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Abstract

We study dynamics of traveling waves under spatio-

temporal forcing in non-equilibrium systems. Based on the model

equations of nonlinear dissipative systems where traveling waves

are formed in a self-organized manner, we apply external and feed-

back forcing to the traveling waves. Entrainment and modulation

of the traveling waves are investigated numerically and analyti-

cally in one dimension. In the present paper, we focus our atten-

tion on the trapped oscillations of the waves under the external

forcing and the propagation reversal in the feedback forcing. A

phase dynamic approach is developed to formulate these interest-

ing and unexpected dynamics.

1. Introduction

Self-organized formation of spatio-temporal patterns far from equilib-

rium has been studied extensively both experimentally and theoretically for

many years [1]. Among the various model systems, a set of reaction diffusion

equations has been shown to be very useful to explore pattern evolution in

numerical simulations and to develop theories as Mimura and his coworkers

have made important contributions for these three decades [2].

One of the most recent topics is to control these nonequilibrium pat-

terns by external forcing. Because the system is far from equilibrium, the
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response itself is generally nonlinear and often interesting unexpected dy-

namics emerge. A well-known example is synchronization of oscillators with

the external periodic perturbation [3]. More complex examples are photo-

induced waves in liquid-crystalline monolayers [4, 5, 6], convective nematic

fluid under spatially periodic forcing [7] and influence of external modulation

in convective fluids [9] and in chemical reactions [10, 11, 12].

Another procedure to control nonequilibrium patterns is to feedback

the information of the system, which is intrinsically nonlinear. Such control

would be useful to stabilize some pattern which would be unstable in the

absence of the feedback and has potential applications in a wide range of

fields, from material sciences to biology [13, 14]. It has been demonstrated

in a simple oscillating system without spatial degrees of freedom that the

dynamics subjected to a feedback-mediated control possess many common

features [15, 16]. It is also mentioned that extension to spatially nonuniform

control has been attempted recently [17, 18, 19, 20, 21, 22].

Quite recently we have studied external and feedback forcing in non-

linear dissipative propagating waves in one dimension [23, 24, 25]. The

dynamics have been investigated in details by changing the magnitudes and

other parameters of the forcing. Here, we focus our attention on two inter-

esting phenomena which appear only in propagating waves. One is trapped

coherent oscillations of waves for static spatially periodic forcing. The other

is a reversal of the propagating direction when the waves are subjected to

feedback forcing. The theory in terms of a coupled set of phase variables has

also been developed to understand these interesting dynamics.

The organization of the present paper is as follows. In the next sec-

tion, we start with a brief explanation of the model system and the linear

stability analysis of the uniform equilibrium solution. In Section 3, we de-

scribe the trapped oscillation subjected to static forcing and its theoretical

analysis in terms of the phase dynamcis. In Section 4. we show the nu-

merical simulations of the propagating reversal under feedback forcing. The

phase dynamics approach to this phenomenon is formulated in Section 5.

Discussion is given in Section 6.
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2. Model Equation and Linear Stability

As a model system for nonlinear dissipative waves, we consider phase

separation undergoing chemical reactions [26, 27, 28]. This hypothetical mix-

ture is composed of three chemical components A, B and C which undergo

a cyclic chemical reaction

A→ B → C → A (1)

with the reaction rates γ1 from A to B, γ2 from B to C and γ3 from C to

A. We assume that there are other components involved in the chemical

reaction, which are supplied to the system and removed from the system

sufficiently rapidly so that they are constant in both space and time and

their effects are absorbed into the reaction rates.

We suppose that A and B species tend to segregate each other whereas

the component C is neutral for both A and B and is not diffusive. The sim-

plest time-evolution equations which take account of the chemical reactions

and the phase separation are given by [26]

∂ψ

∂t
= ∇2 δF

δψ
+ f(ψ, φ), (2)

∂φ

∂t
= g(ψ, φ), (3)

with ψ = ψA−ψB and φ = ψA+ψB , where ψA, ψB and ψC denote the local

concentrations of A, B and C components respectively. We have imposed

the condition ψA + ψB + ψC = 1 which is justified by the assumption of the

uniformity of other chemical species as mentioned above. The free energy

functional F is given by

F =

∫

dr

[

D

2
(∇ψ)2 −

τ

2
ψ2 +

1

4
ψ4

]

, (4)

where D and τ are positive constants. The last terms in eqs. (2) and (3)

arise from the chemical reaction (1) and are given, respectively, by

f(ψ, φ) = −
(

γ1 +
γ2
2

)

ψ −
(

γ1 −
γ2
2

+ γ3

)

φ+ γ3, (5)

g(ψ, φ) =
γ2
2
ψ −

(γ2
2

+ γ3

)

φ+ γ3. (6)
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The uniform stationary solution of eqs. (2) and (3) are readily obtained

as

ψ0 =
γ3(γ2 − γ1)

γ1γ2 + γ2γ3 + γ3γ1
, (7)

φ0 =
γ3(γ2 + γ1)

γ1γ2 + γ2γ3 + γ3γ1
. (8)

We study the linear stability of the uniform solution putting ψ − ψ0 =

c1 exp(λt+ iqx) and φ− φ0 = c2 exp(λt+ iqx) with c1 and c2 constants. In

this section, we fix the parameters as D = 1, γ1 = 0.3 and γ3 = 0.05 and

the remaining two parameters τ and γ2 are varied. At some range of the

parameters, the eigenvalue λ is complex. An example is shown in Figure 1

(a) for τ = 1.46 and γ2 = 0.16. Note that the real part is close to zero at

a finite wave number qc and the imaginary part has a minimum at q = qc.

The latter is a general property of the present model system. If we choose

a slightly larger value of τ fixing other parameters, the real part becomes

positive in the vicinity of q = qc. The expressions of qc, τc and the critical

frequency ωc which is the imaginary part of the eigenvalue at q = qc are

given for τ > 3ψ2
0 by

qc =

(

τ − 3ψ0
2

2

)1/2

, (9)

τc = 3ψ0
2 + 2(γ1 + γ2 + γ3)

1/2, (10)

ωc =

(

γ1γ2 − γ2γ3 − γ2
2

2
− γ3

2

)1/2

. (11)

The bifurcation diagram obtained by the linear stability analysis is de-

picted in Figure 1 (b) [27]. Numerical simulations of eqs. (2) and (3) in

one dimension show that a motionless periodic pattern appears in the region

indicated by × in Figure 1 (b) whereas a propagating wave pattern appears

in the region +. The Euler method is employed with the system size L = 64,

the mesh size 0.5 and the time increment 0.001 and a periodic boundary con-

dition is imposed. The value of τ at the Hopf bifurcation point for γ2 = 0.16

is τc ≈ 1.46 at which the critical wave number is qc ≈ 0.9 and the critical

frequency ωc ≈ 0.07.
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Figure 1. (a) The wave-number dependence of Re λ(q) (solid curve) and Im

λ(q) (dashed curve) forD = 1.0, τ = 1.46, γ1 = 0.3, γ2 = 0.16 and γ3 = 0.05.

The vertical and horizontal axes are dimensionless. (b) Bifurcation diagram

for the uniform stationary solution for D = 1, γ1 = 0.3 and γ3 = 0.05.

The full curve and the dotted curve are the Hopf bifurcation line and the

Turing-type bifurcation line respectively. A traveling wave appears at the

parameters indicated by the symbol + whereas a motionless pattern at the

symbol ×.

Figure 2. Spatial profiles of ψ(x, t) (solid curve) and φ(x, t) (dashed curve)

for D = 1.0, τ = 1.6, γ1 = 0.3, γ2 = 0.16 and γ3 = 0.05. Both ψ(x, t) and

φ(x, t) are propagating to the right at the same velocity.

Figure 2 shows an example of the propagating wave. Since eqs. (2) and

(3) are invariant under the transformation x → −x, the traveling wave can

propagate either to the right or to the left with the proper phase difference

between φ and ψ. Hereafter we choose (with an appropriate initial condition)

a wave traveling to the right without loss of generality.
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3. Trapped Oscillation by the External Forcing

In order to investigate the modulation of the traveling waves under ex-

ternal forcing, we add a new term to eqs. (2) and (3)

Γ(x, t) = ǫ cos(qfx) (12)

where ǫ is the magnitude of the forcing and 2π/qf is the spatial period.

Throughout this paper, we restrict ourselves to the case that the spatial

period of the traveling wave is the same as 2π/qf , i.e., qc = qf . The param-

eters are chosen such that the system is near the bifurcation threshold so

that the spatio-temporal dependence of the wave is not much deviated from

a sinusoidal function. The model equations (2) and (3) are modified as

∂ψ

∂t
= ∇2

[

−∇2ψ − τψ + ψ3
]

+ a1ψ + a2φ+ ǫ cos(qfx) + a3, (13)

∂φ

∂t
= b1ψ + b2φ+ ǫ cos(qfx) + b3, (14)

where

a1 = −
(

γ1 +
γ2
2

)

, a2 = −
(

γ1 −
γ2
2 + γ3

)

, a3 = γ3,

b1 =
γ2
2 , b2 = −

(γ2
2 + γ3

)

, b3 = γ3.

Equations (13) and (14) are solved numerically [23]. When the strength

of the external forcing ǫ is small, the amplitude and the velocity of the wave

are modulated periodically. The space-time plot of ψ in this case is displayed

(a) (b) (c)

Figure 3. Space (horizontal) -time (vertical) plot of ψ for (a) ǫ = 0.005,

(b) ǫ = 0.01 and (c) ǫ = 0.02. The parameters are chosen as τ = 1.6 and

γ2 = 0.16. The gray scale indicates the magnitudes of ψ.
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in Figure 3(a). However, beyond a certain critical value ǫ = ǫ1
∗ ≈ 0.0055 for

τ = 1.6 and γ2 = 0.16, the waves cannot propagate any more but undergo a

coherent oscillation trapped by the external force as shown in Figure 3(b).

There is another threshold at ǫ = ǫ2
∗ ≈ 0.0141 above which the waves do

not move but they are pinned as is evident in Figure 3(c).

We shall show that these two bifurcations can be understood by a phase

dynamics approach [25]. What we examine here is the stability of the sta-

tionary (pinned) solution for sufficiently large values of ǫ. We put

ψ = ψ0 + ψ1 cos(qcx), (15)

φ = φ0 + φ1 cos(qcx). (16)

We have verified that the harmonic variation of ψ and φ is a good approx-

imant of the simulation results. Numerical simulations indicate that the

spatial variation of ψ and φ is anit-phase with respect to the external spatial

modulation ǫ cos(qcx). Therefore both ψ1 and φ1 are negative.

Substituting (15) and (16) into (13) and (14) and ignoring higher har-

monics, we obtain

− qf
4ψ1 + τqf

2ψ1 − qf
2(3ψ2

0ψ1 +
3

4
ψ3
1) + a1ψ1 + a2φ1 + ǫ = 0, (17)

b1ψ1 + b2φ1 + ǫ = 0. (18)

This gives us the amplitudes of the motionless periodic solutions ψ1 = ψ̄1(≤

0) and φ1 = φ̄1(≤ 0). In order to study the stability of this pinned solution,

we introduce the time-dependent phase variables as

ψ = ψ0 + ψ̄1 cos qc(x+ θ1(t)), (19)

φ = φ0 + φ̄1 cos qc(x+ θ2(t)). (20)

Substituting (19) and (20) into (13) and (14) and multiplying the resul-

tant equations, respectively, by sin qc(x + θ1(t)) and sin qc(x + θ2(t)), and

performing the integral over x, we obtain

qc
dθ1
dt

= c11 sin qc(θ1 − θ2) + c12 sin(qcθ1), (21)

qc
dθ2
dt

= −c21 sin qc(θ2 − θ1) + c22 sin(qcθ2), (22)
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where

c11 = −
a2φ̄1
ψ̄1

, c12 = −
ǫ

ψ̄1
,

c21 =
b1ψ̄1

φ̄1
, c22 = −

ǫ

φ̄1
.

(23)

It is noted that these coefficients are positive. Linearizing the set of eqs.

(21) and (22) around the stationary solution θ1 = θ2 = 0, we obtain the

eigenvalue equation

λ2 − (c11 + c12 − c21 + c22)λ+ c11c22 − c21c12 + c12c22 = 0. (24)

The Hopf instability condition is given by

c11 + c12 − c21 + c22 > 0, (25)

and

c11c22 − c21c12 + c12c22 > 0. (26)

We have verified numerically that the condition (26) is always satisfied. The

condition (25) yields ǫ2
∗ = 0.01404 which agrees quite well with the bifur-

cation point ǫ2
∗ = 0.0141 obtained by numerical simulations. For ǫ < ǫ2

∗,

the set of equations (21) and (22) exhibits a limit cycle oscillation as shown

in Figure 4(a). The oscillations themselves of ψ and φ are found to be

quantitatively in agreement with the simulations (though not shown).

If the value of ǫ is further decreased, the limit cycle oscillation disappears

(a) (b)

Figure 4. (a) Limit cycle oscillation of θ1 and θ2 for ǫ = 0.01. (b) Time-evolution
of θ1 (solid curve) and θ2 (dashed curve) for ǫ = 0.004.
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in eqs. (21) and (22) and it turns out that θ1 and θ2 increase (or decrease)

monotonously as shown in Figure 4 (b). This behavior corresponds to the

modulated traveling wave displayed in Figure 3(a) and occurs for ǫ smaller

than ǫ ≈ 0.0044 which is slightly smaller than the other bifurcation threshold

ǫ∗1 = 0.0055 obtained numerically. This discrepancy is attributed to the fact

that the approximation used in the derivation of eqs. (21) and (22), which

are valid around the pinned solution, becomes worse for smaller values of

ǫ. Nevertheless, the theory reproduces the simulations qualitatively and the

global dynamics are understood almost completely [25].

4. Feedback control

The feedback effect of the propagating waves is investigated by using

the equations

∂ψ

∂t
= ∇2

[

−∇2ψ − τψ + ψ3
]

+ a1ψ + a2φ+ a3 + F [ψ(x − δ, t)− ψ̄], (27)

∂φ

∂t
= b1ψ + b2φ+ b3 + F [ψ(x− δ, t) − ψ̄], (28)

where the coefficient F is the strength of the feedback term and ψ̄ is the

spatial average of ψ. (This should not be confused with ψ̄ in eq. (19).) Note

that we have added a term given by the profile of ψ but with a space shift δ.

We examine how the propagating waves are affected by the feedback term

by changing the strength F and the spatial shift δ [25].

As mentioned in Section 1, our main purpose is to investigate the dy-

namics of traveling waves under feedback-mediated spatio-temporal control

in distributed systems. In the previous studies of such feedback control,

time-delayed feedback was employed to derive a well-defined relationship

between the external frequency Ω and the phase difference between the ex-

ternal force and the entrained oscillations [3]. In eqs. (27) and (28), by

contrast, we have employed a spatially shifted control. Note that, in con-

trast to the time-delay control, such a spatial shift can be either positive or

negative. Another reason that we employ this type of control is that it is eas-

ily treated both numerically and analytically. Some unexpected interesting

dynamics appear as will be shown below.
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We have solved eqs. (27) and (28) numerically in one dimension [25].

Initially, we start with the set of equations with F = 0. After a wave

propagating to the right has developed, we turn on the feedback term, setting

F to some finite value. The asymptotic traveling velocity V is evaluated as

a function of the spatial shift δ for a given value of F . The relation between

the frequency ΩFB = qcV of the controlled wave and the normalized phase

shift ∆ = qcδ/2π is displayed in Figures 5(a)-(d) for four values of F .

Figure 5. Relation between the frequency ΩFB and the phase shift ∆ =

qcδ/2π for (a) F = 0.0010, (b) F = 0.0057, (c) F = 0.0090 and (d) F =

0.0150. In Figure (a), the simulation results are represented by the black

squares, in comparison with the phase θ2/2π (white squares) for the variable

φ. In Figures (c)-(d) the results of simulations are represented by the symbols

∗, which should be compared with the theoretical results given in eqs. (39)

and (40) (solid curves).
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Figure 6. Space-time plot of the propagating wave. The gray scale indicates

the magnitude of the variable ψ. The feedback forcing is changed at t = 600

from 0 to finite values F = 0.009 and ∆ = 0.35. Before this time, the

wave propagates to the right. The feedback forcing eventually causes the

propagation reversal.

It is evident from Figures 5(a)-(d) that the frequency depends sinu-

soidally on the shift for small values of the feedback strength F , with an

amplitude that increases with F . In contrast to the case of external forc-

ing, a stable wave exists both for dΩFB/d∆ < 0 and dΩFB/d∆ > 0. For

F < 0.0057, the frequency ΩFB is positive, which means that the wave prop-

agates to the right under the feedback control. What is most noteworthy here

is that the frequency jumps discontinuously at some value of ∆ and changes

its sign when F is large, as shown in Figures 5 (c) and (d). This reflects the

reversal of the propagation direction of the wave train. A space-time plot of

such reversal is displayed in Figure 6 for F = 0.0090 and ∆ = 0.35. Before

the feedback control is turned on, at t = 600, the wave propagates to the

right. However, after t = 600, the direction of propagating switches to the

left.

Figures 7(a)-(d) display the propagating frequency ΩFB as a function of

the strength F for four values of the phase shift ∆. In Figure 7(a) it is seen

that when the value of ∆ is small, the frequency ΩFB increases monotonically

with the strength F . In fact, if the value ∆ satisfies d2ΩFB/d∆
2 < 0, then

ΩFB is an increasing function of F , since the amplitude of the sinusoidal

variation of ΩFB increases as a function of F , as can be seen in Figures 5

(a) and (b). When ∆ exceeds a certain value, a discontinuity appears, as

shown in Figures 7 (b) and (c). Then, for ∆ > 0.5, the frequency ΩFB

again becomes positive, as shown in Figures 5 (c) and (d), and, therefore,

no discontinuity appears in Figure 7 (d) for ∆ = 0.63.
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Figure 7. F -dependence of ΩFB for ∆ ≈ 0.14, (b) ∆ ≈ 0.21, (c) ∆ ≈ 0.49

and (d) ∆ ≈ 0.63. The results of the simulations, represented by the symbols

∗, are compared with the theoretical results given by eqs. (39) and (40) (solid

curves).

5. Phase Dynamics for Feedback Control

Now we formulate the phase dynamics for the case of feedback control

[25]. The method here is similar to that for external forcing outlined in

Section 3. In this case, we write

ψ = ψ0 + ψ1(t) cos(qcx− ωct+ θ1(t)), (29)

φ = φ0 + φ1(t) cos(qcx− ωct+ θ2(t)). (30)

Substituting these into eqs. (27) and (28) and ignoring the higher harmonics,
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we obtain

ωc −
dθ1
dt

=
a2φ1
ψ1

sin(θ1 − θ2) + F sin(qcδ), (31)

ωc −
dθ2
dt

= −
b1ψ1

φ1
sin(θ1 − θ2) +

Fψ1

φ1
sin (qcδ − (θ1 − θ2)) , (32)

dψ1

dt
= (qc

4 + qc
2(τ − τc))ψ1 + a1ψ1 −

3

4
qc

2ψ3
1

+a2φ1 cos(θ1 − θ2) + Fψ1 cos(qcδ), (33)

dφ1
dt

= b1ψ1 cos(θ1 − θ2) + b2φ1 + Fψ1 cos (qcδ − (θ1 − θ2)) . (34)

As in the case treated above, the amplitudes ψ1 and φ1 which evolve slowly

in time are eliminated adiabatically by setting dψ1/dt = dφ1/dt = 0 and are

obtained through a perturbation expansion with respect to ǫ. The zeroth

order solutions, ψ
(0)
1 and φ

(0)
1 , are given by

3

4
(ψ

(0)
1 )2 = q2c + τ − τc +

1

q2c

(

a1 −
a2b1
b2

(cos(θ1 − θ2))
2

)

, (35)

φ
(0)
1 = −

b1ψ
(0)
1

b2
cos(θ1 − θ2). (36)

The first-order corrections, ψ
(1)
1 and φ

(1)
1 , are given by

ψ
(1)
1 =

2F

3q2cψ
(0)
1

[cos(qcδ)−
a2
b2

cos(qcδ − (θ1 − θ2)) cos(θ1 − θ2)], (37)

φ
(1)
1 =

φ
(0)
1

ψ
(0)
1

ψ
(1)
1 −

Fψ
(0)
1

b2
cos (qcδ − (θ1 − θ2)) . (38)

In this way, from eqs. (31), (32) and (35)-(38), we obtain

ωc −
dθ1
dt

= F sin(qcδ) + a2
φ
(0)
1

ψ
(0)
1

(

1 +
φ
(1)
1

φ
(0)
1

−
ψ
(1)
1

ψ
(0)
1

)

sin(θ1 − θ2), (39)

ωc −
dθ2
dt

=
Fψ

(0)
1

φ
(0)
1

sin(qcδ − (θ1 − θ2))

−b1
ψ
(0)
1

φ
(0)
1

(

1 +
ψ
(1)
1

ψ
(0)
1

−
φ
(1)
1

φ
(0)
1

)

sin(θ1 − θ2). (40)

We can show that the solutions of eqs. (39) and (40) in the limit t → ∞
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Figure 8. d(θ2 − θ1)/dt as a function of θ2 − θ1 for F = 0.009 and for (a)

∆ = 0.07, (b) ∆ = 0.35 and (c) ∆ = 0.63.

take the form θ1 = ωt + c1 and θ2 = ωt + c2, where the constants ω and

c2 − c1 are evaluated numerically. The frequency of the propagating wave

under feedback control is given by

ΩFB = ωc − ω. (41)

The relation between ΩFB and the phase shift variable defined by ∆ =

(qcδ)/(2π) is depicted by the solid curve in Figures 5 (a)-(d). The F -

dependence is shown in Figures 7(a)-(d). It is found that these theoretical

results agree almost completely with the simulations.

Next, we clarify the reason that ΩFB becomes negative discontinuously

as a function of ∆ for large values of F . First, note that the right hand sides

of eqs. (39) and (40) are functions of θ2 − θ1. Therefore, combining these

two equations we obtain a closed equation for θ2−θ1. Figures 8(a) - (c) plot

d(θ2 − θ1)/dt as functions of θ2 − θ1 for ∆ = 0.07, ∆ = 0.35 and ∆ = 0.63.

For ∆ = 0.07, there are two stable and one unstable solutions, as shown

in Figure 8 (a). Since we have chosen a wave propagating to the right, the

phase difference θ2 − θ1 should be always positive. Therefore, the positive

stable solution is approached asymptotically. However, when ∆ is increased,

the system becomes mono-stable, leaving only a stable negative solution, as

shown in Figure 8(b). Hence, the value of ωc − ω exhibits a discontinuous

jump when the transition from the bistability to the monostability occurs. If

the value of ∆ is increased further, the system again becomes bistable, and

then eventually monostable once more, where, however, the stable solution

for θ2 − θ1 is positive as in Figure 8(c).
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6. Discussion

We have studied the dynamics of traveling waves under external and

feedback control. We have found the following phenomena for the static

external forcing. When external forcing is sufficiently strong the traveling

waves are pinned. When the forcing is intermediate, trapped oscillations of

wave trains are observed. We emphasize that the trapped oscillation of waves

is a characteristic feature of traveling waves under external forcing, which

never occurs in Turing patterns. We have performed theoretical analysis

based on the phase equations.

The behavior of the propagation reversal under feedback control can

be understood by the following general argument. First, we note that the

equation for θ2 − θ1 takes the form

d(θ2 − θ1)

dt
= a0F sin(2π∆) + g(θ2 − θ1), (42)

where a0 and g(x) contain F and ∆, as can be seen from eqs. (39) and (40).

It is important to note that g(x) is an odd function when the feedback control

is absent (i.e., when F = 0). This is because the nonlinear dissipative wave

considered here possesses a parity symmetry; that is, for every propagating

wave in one direction, there is a corresponding wave propagating in the other

direction obtained from the former through spatial reflection. This requires

that eq. (42) should be invariant under the interchange of θ1 and θ2 and

hence g(x) = −g(−x) should take the following expansion

g(θ2 − θ1) = a1(θ2 − θ1)− a3(θ2 − θ1)
3 (43)

for small values of θ2 − θ1 with positive coefficients a1 and a3. When F 6= 0,

these coefficients generally depend on ∆. However as long as F is small,

we can ignore such dependence. Then, eq. (42) with (43) reveals that the

system is bistable when ∆ or F is small. As ∆ is increased, it becomes

mono-stable with a negative solution for a0 < 0, bistable and again mono-

stable with a positive solution. This fact accounts for all of the results of

the numerical simulations.

Although the present study starts with the specific model system, we

believe that the results are quite general for traveling patterns independent

of the details of the model equations. In fact, the coupled phase dynamics
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given by eqs. (21) and (22) provides us with a general mechanism of trapped

oscillations of domains under external force. The argument to derive eqs.

eq. (42) with (43) for the reversal of the propagating direction is based only

on the symmetry of the system without relying on any specific properties of

the model system.
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