamics (Fig. 7). Therefore, it has been

numerically confirmed that the sequence A→R→F→R→A shown in Fig. 1

is again observed by varying the position of the initial data continuously on

the unstable manifold, which indicates that P is a scattor responsible for the

transitions.

Finally, we predict the exact sequence near the boundary of R(1). In the

previous paragraph, we showed that small repulsion regions appear between

A and F. Also, as shown in Fig. 5, the region A and F appear periodically
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Figure 10. Flow chart of the solution orbits when the initial data is taken close

to P . The output pattern changes when the solution orbit crosses the stable man-

ifold of SSGP (small single-horn pulse) or LTWP (large twin-horn pulse), and two

heteroclinic orbits are found at the transition points.

and densely near R(1). These results strongly suggest that small repulsion

regions can be observed arbitrarily close to R(1), and infinite periodic se-

quence · · ·A→R→F→R→A→ · · · exists at the right side of R(1).

4. Summary

In this article, we observed nested output pattern sequences and small

repulsion regions between annihilation and fusion regions. We found that

the unstable oscillatory standing pulse P is a scattor which is responsible

for such transitions. Although the unstable dimension of P is one, three

types of output, namely annihilation, repulsion, and fusion, are observed as

determinations of unstable manifold corresponding to P . In other words,

the output patterns after a head-on collision become highly sensitive when

the solution orbit comes close to P . In fact, we found that the changes in
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the output patterns show high sensitivity toward the orbit, as indicated in

the sequence from A(10) to A(14).

As discussed in Section 3, it is expected that, when the scattor is a peri-

odic solution, periodic sequences exist densely near R(1), and small repulsion

regions exist between each two adjacent A and F regions , i.e., the sequence

· · ·A→ R→F→ R→ A→ · · · can be observed arbitrarily close to R(1). How-

ever, since the changes in the output patterns become more sensitive as k1

approaches R(1), we can find small repulsion regions only between A(10) and

A(14) due to the difficulties presented by the limited numerical precision.

More precise numerical experiments using multiple precision floating-point

numbers are needed in order to find such sequences in the neighborhood of

R(1).
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