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Abstract

We rigorously prove results on spiky patterns for the Gierer-Meinhardt sys-

tem [5] with a large number of jump discontinuities in the diffusion coefficient

of the inhibitor. Using numerical computations in combination with a Turing-

type instability analysis, this system has been investigated by Benson, Maini and

Sherratt [1], [3], [9].

We first review results on the case of two segments given in [25], concerning

one-spike steady states: the existence of interior spikes located away from the

jump discontinuity was established, along with a necessary condition for the

position of the spike, namely, the spike can be located in one-and-only-one of the

two subintervals separated by the jump discontinuity of the inhibitor diffusivity.

This localization principle for a spike does not hold for constant inhibitor

diffusivities.

Secondly, there also exist spikes whose distance from the jump discontinuity

is of the same order as its spatial extent. It turns out that, generically, there

either exist two different one-spike steady states near the jump discontinuity or

there is none.

In this paper, we prove a conjecture raised in [25]: We show that one of the

spikes is stable while the other is unstable, using an eigenfunction constructed

by outer and inner expansions. Moreover, since our argument involves only the

Received August 12, 2008.

AMS Subject Classification: Primary 35B35, 76E30; Secondary 35B40, 76E06.

Key words and phrases: Pattern Formation, discontinuous diffusion coefficients,
steady-states, stability.

525



526 WANG HUNG TSE, JUNCHENG WEI, AND MATTHIAS WINTER [December

two immediate segments around the jump discontinuity, the result holds for any

number of segments.

Next, we extend the interior spike results on the case of two segments (one

jump) to an arbitrary number of segments. By analyzing the derivatives of the

regular part of a Green’s function, we give a simple classification of interior

segments according to the signs at both ends of the segment: There exists a

stable spike, an unstable spike or there does not exist any spike in the segment

which is away from the jump discontinuities.

We also give explicit formulas of the solutions and conditions for existence

for the case of three segments, which has one interior segment.

Finally, we confirm our results by illustrating the long-term dynamical be-

havior of the system using numerical computations. We observe a moving spike

which converges to a stationary interior spike, a spike near a jump discontinuity

or a boundary spike.

1. Introduction

For systems with piecewise constant diffusion coefficients, Turing in-

stabilities have been computed numerically and investigated analytically by

Benson, Maini and Sherratt [1], [3], [9], and results on dispersion relations

and typical solution profiles have been obtained. In particular, the authors

showed that the spatial variation of diffusion coefficients may produce iso-

lated patterns and asymmetric spatially oscillating patterns which are not

seen in standard homogeneous Turing systems.

Biological applications of these effects include the anterior-posterior

asymmetry of skeletal elements in the limb and experimental results on dou-

ble anterior limbs [27], [9]. The fact that for asymmetric solutions different

peaks may have different amplitudes is a possible explanation for the com-

mon observation that digits vary in length.

We give a rigorous mathematical proof of the influence of discontinuous

diffusion coefficients on the qualitative and quantitative properties of spiky

patterns in a reaction-diffusion system.

In particular, we study the Gierer-Meinhardt system [5], which is given

by
{

at = ǫ2axx − a+ a2

h ,

τht = (D(x)hx)x − h+ a2.
(1.1)
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Note that h acts as an inhibitor to a, whereas a acts as an activator to both

a and h. This motivates the name activator-inhibitor system. In this paper,

we assume x ∈ (−1, 1), 0 < ǫ << 1 is a small diffusion constant, τ ≥ 0 is a

time relaxation constant, and

D(x) =















D1, −1 < x < x1,

Di, xi−1 < x < xi,

DN , xN−1 < x < 1,

(1.2)

where 0 < Di and Di 6= Di+1. Note that the inhibitor diffusivity D(x) has a

jump discontinuity at xi. We study the equation (1.1) on the interval (−1, 1)

with Neumann boundary conditions:

ax(−1) = ax(1) = 0, hx(−1) = hx(1) = 0. (1.3)

The matching conditions at xi are that O(x) hx is a continuous function at

x = xi.

We begin by reviewing results in [25], which corresponds to the case N =

2. It was established that there exists two types of spiky solutions to this

system: interior spikes, which has O(1) distance from the jump discontinuity

of the inhibitor diffusivity (there is only one jump), and spike near the jump,

which has O(ǫ) distance from the jump discontinuity.

For the interior-spike type solution, a precise condition for its existence

was found (Theorem 3.1). The condition also implies that the interior spike

can be located in one-and-only-one of the two subintervals. This establishes

a localization principle for the 1-D Gierer-Meinhardt system with a jump

in the inhibitor diffusivity. In contrast, with constant diffusivity, the interior

spike is always located in the center of the interval. So the presence of the

jump, in effect, “moves” the (unique) position away from the center into one

of the subintervals. Precise information about the (limit) location (as ǫ → 0)

is also given in Theorem 3.1.

For the second type of one-spike solutions, the spike having same order

in spatial extent as its distance from the jump discontinuity, it turns out that

either there exist two different one-spike solutions or there is none (Theorem

7). One question left open in [25] is the stability of these spikes. We are now

going to prove the stability behavior of these spikes. The result is that one of

the spikes is stable, the other unstable. The proof uses a construction of the
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eigenfunction involving inner and outer expansions. One will see that both

the existence and stability results depend on a parameter involving only the

two diffusivities and lengths of the immediate segments around the jump in

consideration. Therefore, our results for two segments extend easily to the

general case with an arbitrary number of segments.

After completing the arguments for the spike at the jump, we will re-

turn to interior spikes and show that the localization principle for interior

spikes also extends elegantly for general N (i.e 1-D bounded domain with N

segments, N − 1 jumps in the inhibitor diffusivity). We will derive a classifi-

cation of the interior segments which depends on the sign of the derivatives

of the diagonal of the regular part of Green’s function at both ends of the

segments. By the signs, we shall conclude that there exists a stable spike,

an unstable spike or there exists no spike in the segment.

We also study the case of three segments, the smallest N such that

there is an interior segment, in more detail. We derive explicit formulas for

these derivatives of the regular part of Green’s function and the closed form

conditions necessary for classification.

Finally, we mention some previous works on spiky steady states for the

Gierer-Meinhardt system with constant coefficients. Existence and stability

of spiky steady-states, for example, have been studied for 1-D in [8] and

their instabilities have been investigated in [19]. For 2-D the existence and

stability of multiple spikes has been investigated in [21], [22], [23].

The structure of the paper is as follows: In Section 2, we provide some

preliminaries. In Section 3, we review previous results in the two-segment

case from [25] of the paper. In Section 4, we briefly recall how construct and

analyze a spiky steady-state. In Section 5, we recall the main stability results

for interior spikes. In Section 6, we recall an outer and inner expansion which

is needed to analyze a spike near a jump and will be used in Section 7. In

Section 7, we present a new result: We study the small eigenvalues of a spike

near a jump. In Section 8, we prove results on the existence of interior spikes

for N segments. We give a classification of interior intervals into three cases:

Existence of stable interior spike, existence of an unstable interior spike, non-

existence of an interior spike. In Section 9, we investigate spikes near a jump

in the N segments case. We give a condition on existence which only uses

O(1) quantities and does not use quantities of the inner expansion which

are of O(ǫ). In Section 10, we confirm our analytical results by numerical
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computations. We also consider situations which are not analyzed in this

paper, such as multi-spike solutions.

2. Preliminaries

Before we state our main results in Section 3, we introduce some no-

tations that is used throughout the paper and perform some preliminary

analysis.

We will always assume that Ω = (−1, 1). With L2(Ω) and H2(Ω) we

denote the usual Sobolev spaces.

For classical solutions, D(x)hx(x) is continuous at x = xi and there-

fore hx(x) has a jump discontinuity at x = xi. To account for these jump

discontinuities of h, the function spaces have to be chosen very carefully.

We assume that

(a, h) ∈ H2
N (−1, 1) ×H2,∗

N (−1, 1),

where

H2
N (−1, 1) := {a ∈ H2(−1, 1) : ax(−1) = ax(1) = 0},

H2,∗(−1, 1) := {h ∈ H1(−1, 1) : (D(x)hx)x ∈ L2(−1, 1)},

H2,∗
N (−1, 1) := {h ∈ H2,∗(−1, 1) : hx(−1) = hx(1) = 0},

endowed with the norm

‖(a, h)‖22,∗ := ‖a‖2H2(−1,1) + ‖h‖22,∗,

where ‖h‖22,∗ := ‖h‖2H1(−1,1) + ‖(D(x)hx)x‖L2(−1,1).

The variable w will always denote the so-called canonical spike solution,

i.e. the unique homo-clinic solution of the following problem:







w′′ − w + w2 = 0 in R1,

w > 0, w(0) = max
y∈R

w(y), w(y) → 0 as |y| → ∞.
(2.1)
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Note that w is an even function and w′(y) < 0 if y > 0. An explicit repre-

sentation is

w(y) =
3

2
cosh−2 y

2
.

We set

ρ(y) :=

∫ y

0
w2(z)dz. (2.2)

Elementary calculations give

α :=

∫ ∞

0
w2(y)dy =

∫ ∞

0
w(y)dy = 3,

∫ ∞

0
w3(y)dy = 3.6,

ρ(y) =
9

2
tanh

y

2
−

3

2
tanh3

y

2
,

∫ ∞

0
w3(y)ρ(y)dy =

297

64
= 4.640625,

∫ ∞

0
(w′)2dy =

∫ ∞

0
w3dy −

∫ ∞

0
w2dy = 0.6. (2.3)

To conclude this section, we study a nonlocal linear operator. We first

recall the following result.

Theorem 2.1.([20]) Consider the following nonlocal eigenvalue problem

Lφ := ∆φ− φ+ 2wφ− γ

∫

R wφdy
∫

Rw
2dy

w2 = λφ, φ ∈ H1(R). (2.4)

(i) If γ < 1, then there is a positive eigenvalue to (2.4).

(ii) If γ > 1, then for any nonzero eigenvalue λ of (2.4), we have

Re(λ) ≤ −c0 < 0 for some c0 > 0.

(iii) If γ 6= 1 and λ = 0, then

φ = c0
dw

dy

for some constant c0.

The conjugate operator of L under the scalar product in L2(R) is

L∗ψ = ∆ψ − ψ + 2wψ − γ

∫

Rw
2ψdy

∫

R w
2dy

w, H2(R) → L2(R). (2.5)
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Then we have the following result:

Lemma 2.2. (Lemma 3.2 of [24].) If γ 6= 1, then

X0 := Ker(L∗) = span
{dw

dy

}

. (2.6)

As a consequence, we have

Lemma 2.3. The operator

L : H2(R) → L2(R),

restricted to the spaces

L : X⊥
0 ∩H2(R) → X⊥

0 ∩ L2(R),

where the X⊥
0 denotes the orthogonal projection with respect to the scalar

product of L2(R), is invertible. Moreover, L−1 : X⊥
0 ∩L2(R) → X⊥

0 ∩H2(R)

is bounded.

Proof. This follows from the Fredholm Alternative Theorem and Lemma

2.2. �

3. Review of Previous Results in the Two Segment Case: Interior

Spike and Spike near the Jump Discontinuity of

the Diffusion Coefficient

In [25], we derived the following two types of one-spike solutions:

1. An interior spike located far away from the jump discontinuity of the

inhibitor diffusivity (see Theorem 3.1). For this interior spike a new

localization principle was shown which states that the spike can exist

in one-and-only-one of the two sub-intervals divided by the jump discon-

tinuity. Further, we showed that this solution is stable.

2. A spike near the jump discontinuity whose center has a distance of

order ǫ from the jump discontinuity; this means that its distance from

the jump discontinuity is of the same order as the spatial extent of the

spike.
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We re-scale Ωǫ = Ω/ǫ and define u(x) ∈ H2
ǫ (Ω) if and only u(xǫ ) ∈

H2(Ωǫ) with the norm of the former space defined by the norm of the latter,

i.e.

‖u‖H2
ǫ (Ω) := ‖u(·/ǫ)‖H2(Ωǫ).

In the same way we introduce this re-scaling to the other function spaces

introduced at the beginning of the previous section. We also denote the only

jump discontinuity as xb for the results of two segment case.

Now we review our first main theorem:

Theorem 3.1. (Existence of an interior-spike solution.) Suppose that

the condition

1

θ1
tanh θ1(1 + xb) >

1

θ2
tanh θ2(1− xb) (3.1)

holds, where θi = D
−1/2
i . Then there exists a steady state of (1.1)−(1.3)

with an interior spike for the activator which is located in the subinterval

(−1, xb). More precisely, we have

aǫ(x) ∼ ξǫw
(x− tǫ

ǫ

)

+ o(1) in H2
ǫ (Ω), (3.2)

where tǫ → t0 ∈ (−1, xb) and ξǫ/h(t
ǫ) → 1 as ǫ → 0. The limit position t0 is

given by

1

θ1
tanh(θ1(2t0 + 1− xb)) =

1

θ2
tanh(θ2(1− xb)). (3.3)

If (3.1) holds then there do not exist any steady states of (1.1)−(1.3) with

an interior spike for the activator in the subinterval (xb, 1).

Remark 3.2. (Implications of the condition (3.1))

(i) If xb = 0, i.e. if the jump discontinuity is located in the center of

the interval, (3.1) implies that there exists a spike on the subinterval

with the larger diffusion constant D1 (and the smaller θ1) but not on the

other subinterval. This follows from the fact that the function tanhα/α

is strictly monotone decreasing for α > 0.

(ii) Condition (3.1) combines the effects of sub-domain size and diffusion

constant. Hence the localization effect is due jointly, and favorably, to

relatively large subinterval and large diffusion constant.
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(iii) The reverse sign of (3.1) does not have to be studied separately. It

follows by reflection about the center x = 0 of the interval. By this

transformation θ1 and θ2 are exchanged and the sign of xb is reversed.

An easy calculation shows that the inequality resulting from this trans-

formation is equivalent to (3.1) with reversed sign.

We now review a stability result for the linear stability of the interior

spike.

Theorem 3.3. (Stability of an interior-spike solution.) The interior

spike established in Theorem 3.1 is linearly stable.

Our second main theorem from [25] establishes the existence of spikes

near the jump discontinuity of the inhibitor diffusivity, more precisely at a

distance of order β from this discontinuity. (Note that the definition of β is

different from that in [25])

Theorem 3.4. (Existence of spikes near the jump discontinuity xb of

the inhibitor diffusivity.)

Set

β =
θ2 tanh θ1(1 + xb)− θ1 tanh θ2(1− xb)

θ2 tanh θ1(1 + xb) + θ1 tanh θ2(1− xb)
. (3.4)

(i) If










θ1 < θ2 and

0 < β <
θ22 − θ21
2θ21

I(L0)

10.8

(3.5)

then there exist exactly two spikes near the jump discontinuity xb. They

are given by (3.2) with tǫ = xb − ǫL for two possible values of L.

Here we have used

I(L) :=

∫ ∞

L
w3(y)(ρ(y)/α − β)dy, (3.6)

where ρ(y) and α(= 3) are defined in (2.2) and (2.3) respectively, while

L0 is uniquely determined by ρ(L0)/α = β.
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(ii) If










θ1 < θ2 and

0 < β =
θ22 − θ21
2θ21

I(L0)

10.8

(3.7)

then there exists exactly one spike near the jump discontinuity xb. It is

given by (3.2) with tǫ = xb − ǫL0.

(iii) If condition (3.1) holds and θ1 > θ2 or if











θ1 < θ2 and

β >
θ22 − θ21
2θ21

I(L0)

10.8
> 0

(3.8)

there is no spike near the jump discontinuity xb. More precisely, there

is no spike given by (3.2) with |tǫ − xb| = O(ǫ).

Finally, in [25] we proved the following simple nonexistence result for

spikes near the jump discontinuity.

Corollary 3.5. Suppose that θ1 < θ2 and

|β| > 0.4296875
θ22 − θ21
2θ21

then there is no spike near the jump discontinuity, i.e. a spike which satisfies

|tǫ − xb| = O(ǫ).

4. The Construction and Analysis of Spiky Steady-state Solutions

We briefly review the method of how to construct a spiky steady-state

solution to (1.1)−(1.3). We first take a rescaled and translated spike

w0(x) = w
(x− t

ǫ

)

, (4.1)

and let r0 be such that

r0 =
1

10
(min(t0 + 1, 1 − t0)). (4.2)
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Using this smooth cut-off function χ : R→ [0, 1] such that

χ(x) = 1 for |x| < 1 and χ(x) = 0 for |x| > 2, (4.3)

we get

w̃0(x) = w0(x)χ
(x− t

r0

)

, (4.4)

where w̃0(x) satisfies

ǫ2∆w̃0 − w̃0 + w̃2
0 + e.s.t. = 0 in (−1, 1), w̃′

0(−1) = w̃′
0(1) = 0 (4.5)

and “e.s.t.” means exponentially small terms.

We proceed to carefully choose the amplitude: for t ∈ (−1, 1) let

ξ̂0(t) =
1

G(t, t)
, (4.6)

where G(x, y) is the Green’s function, defined in (8.3), which can be used to

represent the solution of the second equation of (1.1). It plays a major role

throughout the paper. We will mostly drop the argument of ξ̂0(t) and write

ξ̂0 instead. Set

ξ0 := ξ̂0ξǫ, (4.7)

where

ξǫ :=

(

ǫ

∫

R
w2(z)dz

)−1

=
1

6ǫ
. (4.8)

Then, finally, we choose the first component of our approximate steady state

for (1.1) to be

wǫ,t(x) = ξ0w̃0(x). (4.9)

For a function A ∈ L2(−1, 1), we define T [A] to be the solution in

H2,∗
N (−1, 1) of

(D(x)(T [A])x)x − T [A] +A2 = 0, −1 < x < 1. (4.10)

By standard elliptic theory, the solution T [A] is positive and unique.
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For A = wǫ,t, where t ∈ Bǫ3/4(t0), we choose the function T [A](x) to be

the second component of our approximate steady state for (1.1).

Using Liapunov-Schmidt reduction, it has been shown in [25] that there

exists an exact steady-state which is close to this approximate solution. The

same argument works for the N -segment case with minor modifications. The

main changes are replacing the Green’s function specific to N = 2 by the

one for general N for the interior spike, and making a similar replacement

suitable for multi-segments for the spikes near the jump discontinuity. We

omit the details and refer the reader to [25].

The result can be summarized as follows:

Proposition 4.1. Suppose that

∇t0H(t0, t0) = 0 and ∇2
t0H(t0) 6= 0, (4.11)

where H is the regular part of Green’s function. Then, for ǫ sufficiently

small, there exists a point tǫ ∈ Bǫ3/4(t0) with tǫ → t0 such that there are

spiky steady-states given, up to leading order, by (4.9), (4.10).

To prove existence of an interior spike in one of the segments we have to

check condition (4.1) explicitly by computing the Green’s function and its

derivatives. For the details in the two-segment case we refer to [25].

We will check in Section 8 (Theorem 8.1) when in the case of N segments

with N = 3, 4, . . . condition (4.11) can be satisfied. We will derive explicit

criteria for existence or non-existence of interior spikes.

5. Stability Analysis

The large (O(1)) eigenvalues as ǫ → 0 are studied by reduction to a

nonlocal eigenvalue problem (NLEP) and using the results given in Theorem

2.1 (2) with γ = 2. This approach works for all spikes considered in this

paper (both interior spikes and spikes near the jump, with an arbitrary

number of jumps in the domain interval) and they are all stable with respect

to large eigenvalues.
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The small (o(1)) eigenvalues are considered by using a projection similar

to Liapunov-Schmidt reduction, but now at an exact instead of an approxi-

mate solution. For an interior spike the following result, by asymptotics, is

derived in [25]:

−2ǫ2ξ̂30a
ǫ
0(∆

2
tǫH(tǫ, tǫ)) + o(ǫ2) = λǫξ̂

2
0a

ǫ
0a

ǫ
0(1 + o(1)), (5.1)

using (2.3). Equation (5.1) shows that the small eigenvalue λǫ of (7.1) sat-

isfies

λǫ = −2ǫ2ξ̂0(∇
2
tǫH(tǫ, tǫ)) + o(ǫ2)

by (2.3). It can then be checked explicitly that for interior spikes in the two-

segment case we always have ∇2
tǫH(tǫ, tǫ) is positive. This implies the small

eigenvalue λǫ satisfies Re(λǫ) ≤ −cǫ2 for some c > 0 which is independent of

ǫ and therefore is stable. We will show in Section 8 (Theorem 8.1) that for N

segments with N = 3, 4, . . . it is possible to have either sign for ∇2
tǫH(tǫ, tǫ)

and so an interior spike can be stable or unstable. We will also derive easily

verifiable criteria for stability or instability.

6. Spikes Near the jump Discontinuity xb of the Inhibitor

Diffusivity

The existence of spikes near the jump discontinuity is furnished by The-

orem 7, derived in [25]. Stability of these solutions were not treated and

we complete the picture for two segments now. As a preparation for the

stability proof, we review the proof of existence. It is based on outer and

inner expansion of the inhibitor h. We will see later that an outer and in-

ner expansion for the inhibitor part of the eigenfunction is necessary for the

stability proofs.

We first compute an approximation to the inhibitor function hǫ(x).

Let

aǫ(x) = ξǫw
(x− tǫ

ǫ

)

χ
(x− tǫ

ǫ

)

+O(ǫ) in H2(Ωǫ),

where tǫ is the center of the spike, xb − tǫ = ǫL and ξǫ
ξ0

→ 1 as ǫ→ 0.
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We decompose the second component, hǫ into two parts:

hǫ(x) = ξǫ

(

ǫh1

(x− tǫ

ǫ

)

+ h2(x)
)

+O(ǫ) in H2,∗(Ω), (6.1)

where the inner expansion h1(y) for y = (x− tǫ)/ǫ satisfies

{

(D(tǫ + ǫy)h1,y(y))y + w2(y) = 0,

h1(0) = 0, h1,y(0) = 0
(6.2)

and the outer expansion h2(x) is given by

{

(D(x)h2,x(x))x − h2(x)− ǫh1(x) = 0,

h2,x(±1) = −h1,y(±∞).
(6.3)

Integrating (6.2), we get

h1,y(y) =

{

−θ21ρ(y), −∞ < y < L,

−θ22ρ(y), L < y <∞,
(6.4)

where θi = D
−1/2
i and ρ(y) has been defined in (2.2).

Recalling from (2.3) that

α =

∫ ∞

0
w2(z)dz = 3

we have

h1,y(−∞) = αθ21, h1,y(∞) = −αθ22.

Integrating (6.4) once more, we have (up to order O(ǫ) which is included

into the error term in (6.1))

ǫh1

(x− tǫ

ǫ

)

=

{

θ21α(x− xb), −1 < x < xb,

−θ22α(x− xb), xb < x < 1.
(6.5)

Hence by (6.4) h2 satisfies (up to order O(ǫ) which is included into the error
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term in (6.1))

{

(D(x)h2,x(x))x − h2(x)− ǫh1(x) = 0,

h2,x(−1) = −θ21α, h2,x(1) = θ22α.
(6.6)

Solving (6.6), using (6.5), we get

h2(x) =















−θ21α(x− xb) +Aθ1
cosh θ1(x+ 1)

cosh θ1(xb + 1)
, −1 < x < xb,

θ22α(x− xb) +Bθ1
cosh θ2(x− 1)

cosh θ2(xb − 1)
, xb < x < 1.

Continuity of the function h2(x) at x = xb gives A = B and continuity of

D(x)h2,x(x) at x = xb implies

0 = D1h2,x(x
−
b )−D2h2,x(x

+
b ) = A

(

tanh θ1(xb+1)+
θ1
θ2

tanh θ2(1−xb)
)

−2α

and so we have

A =
2αθ2

θ2 tanh θ1(xb + 1) + θ1 tanh θ2(1 − xb)
.

Hence

D1h2,x(x
−
b ) = D2h2,x(x

+
b ) = A tanh θ1(xb + 1)− α

= α
θ2 tanh θ1(xb + 1)− θ1 tanh θ2(1− xb)

θ2 tanh θ1(xb + 1) + θ1 tanh θ2(1− xb)

which implies

h2,x(x
−
b ) = θ21αβ, h2,x(x

+
b ) = θ22αβ,

where

β :=
θ2 tanh θ1(xb + 1)− θ1 tanh θ2(1− xb)

θ2 tanh θ1(xb + 1) + θ1 tanh θ2(1− xb)
.

(It is noteworthy that the parameter β satisfy 0 < β < 1 and is a constant

combining the most important information around a jump. One will see

later that the equilibrium behaviors of the system is essentially determined

by this value.)

Finally, we consider the solvability condition for Liapunov-Schmidt re-
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duction which is given by

0 = ξ−1
ǫ

∫ ∞

∞
w3(y)hx(t

ǫ + ǫy)dy +O(ǫ)

=

∫ ∞

−∞
w3(y)

(

h1,y(y) + h2,x(t
ǫ + ǫy)

)

dy +O(ǫ)

=

∫ L

−∞
w3(y)

(

− θ21ρ(y) + h2,x(x
−
b )

)

dy

+

∫ −∞

L
w3(y)

(

− θ22ρ(y) + h2,x(x
+
b )

)

dy +O(ǫ)

= θ21

(

∫ L

−∞
w3(y)(−ρ(y)+αβ)dy

)

+θ22

(

∫ ∞

L
w3(y)(−ρ(y)+αβ)dy

)

+O(ǫ)

= θ21

(

∫ ∞

−∞
w3(y)(−ρ(y) + αβ)dy −

∫ ∞

L
w3(y)(−ρ(y) + αβ)dy

)

+θ22

(

∫ ∞

L
w3(y)(−ρ(y) + αβ)dy

)

+O(ǫ)

= αβθ21

∫ ∞

−∞
w3(y)dy + (θ22 − θ21)

∫ ∞

L
w3(y)(−ρ(y) + αβ)dy +O(ǫ)

since ρ(y) is an odd function.

Hence, for given θ1, θ2, β, we need to find L such that

βθ21

∫ ∞

−∞
w3(y)dy + (θ22 − θ21)

∫ ∞

L
w3(y)(−ρ(y)/α + β)dy = 0. (6.7)

Remark 6.1. We remark here that, in general, the form of the condition

(6.7), used for the existence argument of a spike near a jump, is independent

of the number of segments. That is, although here we show the analysis

specifically for N = 2, the existence argument for an arbitrary number of

segments requires exactly the same condition (6.7). The only difference

among different cases is implicitly distinguished through the parameter β.

For general domains with multiple segments, one only needs to replace the

constants θ1 and θ2 by θk and θk+1 in the immediate segments around the

jump in consideration.

We now discuss when condition (6.7) can be satisfied. Firstly, note that

β = 0 (6.7) is not possible since we assumed θ1 6= θ2. Secondly, the case

β < 0 can be reduced to the case β > 0 by reflection at the center x = 0
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of the domain: observe that by this reflection θ1 and θ2 are exchanged, xb,

tǫ, β all change signs, then note that the order of the locations of the jump

discontinuity and the spike are reversed so that the equation xb = tǫ + ǫy

with y = L changes to −xb = −tǫ + ǫy with y = −L. As a result, (6.7) is

transformed to

−βθ22

∫ ∞

−∞
w3(y)dy + (θ21 − θ22)

∫ ∞

−L
w3(y)(−ρ(y)/α + β)dy = 0

which is equivalent to (6.7). Therefore, we shall always assume β > 0 which

is equivalent to (3.1). A necessary condition for (6.7) is

θ21 < θ22,

as otherwise (6.7) implies by separating θ21 and θ22 on different sides of the

equality

βθ21

∫ ∞

0
w3(y)dy+θ21

∫ ∞

L
w3(y)(−ρ(y)/α+β)dy=θ22

∫ ∞

L
w3(y)(−ρ(y)/α+β)dy

for which l.h.s. is obviously bigger than r.h.s. if θ1 ≥ θ2 which gives a

contradiction. We now study (6.7) in detail. An important observation is

that the integrand of

∫ ∞

L
w3(y)(−ρ(y)/α + β)dy

changes sign where ρ(y) = αβ.

The function ρ has the following properties:

ρ(0) = 0, ρ′(y) = w2(y) > 0, ρ(−y) = −ρ(y),

ρ(y) →

∫ ∞

0
w2dy = α(= 3) as y → ∞ (6.8)

and β satisfies the inequality

0 < β < 1.

Thus for all 0 < β < 1 there is exactly one positive y =: L0 > 0 such

that ρ(L0)−αβ = 0. Further, ρ(y)−αβ < 0 if 0 < y < L0 and ρ(y)−αβ > 0

if y > L0.
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To give an explicit formula for L0, using (2.3) we compute

ρ(L0) =
9

2
tanh

L0

2
−

3

2
tanh3

L0

2
= αβ.

From this equation L0 can be uniquely calculated.

Recall from (3.6) that for any real number L we have defined

I(L) :=

∫ ∞

L
w3(y)(ρ(y)/α − β)dy.

Then

I(L) → 0 as L → −21.6β < 0 as L→ −∞.

I(L) achieves its unique maximum among all real L at L = L0 > 0,

where I(L0) > 0.

I(L) is monotone increasing on (−∞, L0).

I(L) is monotone decreasing on (L0,∞).

I(L) = 0 for a unique L = L1 < 0.

We give an elementary interpretation of I(L) using the following two

graphs.

Figure A. The left and right figures corresponds to the following two inte-

grals depending on L respectively:

∫ ∞

L
w3(y)ρ(y)dy and

∫ ∞

L
w3(y)dy.

I(L) is simply the linear combination of the two graphs with the weight-
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ing β on the latter (note that 0 < β, ρ(y)/α < 1).

Figure B. The left and right figures corresponds to I(L) for β = 0.2 and

β = 0.6, with maximum values about 0.92 and 0.17, located at about 0.26

and 0.90 respectively. As will be shown in the next section, the dotted lines

and solid lines corresponds to unstable and stable steady states respectively.

Therefore, the equation I(L) = c has















two solutions if 0 < c < I(L0),

one solution if c = I(L0) or − 21.6β < c ≤ 0,

no solution if c > I(L0) or c ≤ −21.6β.

(6.9)

Because of θ1 < θ2 for (6.7) only the case c > 0 is relevant. Combining

(6.9) with (6.7), we have

(i) two solutions for (6.7) if

0 < β <
θ22 − θ21
2θ21

I(L0)

10.8
.

(ii) one solution for (6.7) if

β =
θ22 − θ21
2θ21

I(L0)

10.8
.
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(iii) no solution for (6.7) if

β >
θ22 − θ21
2θ21

I(L0)

10.8
.

This shows Theorem 7.

7. Small Eigenvalues of the Spike near the Jump

In this section, we investigate the eigenvalue problem which after re-

scaling becomes

ǫ2∆φǫ − φǫ + 2
w̄ǫ

h̄ǫ
φǫ −

w̄2
ǫ

h̄2ǫ
ψǫ = λǫφǫ, (7.1)

(D(x)ψǫ,x)x − ψǫ + 2ξǫw̄ǫφǫ = λǫτψǫ,

where

w̄ǫ = ξ−1
ǫ [wǫ,tǫ + φǫ,tǫ ], h̄ǫ = T [wǫ,tǫ + φǫ,tǫ ], (7.2)

tǫ = xb−ǫL is the center of the spike which has been determined in Theorem

3.4, and ξǫ is given by (4.8).

In particular, we investigate the small eigenvalue, i.e. we assume that

λǫ → 0 as ǫ→ 0.

Let us define

w̃ǫ,0(x) = χ
(x− tǫ

r0

)

w̃ǫ(x), (7.3)

where r0 and χ(x) are given in (4.2) and (4.3), respectively. We define

Knew
ǫ,tǫ := span{w̃′

ǫ,0} ⊂ H2(Ωǫ),

Cnew
ǫ,tǫ := span{w̃′

ǫ,0} ⊂ L2(Ωǫ).

Then it is easy to see that

w̄ǫ(x) = w̃ǫ,0(x) + e.s.t. (7.4)
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Further

h̄ǫ,x(t
ǫ + ǫy) = h1,y(y) + h2,x(x

−
b ) +O(ǫ)

= θ21(−ρ(y) + 3β) +O(ǫ) for −∞ < y < L (7.5)

and

h̄ǫ,x(t
ǫ + ǫy) = h1,y(y) + h2,x(x

+
b ) +O(ǫ)

= θ22(−ρ(y) + 3β) +O(ǫ) for L < y <∞. (7.6)

Note that w̃ǫ,0(x) = ξ̂0w̃0(x) +O(ǫ) in H2
ǫ (−1, 1) and w̃ǫ,0 satisfies

ǫ2∆w̃ǫ,0 − w̃ǫ,0 +
(w̃ǫ,0)

2

h̄ǫ
+ e.s.t. = 0.

Thus w̃′
ǫ,0 :=

dw̃ǫ,0

dx satisfies

ǫ2∆w̃′
ǫ,0 − w̃′

ǫ,0 +
2w̃ǫ,0

h̄ǫ
w̃′
ǫ −

w̃2
ǫ,0

(h̄ǫ)2
h̄′ǫ + e.s.t. = 0. (7.7)

Let us now decompose

φǫ = ǫaǫ0w̃
′
ǫ,0 + φ⊥ǫ (7.8)

with complex numbers aǫ0, (the scaling factor ǫ is introduced to ensure φǫ =

O(1) in H2
loc(Ωǫ)), where φ

⊥
ǫ ⊥Knew

ǫ,tǫ .

Suppose that ‖φǫ‖H2
N (Ωǫ) = 1. Then |aǫj | ≤ C.

The decomposition of φǫ implies the following decomposition of ψǫ:

ψǫ = ǫaǫ0ψǫ,0 + ψ⊥
ǫ = ǫaǫ0[ψ1(y) + ψ2(x)] + ψ⊥

ǫ ,

where the inner expansion ψ1(y) is given by

{

(D(tǫ + ǫy)ψ1,y(y))y + 2w(y)wy(y) = 0,

ψ1(0) = 0, ψ1,y(0) = −θ21w
2(0)

(7.9)
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and the outer expansion ψ2(x) satisfies

{

(D(x)ψ2,x(x))x − ψ2(x)− ψ1(x) = 0,

ψ2,x(±1) = −ψ1,y(±∞).
(7.10)

Let us compute

ψ1,y(y) =

{

−θ21w
2(y), −∞ < y < L,

−θ22w
2(y), L < y <∞,

=

{

−9
4θ

2
1(cosh

−4(y/2)− 1), −∞ < y < L,

−9
4θ

2
2(cosh

−4(y/2)− 1), L < y <∞.
(7.11)

This implies

ψ1,y(−∞) = O(ǫ), ψ1,y(∞) = O(ǫ).

Integrating ψ1 once more, we have

ψ1(y) =

{

−θ21ρ(y), −∞ < y < L,

−θ22ρ(y) + (θ22 − θ21)ρ(L), L < y <∞.
(7.12)

in the case L ≥ 0 and a similar result holds for L < 0. The important

observation now is that ψ1(y) is continuous at y = L. (Note that ψ1,y(y) has

a jump at y = L.)

Hence ψ2 satisfies (up to order O(ǫ) which is included into the error

term in (7.10))

{

(D(x)ψ2,x(x))x − ψ2(x)− ψ1(x) = 0,

ψ2,x(−1) = 0, ψ2,x(1) = 0,
(7.13)

which implies ψ2 = O(1) in H2,∗
N (Ω).

Substituting the decompositions of φǫ and ψǫ into (7.1), we have, using

(7.7),

ǫaǫ0

( (w̃ǫ,0)
2

h̄2ǫ
h̄′ǫ −

(w̄ǫ)
2

h̄2ǫ
ψǫ,0

)

+ ǫ2∆φ⊥ǫ − φ⊥ǫ + 2
w̄2
ǫ

h̄2ǫ
φ⊥ǫ −

w̄2
ǫ

h̄2ǫ
ψ⊥
ǫ − λǫφ

⊥
ǫ

+ e.s.t. = λǫǫa
ǫ
0w̃

′
ǫ,0. (7.14)
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We first compute

I4 := ǫaǫ0

((w̃ǫ,0)
2

h̄2ǫ
h̄′ǫ −

(w̄ǫ)
2

h̄2ǫ
ψǫ,0

)

= ǫaǫ0
(w̃ǫ,0)

2

h̄2ǫ
[−ψǫ,0 + h̄′ǫ] + e.s.t..

Let us also put

L̃ǫφ
⊥
ǫ := ǫ2∆φ⊥ǫ − φ⊥ǫ +

2w̄ǫ

h̄ǫ
φ⊥ǫ −

w̄2
ǫ

h̄2ǫ
ψ⊥
ǫ . (7.15)

Multiplying both sides of (7.14) by w̃′
ǫ,0 and integrating over (−1, 1), we

obtain

r.h.s. = ǫλǫa
ǫ
0

∫ 1

−1
w̃ǫ,0w̃

′
ǫ,0dx

= λǫa
ǫ
0ξ̂

2
0

∫

R
(wy(y))

2dy(1 +O(ǫ)) (7.16)

and

l.h.s. = −ǫaǫ0

∫ 1

−1

w̃2
ǫ,0

h̄2ǫ
[ψǫ,0 − h̄′ǫ]w̃

′
ǫ,0dx+

∫ 1

−1

w̃2
ǫ,0

h̄2ǫ
(h̄′ǫφ

⊥
ǫ )dx

−

∫ 1

−1

w̃2
ǫ,0

h̄2ǫ
(ψ⊥

ǫ w̃
′
ǫ,0)dx

= J1 + J2 + J3 +O(ǫ2),

where Ji, i = 1, 2, 3, are defined by the last equality.

The following is the key lemma.

Lemma 7.1. We have

J1 = ǫaǫ0ξ̂
3
0(θ

2
2 − θ21)w

3(L)(ρ(L)/α − β) + o(ǫ) (7.17)

= −ǫaǫ0ξ̂
3
0(θ

2
2 − θ21)I

′(L) + o(ǫ), (7.18)

J2 + J3 = o(ǫ), (7.19)
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Using Lemma 7.1 and comparing l.h.s. with r.h.s., we obtain

−ǫξ̂30(θ
2
2 − θ21)I

′(L)aǫ0 + o(ǫ) = 1.2λǫa
ǫ
0ξ̂

2
0(1 + o(1)), (7.20)

using (2.3). Equation (7.20) shows that the small eigenvalue λǫ of (7.1)

satisfies

λǫ = −
1

1.2
ǫξ̂0(θ

2
2 − θ21)I

′(L) + o(ǫ).

This shows that if I ′(L) is positive, the small eigenvalue λǫ satisfies Re(λǫ) ≤

−cǫ for some c > 0 which is independent of ǫ. On the other hand, if I ′(L)

is negative, then for ǫ sufficiently the system is unstable due to a Reduction

Theorem (Theorem 8.1 of [25]). This, together with the results in Section

5, concludes the proof of the stability theorem for a spike near a jump. The

result is given in Theorem 7.2. �

Theorem 7.2. The spikes near the jump have a small eigenvalue which

satisfies the asymptotic expansion

λǫ = −
1

1.2
ǫξ̂0(θ

2
2 − θ21)I

′(L) + o(ǫ). (7.21)

All the other eigenvalues are stable. This implies that the spike with the

smaller L (the right one) is stable, the one with the larger L (the left one)

is unstable.

Lemma 7.1 follows, We derive the following estimate for φ⊥ǫ .

Lemma 7.3. For ǫ sufficiently small, we have

‖φ⊥ǫ ‖H2(Ωǫ) = O(ǫ). (7.22)

Proof. As the first step in the proof of Lemma 7.3, we obtain a relation

between ψ⊥
ǫ and φ⊥ǫ . Note that L̃ǫ is invertible from (Knew

ǫ )⊥ to (Cnew
ǫ )⊥

with uniformly bounded inverse for ǫ small enough. By the fact that L̃ǫ is

uniformly invertible, we deduce that

‖φ⊥ǫ ‖H2(Ωǫ) = O(ǫ). (7.23)

Finally we prove the key lemma − Lemma 7.1.
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Proof of Lemma 7.1. The computation of J1 follows from the outer and

inner expansions of h and ψǫ,0, respectively. In fact,

J1 = −ǫaǫ0

∫ 1

−1

w̃2
ǫ,0

h̄2ǫ
(ψǫ,0 − h̄′ǫ)w̃

′
ǫ,0dx+ o(ǫ)

= −ǫaǫ0

∫ 1

−1

w̃2
ǫ,0

h̄2ǫ (xb)
(ψǫ,0 − h̄′ǫ)w̃

′
ǫ,0dx+ o(ǫ)

= −ǫaǫ0ξ̂
3
0

∫ L

−∞
w2(y)wy(y)[ψ1(y) + ψ2(xb)− h1,y(y)− h2,x(x

−
b )]dy

−ǫaǫ0ξ̂
3
0

∫ ∞

L
w2(y)wy(y)[ψ1(y) + ψ2(xb)− h1,y(y)− h2,x(x

+
b )]dy + o(ǫ)

= ǫaǫ0ξ̂
3
0

∫ L

−∞

1

3
w3(y)

{ d

dy
[ψ1(y)−h1,y(y)]+[ǫψ2,x(x

−
b )−ǫh2,xx(x

−
b )]

}

dy

+ǫaǫ0ξ̂
3
0

∫ ∞

L

1

3
w3(y)

{ d

dy
[ψ1(y)−h1,y(y)]+[ǫψ2,x(x

+
b )−ǫh2,xx(x

+
b )]

}

dy

−ǫaǫ0ξ̂
3
0

1

3
w3(L)

[

(ψ1(L) + ψ2(xb)− h1,y(L
−)− h2,x(x

−
b )

]

+ǫaǫ0ξ̂
3
0

1

3
w3(L)

[

(ψ1(L) + ψ2(xb)− h1,y(L
+)− h2,x(x

+
b )

]

+ o(ǫ)

= ǫaǫ0ξ̂
3
0

1

3
w3(L)

[

(h1,y(L
−)− h1,y(L

+)) + (h2,x(x
−
b )− h2,x(x

+
b ))

]

+ o(ǫ)

= ǫaǫ0ξ̂
3
0

1

3
(θ22 − θ21)w

3(L)[ρ(L) − 3β] + o(ǫ)

= −ǫaǫ0ξ̂
3
0(θ

2
2 − θ21)I

′(L) + o(ǫ).

Here we have used

d

dy
[ψ1(y)− h1,y(y)] = −θ21(w

2(y)− w2(y)) = 0 for −∞ < y < L,

d

dy
[ψ1(y)− h1,y(y)] = −θ22(w

2(y)− w2(y)) = 0 for L < y <∞.

Further, we have applied the estimates

h2,xx(x
−
b ) = O(1), h2,xx(x

+
b ) = O(1),

ψ2,x(x
−
b ) = O(1), ψ2,x(x

+
b ) = O(1)

and the facts that ψ1 is continuous at y = L and ψ2 is continuous at x = xb.

Thus we obtain (7.17).
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By (7.23) and the equation for ψ⊥
ǫ we have:

ψ⊥
ǫ (t

ǫ
0) = 2ǫξǫ

∫ 1

−1
G(tǫ, z)w̄ǫφǫ,0dz

= 2ǫG(tǫ, tǫ)ξ̂0

∫

Rwφ
⊥
ǫ dy

∫

R w
2dy

+O(ǫ2) = O(ǫ). (7.24)

By (7.23), we have J2 = O(ǫ2) and (7.24) implies that J3 = O(ǫ2). The

proof of Lemma 7.1 is finished. �

Remark 1. Large eigenvalues for a spike near the jump are treated in

the same way as that of interior spikes. Since we only need to compute ψ(xb),

and no derivatives of ψ are required, the inner expansion is not needed.

Remark 2. In view of Remark 6.1, if we turn to the case with an

arbitrary number of segments, similar results as in Section 6 and Section 7

should also hold. Indeed, we will show the existence of a spike near a jump

for N segments in Section 9 with minimal effort.

8. Existence of Interior Spikes for N Segments

We now turn to the study of interior spikes for N segments. To show

existence, we first compute the Green’s function for N segments in (−1, 1),

where the Dirac delta distribution is located at one of the jumps:

Let G(x, xi) be the Green’s function which is defined as the unique

solution of the problem















(D(x)G(x, xi)x)x −G(x, xi) + δxi = 0, Gx(−1, xi) = Gx(1, xi) = 0,

DiGx(x
−
i , xi)−Di+1Gx(x

+
i , xi) = 1, G(x−i , xi)−G(x+i , xi) = 0,

DjGx(x
−
j , xi)−Dj+1Gx(x

+
j , xi) = 0, G(x−j , xi)−G(x+, xi) = 0, j 6= i,

(8.1)

where δxi is the Dirac delta distribution located at xi and −1 < x1 < x2 <

· · · < xi < xi+1 < · · · < xN−1 < 1. Let βi be given by

βi = DiGx(x
−
i , xi) +Di+1Gx(x

+
i , xi). (8.2)
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Further, for t0 6= xi let G(x, t0) be the Green’s function defined by























(D(x)G(x, t0)x)x −G(x, t0) + δt0 = 0, Gx(−1, t0) = Gx(1, t0) = 0,

D(t0)Gx(t
−
0 , t0)−D(t0)Gx(t

+
0 , t0) = 1, G(t−0 , t0)−G(t+0 , t0) = 0,

D(x−j )Gx(x
−
j , t0)−D(x+j )Gx(x

+
j , t0) = 0, G(x−j , t0)−G(x+j , t0) = 0,

j = 1, . . . , N − 1,

(8.3)

where δt0 is the Dirac delta distribution located at t0 and −1 < x1 < x2 <

· · · < xi−1 < t0 < xi < · · · < xN−1 < 1.

Our first goal is to prove results on the zeros of the derivative of the

diagonal of the regular part of Green’s function. This will imply existence

or nonexistence of a spike.

Our second goal is to determine the sign of the second derivative at such

a root. This will answer the question of stability or instability of the spike.

Therefore let us consider the regular part H of G. It is defined by

−H(x, t0) = G(x, t0)−
θi
2
e−θi|x−t0| for y ∈ (xi−1, xi).

If t0 = xi the regular part of G is defined by

−H(x, y) = G(x, y)−











θi
2
e−θi|x−xi|, x < xi,

θi+1

2
e−θi+1|x−xi|, x > xi.

Then H(x, y) satisfies the elliptic differential equation

(D(x)Hx(x, y))x −H(x, y) = 0. (8.4)

In particular, if x ∈ (xi−1, xi) then

(DiHx(x, y))x −H(x, y) = 0.

Note that by symmetry H(x, y) = H(y, x). Denoting the derivative with

respect to the first variable with subscript x, and that of the second variable
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with subscript y, we have

Hx(t0, t0) = Hy(t0, t0), H ′(t0, t0) :=
d

dt
H(t0, t0) = 2Hx(t0, t0),

Hxx(t0, t0) = Hyy(t0, t0), H ′′(t0, t0) = 2Hxx(t0, t0) + 2Hxy(t0, t0),

Hxxx(t0, t0) = Hyyy(t0, t0), Hxxy(t0, t0) = Hxyy(t0, t0), etc.

We try to find a solution of

H ′(t0, t0) = 0 with t0 ∈ (xi−1, xi)

and then determine

H ′′(t0, t0) :=
d2

dx20
H(t0, t0).

By (8.2) we have

DiGx(x
−
i , xi) =

βi + 1

2
, DiGx(x

+
i−1, xi−1) =

βi−1 − 1

2
.

By the definition of H we have

−DiHx(x
−
i , xi) = DiGx(x

−
i , xi)−

1

2
=
βi
2
,

−DiHx(x
+
i−1, xi−1) = DiGx(x

+
i−1, xi−1) +

1

2
=
βi−1

2
.

This implies

DiH
′(xi−1, xi−1) = −βi−1, DiH

′(xi, xi) = −βi.

We consider three cases:

Theorem 8.1. (i) βi−1 > 0, βi < 0.

Stable interior spike: There exists a unique interior spike which is stable.

(ii) βi−1 < 0, βi > 0.

Unstable interior spike: There exists a unique interior spike which is

unstable.

(iii) βi−1 · βi > 0.
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No interior spike: There is no interior spike.

This gives a complete classification of all interior intervals.

Remark. For boundary intervals, there are two cases according to the

signs of β1 and βN−1, and the existence or nonexistence of a stable interior

spike follows from the classification for the two segment case.

Proof.

Case (i) βi−1 > 0, βi < 0, Stable interior spike:

By the intermediate value theorem there exists at least one root of

H ′(t0, t0) with t0 ∈ (xi−1, xi) such that H ′(t0, t0) changes sign at t0 from

negative to positive.

We show that for this root H ′′(t0, t0) = 0 is impossible. We argue by

contradiction. Using (8.4) we get

Hxxx(t0, t0) = Hx(t0, t0) = 0,

Hxxy(t0, t0) = Hy(t0, t0) = 0

and so H ′′′(t0, t0) = 0.

Taking the derivatives with xx then with xy in (8.4) and adding up we

get

Hxxxx +Hxxxy − (Hxx +Hxy) = 0.

Taking the derivatives with yy then with xy in (8.4) and adding up we get

Hxxyy +Hxxxy − (Hyy +Hxy) = 0.

Taking the sum of the two previous equations gives

Hxxxx + 2Hxxxy +Hxxyy = 0

which can be rewritten as

(Hxx +Hxy)xx + (Hxx +Hxy)xy = 0.

This is equivalent to

H ′′′′(t0, t0) = 0.
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In the same way it can be shown that

dk

dxk0
H(t0, t0) = 0, k = 1, 2, . . .

This implies H(t0, t0) = c which contradicts the boundary conditions

H ′(xi−1, xi−1) = −βi−1, H
′(xi, xi) = −βi.

Therefore H ′′(t0, t0) = 0 is impossible. Since H ′ changes sign from negative

to positive at t0 we necessarily have H ′′(t0, t0) > 0 and the spike at t0 is

stable.

We show that there is a unique root ofH ′(t0, t0) in the interval (xi−1, xi).

Assume that this is not the case, then there exist (at least) two such roots

xa < xb. We assume w.l.o.g. that H ′(t0, t0) > 0 for all t0 with xa < t0 < xb.

Then obviously we have

H ′′(xa, xa) ≥ 0, H ′′(xb, xb) ≤ 0.

Using (8.4) we get

Hxx(xa, xa) =
1

D1
H(xa, xa) <

1

D1
H(xb, xb) = Hxx(xb, xb). (8.5)

Here we have used the fact that Hx(t0, t0) > 0 for xa < t0 < xb.

Using (8.4) again, we get

Hxy(xb, xb)−Hxy(xa, xa) =

∫ (xb,xb)

(xa,xa)
[Hxxy(x, y)dx +Hxyy(x, y)dy]

=

∫ (xb,xb)

(xa,xa)
[Hy(x, y)dx+Hx(x, y)dy] > 0 (8.6)

since the last integrand is positive if we choose the path from (xa, xa) to

(xb, xb) sufficiently close to the diagonal (x, x), xa < x < xb.

Together (8.5) and (8.6) imply that

H ′′(xa, xa) < H ′′(xb, xb)

which gives a contradiction.
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To summarize, we have proved that in Case (i) there is a unique solution

ofH ′(t0, t0) = 0 with t0 ∈ (xi−1, xi). Further, H
′′(t0, t0) > 0. By Proposition

4.1 there exists a unique interior spike. By (5.1) this spike is stable.

This completes the proof in Case (i).

The proofs in Cases (ii) and (iii) are similar and are therefore omitted. �

We now consider the special case of three segments. An explicit compu-

tation of the Green’s function for (8.1) which is done in Appendix A (Section

11) yields

β1 =
T1T3 + (T1− T3) 1

θ2
coth θ2(x2 − x1)−

1
θ2
2

T1T3 + (T1 + T3) 1
θ2

coth θ2(x2 − x1) +
1
θ2
2

,

β2 = −
T1T3 + (T3− T1) 1

θ2
coth θ2(x2 − x1)−

1
θ2
2

T1T3 + (T1 + T3) 1
θ2

coth θ2(x2 − x1) +
1
θ2
2

,

where

T1 =
1

θ1
tanh θ1(x1 + 1), T3 =

1

θ3
tanh θ3(1− x2).

In particular, we have the following two cases:

Case (i) β1 < 0 and β2 > 0 for

1

θ1
tanh θ1(x1 + 1) <

1

θ2
.

There exists a stable interior spike in the central interval. There exists no

spike in either the left or right interval.

Case (ii) β1 > 0 and β2 < 0 for

1

θ1
tanh θ1(x1 + 1) >

1

θ2
.

There exists an unstable interior spike in the central interval. There exists

a stable spike in both the left or right interval.

We illustrate this behavior in Figures 3 and 4 for x1 = −0.4, x2 = 0.4

and ǫ2 = 0.0001. We consider the choices θ1 = θ3 = 1, θ2 = 1√
5
which

belongs to Case (i) and θ1 = θ3 =
1√
5
, θ2 = 1 which belongs to Case (ii).
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In Case (i) we show a stable interior spike in the central interval and a

stable spike near a jump.

In Case (ii) we show a stable interior spike in one of the boundary

intervals and a stable boundary spike.

9. Existence of a Spike near a Jump for N Segments

We now consider a spike near a jump for N segments.

Let βi be given by (8.2).

Using βi, θi, θi+1 in (6.7) we get

βiθ
2
i

∫ ∞

0
w2dy

∫ ∞

−∞
w3dy = (θ2i+1 − θ2i )

∫ ∞

L
w3(y)

(

ρ(y)− βi

∫ ∞

0
w2dz

)

dy.

Separating
θ2i+1

θ2i
> 1 on the l.h.s. and βi on the r.h.s. we get

1
θ2i+1

θ2i
− 1

∫ ∞

0
w2dy

∫ ∞

−∞
w3dy =

∫ ∞

L
w3(y)

( 1

βi

∫ y

0
w2(z)dz−

∫ ∞

0
w2(z)dz

)

dy.

This implies the necessary and condition condition for existence of a suitable

real number L to solve this equality (for given θi+1

θi
and βi) which is given in

the following theorem:

Theorem 9.1. Let βi > 0 be given by (8.2) and let θi = D
−1/2
i , θi+1 =

D
−1/2
i+1 be given by the neighboring diffusion constants. Then there exist spikes

near the jump if and only if

0 <
1

θ2i+1

θ2i−1

∫ ∞

0
w2dy

∫ ∞

−∞
w3dy

< max
L∈(−∞,∞)

∫ ∞

L
w3(y)

( 1

βi

∫ y

0
w2(z)dz −

∫ ∞

0
w2(z)dz

)

dy

=

∫ ∞

L0

w3(y)
( 1

βi

∫ y

0
w2(z)dz −

∫ ∞

0
w2(z)dz

)

dy,

where L0 is given by

1

βi

∫ L0

0
w2(z)dz =

∫ ∞

0
w2(z)dz.
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Remark. In the previous characterization the left-hand side is a func-

tion of θi+1

θi
only and the right-hand side is a function of βi only (note that

L has been eliminated). This gives a simple criterion for existence of a spike

near a jump involving only these two quantities which both come from the

order 1 length-scale. Note that for solvability no quantities of the order ǫ

length-scale are required.

An example of a spike near a jump for three segments in presented in

Figure 3.

10. Numerical Computations

We now show some numerical computations for system (1.1). We dis-

play different types of stable one-spike solutions for the two- and the three-

segment case. We choose Ω = (−1, 1) and varying diffusion value for the

coefficients ǫ2 and D(x).

In each situation we always present the solution for t = 105. By this

time, in all cases, the computation has come to a standstill and this steady

state is numerically stable (long-time limit). The first component, a, is

shown on the left, the second component, h, on the right.

In the two-segment case we divide Ω at either xb = 0 or xb = 0.5 and

choose different constants for D(x) on each of the resulting subintervals.

In the three-segment case we divide Ω at either x1 = −0.4 and x2 = 0.4

and choose different constants for D(x) on the resulting subintervals.
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We now show a computation with a spike near the jump discontinuity

of the inhibitor diffusion or an interior spike. Note that the spike near the

jump discontinuity is located slightly left of it.

Figure 1. Long-time limit of the solution to (1.1)−(1.3) with ǫ2 = 0.0001

and D(x) = 1 for −1 < x < 0, D(x) = 5 for 0 < x < 1. We observe a spike

near the jump discontinuity of the inhibitor diffusivity and a spike in the

right subinterval, respectively. The conditions (3.1) and (3.5), respectively,

are satisfied.
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Moving the jump discontinuity from xb = 0.5 to xb = 0 we obtain an

interior spike at a position near the center x = 0.

Figure 2. Long-time limit of the solution to (1.1)−(1.3) with ǫ2 = 0.0001

and D(x) = 1 for −1 < x < 0.5, D(x) = 5 for 0.5 < x < 1. We observe an

interior spike in the left subinterval. The condition (3.5) is satisfied.

Considering three segments with high values forD in the central segment

we get an interior spike in the central segment or at one of the jumps.

Figure 3. Long-time limit of the solution to (1.1)−(1.3) with ǫ2 = 0.0001

and D(x) = 1 for −1 < x < −0.4, 0.4 < x < 1, D(x) = 5 for −0.4 < x < 0.4.

We observe an interior spike in the central interval and a spike near a jump.
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Considering three segments with high values for D in the left and right

segments we get an interior spike in the left or right segment or a boundary

spike.

Figure 4. Long-time limit of the solution to (1.1)−(1.3) with ǫ2 = 0.0001

and D(x) = 5 for −1 < x < −0.4, 0.4 < x < 1, D(x) = 1 for −0.4 < x < 0.4.

We observe an interior spike in the right interval and a boundary spike.
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Now we show the computations for some effects not analyzed in this

paper. We compute the following situation: ǫ2 = 0.0001, D(x) = 0.1 for

−1 < x < xb, D(x) = 0.5 for xb < x < 1 for varying xb. If we make D(x)

smaller we expect solutions with multiple spikes. Some examples for this are

shown in the following two figures.

Figure 5. Long-time limit of the solution to (1.1)−(1.3) with ǫ2 = 0.0001

and D(x) = 0.1 for −1 < x < 0, D(x) = 0.5 for 0 < x < 1. We observe

an interior spike on the right subinterval or two interior spikes on different

subintervals, respectively.
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Figure 6. Long-time limit of the solution to (1.1)−(1.3) with ǫ2 = 0.0001

and D(x) = 0.1 for −1 < x < 0.5, D(x) = 0.5 for 0.5 < x < 1. We

observe an interior spike in the left subinterval and a spike near the jump

discontinuity or two interior spikes on different subintervals, respectively.

11. Appendix: The Green’s Function for Three Segments

In this appendix we compute the Green’s function G(x, t0) for N = 3,

i.e. in the case of two jumps or three segments.

First we consider a spike at a jump. We solve the system (8.1) for

t0 = x2 and N = 3.

Using the ansatz

G(x, t0) =



































A
cosh θ1(x+ 1)

cosh θ1(x1 + 1)
, −1 < x < x1,

A
sinh θ2(x− x2)

sinh θ2(x1 − x2)
+B

sinh θ2(x− x1)

sinh θ2(x2 − x1)
, x1 < x < x2,

B
cosh θ2(x− 1)

cosh θ2(x2 − 1)
, x2 < x < 1,

(11.1)
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then G(x, t0) is automatically continuous at x = x1, x2 and it satisfies the

Neumann boundary condition at x = −1 and x = 1.

The jump conditions of G at x1, x2 give the following linear system for

(A,B):

( 1

θ1
tanh θ1(x1+1)+

1

θ2
coth θ2(t0−x1)

)

A−
B

θ2

1

sinh θ2(t0−x1)
=1, (11.2)

( 1

θ2
coth θ2(x2−t0)+

1

θ3
tanh θ3(1−x2)+

)

B−
A

θ2

1

sinh θ2(x2−t0)
=0. (11.3)

We have to compute G(t0, t0) = B. We get

B−1 =
θ2 tanh θ1(x1 + 1) cosh θ2(x2 − x1) + θ1 sinh θ2(x2 − x1)

θ22 tanh θ1(x1 + 1) sinh θ2(x2 − x1) + θ1θ2 cosh θ2(x2 − x1)

+
1

θ3
tanh θ3(1− x2). (11.4)

Now we assume that −1 < x1 < t0 < x2 < 1, i.e. we investigate a spike in

the central segment. We have to solve the system (8.3) for N = 3.

Using the ansatz

G(x, t0) =



















































A
cosh θ1(x+ 1)

cosh θ1(x1 + 1)
, −1 < x < x1,

A
sinh θ2(x− t0)

sinh θ2(x1 − t0)
+B

sinh θ2(x− x1)

sinh θ2(t0 − x1)
, x1 < x < t0,

B
sinh θ2(x− x2)

sinh θ2(t0 − x2)
+ C

sinh θ2(x− t0)

sinh θ2(x2 − t0)
, t0 < x < x2,

C
cosh θ2(x− 1)

cosh θ3(x2 − 1)
, x2 < x < 1,

(11.5)

then G(x, t0) is automatically continuous at x = x1, t0, x2 and it satisfies the

Neumann boundary condition at x = −1 and x = 1.

The jump conditions of G at x1, t0, x2 give the following linear system

for (A,B,C):

( 1

θ1
tanh θ1(x1 + 1) +

1

θ2
coth θ2(t0 − x1)

)

A−
B

θ2

1

sinh θ2(t0 − x1)
= 0,

−
A

θ2
sinh θ2(x1 − t0) +

B

θ2
(coth θ2(t0 − x1) + coth θ2(x2 − t0))
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−
C

θ2

1

sinh θ2(x2 − t0)
= 1,

( 1

θ2
coth θ2(x2 − t0) +

1

θ3
tanh θ3(1− x2) +

)

C −
B

θ2

1

sinh θ2(x2 − t0)
= 0.

We have to compute G(t0, t0) = B. We get

B−1 =
1

θ2

[

−
1

θ2
θ1

sinh2 θ2(t0−x1) tanh θ1(x1+1) sinh θ2(t0−x1) cosh θ2(t0−x1)

+ coth θ2(t0 − x1) + coth θ2(x2 − t0)

−
1

θ2
θ3

sinh2 θ2(x2−t0) tanh θ3(1−x2)+sinh θ2(x2−t0) cosh θ2(x2−t0)

]

=
1

θ2

[

θ2 tanh θ1(x1 + 1) cosh θ2(t0 − x1) + θ1 sinh θ2(t0 − x1)

θ2 tanh θ1(x1 + 1) sinh θ2(t0 − x1) + θ1 cosh θ2(t0 − x1)

+
θ2 tanh θ3(1− x2) cosh θ2(x2 − t0) + θ3 sinh θ2(x2 − t0)

θ2 tanh θ3(1− x2) sinh θ2(x2 − t0) + θ3 cosh θ2(x2 − t0)

]

. (11.6)
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