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Abstract

Explicit closed form expressions are derived for moments of
order statistics from the chi square distribution. The expressions
involve Lauricella functions of type A and type B. Some numerical

tabulations are provided for selected parameter values.

1. Introduction

Order statistics of the chi square distribution and their moments arise
in many areas of probability and statistics. Some examples are: approx-
imations to convolutions of random variables, multivariate test statistics,
Pearson’s X? statistics and other goodness—of fit statistics, ranking and se-
lection procedures, tests of homogeneity of variances, and transformations.
For details we refer the readers to Tiku (1965), Jensen (1973), Manoukian
(1982), Hall (1983), Holtzman and Good (1986), Ko and Yum (1991), Wang
(1994), Mathai and Pederzoli (1996), Fujikoshi (1997), Fujisawa (1997), Fu-
jikoshi (2000) and Garcia—Perez and Nunez—Anton (2004).

The need for moments of order statistics also arises in applied areas
such as quality control testing and reliability. For example, if the reliability
of an item is high, the duration of an “all items fail” life-test can be too
expensive in both time and money. This fact prevents a practitioner from
knowing enough about the product in a relatively short time. Therefore, a
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practitioner needs to predict the failure of future items based on the times of
a few early failures. These predictions are often based on moments of order

statistics.

Suppose X1, Xo,..., X, is a random sample from the chi square distri-
bution with degrees of freedom 2« and the probability density function (pdf)
given by:

“Lexp(—z
fla) = T (1)

forz > 0and o > 0. Let X1.,, < Xo., < -++ < Xp.p denote the corresponding

order statistics. The moments of the chi square order statistics are E(XZ,)
for k=1,2,....

There has been a large amount of work relating to moments of the chi
square order statistics. As far as we know, there are eight significant papers
on the calculation of E(XE,). In the earliest paper, Gupta (1960) derived a
recurrence relation for F(X¥ ) for integer values of the shape parameter a.
Gupta used this relation to tabulate values of E(XZ%,) for various combina-
tions of k£, n and a. Gupta also discussed some illustrative applications to
life-testing and reliability problems. Joshi (1979) re-derived the recurrence
relation of Gupta (1960) and showed that if B(XF, ) for k = —(r—1),...,—1
are known then one can obtain expressions for all of E(XF,). Krishnaiah
et al. (1967) extended the work of Gupta (1960) for the case that « is any
positive real number. Breiter and Krishnaiah (1968) tabulated the values
of E(XE ), k =1,2,3,4 for various a obtained by using the recurrence re-
lations in Krishnaiah et al. (1967). A Gauss—Legendre quadrature formula
was used for the computations. Khan and Khan (1983) derived some recur-
rence relations for F(XE ) when f(-) is the generalized chi square pdf given
by

cx®Lexp (—2°)

f) = e)

for x > 0, @« > 0 and ¢ > 0. Based on the available recurrence relations,
Walter and Stitt (1988) constructed extensive tabulations of F(XE, ) for
the chi square distribution. Sobel and Wells (1990) showed that E(XE,)
can be expressed in terms of Dirichlet integrals (integrals involving gamma
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functions) and provided a table for reading the Dirichlet integrals. Most
recently, Abdelkader (2004) derived some recurrence relations for F(XF,)
when X, Xs,...,X,, are independent but not identically distributed chi
square random variables. Abdelkader also discussed some applications in
reliability.

As seen above, all of the work except for Sobel and Wells (1990) express
E(XE,) in terms of recurrence relations and/or numerical tables. That is,
no explicit expressions are available for E(X?” ) except for the one given by
Sobel and Wells (1990). The representation given in Sobel and Wells (1990)
involves the Dirichlet integrals which are not well known and for which no
standard routines are available. The use of the various numerical tables can
be limited and highly inaccurate.

In this note, we derive explicit expressions for F(X¥ ) that are finite
sums of well known special functions — namely, the Lauricella function of
type A (Exton, 1978) defined by

FIE‘n) (a,b1,...,bp;c1, .. Cn3 1,0, Tn)
= Z - Z mi+-+mn \Y1)my n)m, L1 Ty, (3)
m1=0 My =0 (Cl)ml T (C )mn mal---my!

and, the Lauricella function of type B (Exton, 1978) defined by

(n) .
Fg/(ai,...,an,b1,....,bpic;21, ..., 2y)

Mn

= i - i (al)ml t (an)mn (bl)ml o (bn)mn {L’gnl SRR i (4)

9
Cmi+-+mn ’I’)’ll! e ’I’)’Ln'

mi =0 my=0

where (f), = f(f+1)---(f +p — 1) denotes the ascending factorial. Nu-
merical routines for the direct computation of ([B]) and (4)) are available, see,
for example, Exton (1978, 2007).

This note is outlined as follows. Section 2 derives explicit expressions for
E(XF ) when X1, X, ..., X, is arandom sample from (). The extension of
this result to non—identically distributed (INID) chi square random variables
is considered in Section 3. Some further extensions when X7, Xo,..., X, is
a sample from (2) are considered in Section 4. Finally, some numerical
tabulations of the explicit expressions for F(XF, ) are provided in Section 5.
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2. IID Case

If X1, Xo,..., X, is arandom sample from () then it is well known that
the pdf of Y = X,..,, is given by

’I’L' r—1 n—r
= F 1-F
for r =1,2,...,n, where F(-) is the cumulative distribution function (cdf)

corresponding to ([I) given by

v(a,y/2)

Fy) = W’

where 7(+, ) denotes the incomplete gamma function defined by

X
Y, x) = / t* Lexp (—t) dt.
0
Thus, the kth moment of X,.,, can be expressed as

n!
E(X,Ifn) = 2%(r = )!(n — ) {T()}"

< /0 s exp(Cy/2) {r(y/2)} (@) =10 y/2)}" dy

n! > o
- T T | ety

>3 (" - ) D@ (<1 fr(any/2) L dy
- w7 e
x / yires 1exp< u/2) (v y/2)) " dy
0

- w7 ey e

Using the series expansion

o0

o (=)™
Y x/2) = (2/2) Z (ot m)m
m=0

(see Gradshteyn and Ryzhik (2000)), the integral I(l) in (5] can be expressed
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as

I 0o B m r+i—1
10 = / y’f+a—1exp<—y/2>{<y/2>az%} by

—lat m)
oo (_1)m1+---+mr+l_1 (y/2)a(T+l_1)+m1+'”+mr+l—1
/ m1=0 My y—1=0 (a_‘_ml)'”(a—l_mr-i-l—l)ml!"'mr_;,_l_l!
o
m1=0
e’} (_1)m1+"'+m7'+l—1

Z 2a(r+l—1)+m1+"'+mr+l_1(

myqp1=0

o
X / yk+a(r+l)+m1+“‘+m7'+l*1_1 exp(—y/2)dy
0

at+my) - (atmep)my! - meggq!

_ghta Z Z 1) 1F(7‘€+04(7”+l)+m1+ M) (6)

l. |
Oé+m a+m —1)my: -m —1-
=0 M 4=0 1) ( r+l 1) 1 r4+l—1

Using the fact (f)r = I'(f + k)/T'(f) and the definition in (@), one can

reexpress ([6]) as

I(l) = 280 (k+ a(r +1))
XF‘,&r—H_l)(k'+04(7'+l)7047--'7a;a+17"'7a+1;_1""’_1)' (7)

Combining (Bl and (), we obtain the expression

E(Xffm):( Qk"' |Z (”;T> {D()} ™ a0 (k+a(r+1)

XF/(‘M 1)(]<;+a(r+l), a,...,a;o4, o o -1, 1) (8)

Note that (8) is a finite sum of the Lauricella function of type A, a function
that can be computed directly by using a software supplied by Exton (2007).
It is easy to show that the infinite sum in (6l converges and hence (&) exists.

Consider the sum in ([6]) with respect to the variable m, ;1. One can write

f: f: (=)™t At T (b a(r + 1) +my 4+ mpgg1)
m1=0

M s 1 =0 (a—i—ml)u'(a+m7a+l_1)m1!"'mT+l_1!
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_ 1 Z Z )Mt e 2T (k4 ar + 1) +my + -+ Mypyi_2)
(a@+my)--(a+mpp2)mil---mp o

m1 =0 my4;-_2=0

X 2F1(Oé,k‘+0é(7"+l)+ml+"'+mr+l—2§1+a;_1)a

where oF} is the Gauss hypergeometric function defined by

0 2k
oFy (a,b; ¢; x) E
k=0 ol

Clearly, oF (o, k+a(r+1)4+mi+---+mpp92;14+a;—1) <1 for all my,

. Myqi—9 because oF (o, k+a(r+1)+mi+---+mpyo;1+a;—1) =
279 Fi (e, 1+a—k—a(r+l)—my —---—myq;—92; 1 +a;1/2) is a convergent
series. Now apply the same argument as above for the variable m,..; o.
Repeating this process for all of the variables, one will find that the infinite

sum in (@) converges.

3. INID Case

Suppose now that X1, Xo,..., X, are independent chi square random

variables with the probability density functions (pdfs) given by

2% Lexp(—z/2)
2¢iT (Oéz)

filz) =

for x > 0 and o; > 0. Let X1., < Xo., < -+ < X,,., denote the correspond-
ing order statistics. To find the moment of X.,,, we use the following result

due to Barakat and Abdelkader (2004):
EY _ N qyentt (T
B(xt) = 3 (220) 0 )

where

-k Yy [ ’“H{l— W@)dr,  (10)

1<y <ig<-+<i;<n
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where Fj, (+) is the cdf of Xj, given by

(i, 2/2)

Et(m) = F(Oéi )

Using the series expansion

1= 2022 — ) exn(-a/) Y —F(”“’/ S

I;(k)

j oo
_ ok—1p, Z Z /x/2 exp( J$/2H21“(xa/z2—m

1<i1<in << <n t=1 m=0

= 2kl Z Z / (2/2)* L exp(—jz/2)

1< <ia <+ <i;<n

= @y
X Z 2D L(ai, —ma) - Toy, _mj)dx

m1=0 m;=0

) 1
=2 YNy Z Z I(ai, —mi) - D(oy, —my)

1< <ig << <nmi= =0 mj_

. /ooow/z)a-m-“-mj-l exp(—jir/2)dx

M1+t mj—a

S Sy 3y Hiomem I T

1< <ig << <n m1=0 m;

where a = k + (a;; — 1) + -+ + (a; — 1). Noting that I'(a;, — my) =
(=)™ T(ev,) /(1 = iy )mes D@ = my = -+ = my) = (=)™ (a) /(1 —

@)my+-+m; and the definition in (@), one can reexpress (I as

T@FY (1. 1 —ai,.. 1 —ai; 1 —a;j,...,j)
L ()T (o) j°

Ii(k) = 2K



440 SARALEES NADARAJAH [September

and hence (@) can be rewritten as

B(X,) = 2% Z <—1>j_"+’”_1<;7;i)rmil)-r--(l(i)(ai-)j"

j=n—r+1

xFP (1, 11 —ag, 1 —aisT—asj,..,5) . (12)

Note that (I2)) is a finite sum of the Lauricella function of type B, a function
that can be computed directly by using a software supplied by Exton (2007).
The fact that the infinite sum in (II]) converges and hence that (I2]) exists
can be proved similarly to Section 2. An alternative representation for (8g])
can be obtained by setting all of the as in (I2)) equal and so yielding the
form

E(X,'in) = 2kkj=§+1(_1)j_n+r_l(i:D%

<F (1, L 1—a, 1=l —a;j....j). (13)

The fact that ([8) and (I3 are the same can be proved by using known
relationships between the Lauricella functions of type A and type B. At the
moment, the author is unable to establish that (8) and (I3) are equal.

4. Generalizations

A natural extension of the results in Sections 2 and 3 is to consider the
moments of order statistics for the generalized chi square distribution in (2]).
Similar calculations show that (g]) generalizes to

& _n—'n_lr oy nr —r— 1-r—I E
E(Xr;n) = oD (=) ;( 1)< ! >{F(a)} o F(C+a(r+l)>
XFIEXT-H_I) <§—|—0¢(T’—|—l),0[,... sosatl ool =1 ’_1>

and that (I2]) generalizes to

B(x) = Y <—1>j_"+’”_1<;i:i>r<ail>-r--(1(i)(aij)j“

j=n—r+1

xFO (1, 1 —aiy, . 1 —ais T —asj,. ., d)
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where a = k/c+ (a;; —1) + -+ + (a;; — 1). For the derivation of the second
expression, we have assumed that X7, X, ..., X,, are independent chi square
random variables from (2]) with non—identical o, i = 1,2,... ,n and common
c. The derivation of an explicit expression for E(X% ) for the case of non—
identical oy, ¢ = 1,2,...,n and non—identical ¢;, i = 1,2,...,n is an open
problem.

5. Computational Issues

Here, we provide some numerical tabulations of (§). The purpose for
the tabulations is two folded: to illustrate the calculation of F(XE,,) using
([8)); and, to verify the results with existing tables such as the ones in Breiter
and Krishnaiah (1968). We used a software supplied by Exton (2007) to
compute (§). The numerical values so computed for n = 10, r = 1,2,...,10,
k=1,2,3,4 and 2 = 1,2,...,10 are shown in Tables 1 to 4. The values
in Tables 1 to 4 match those given by Breiter and Krishnaiah (1968) for the
three decimal places.

Table 1. Values of E(X,.19) for 2a =1,2,...,10.

N
Q

T
1 2 3 4 5 6 7 8 9 10

0.025 | 0.076 | 0.158 | 0.275 | 0.438 | 0.660 | 0.971 1.426 2.171 3.800
0.200 | 0.422 | 0.672 | 0.958 | 1.291 | 1.691 2.191 2.858 3.858 5.858
0.518 | 0.928 | 1.329 | 1.749 | 2.210 | 2.737 | 3.369 4.182 5.358 7.621
0.932 | 1.519 | 2.051 | 2.584 | 3.150 | 3.780 | 4.519 5.449 6.769 9.246
1.413 | 2.164 | 2.813 | 3.444 | 4.101 | 4.820 | 5.651 6.682 8.125 | 10.788
1.942 | 2.846 | 3.601 | 4.321 | 5.059 | 5.856 6.769 7.891 9.443 | 12.273
2.509 | 3.556 | 4.408 | 5.209 | 6.020 | 6.890 7.877 | 9.081 | 10.733 | 13.716
3.107 | 4.287 | 5.229 | 6.106 | 6.986 | 7.922 8.978 | 10.257 | 12.002 | 15.127
3.729 | 5.036 | 6.063 | 7.010 | 7.953 | 8.952 | 10.072 | 11.422 | 13.254 | 16.510
4.371 | 5.799 | 6.907 | 7.919 | 8.923 | 9.980 | 11.160 | 12.577 | 14.491 | 17.872

© 0 N O U W N

=
(=)

Table 2. Values of E(X2,,) for 2a = 1,2,...,10.

N}
Q

T
1 2 3 4 5 6 7 8 9 10

0.003 | 0.015 [ 0.050 | 0.129 | 0.293 0.621 1.275 2.657 6.051 18.907
0.080 | 0.268 | 0.604 1.151 2.012 3.365 5.556 9.367 17.083 | 40.514
0.411 1.098 2.104 3.518 5.498 8.319 12.504 19.199 31.645 65.705
1.173 2.737 | 4.762 7.382 | 10.815 15.440 | 21.959 31.891 49.429 94.412
2.510 5.333 8.702 | 12.823 | 17.993 24.700 | 33.840 | 47.310 70.266 | 126.524
4.534 8.991 | 14.002 | 19.890 | 27.047 | 36.085 48.097 | 65.372 94.046 | 161.936
7.339 | 13.792 | 20.722 | 28.619 | 37.991 49.581 64.692 86.016 | 120.686 | 200.562
10.998 | 19.797 | 28.907 | 39.038 | 50.832 65.179 83.599 | 109.197 | 150.124 | 242.329
15.576 | 27.057 | 38.591 | 51.166 | 65.578 82.872 | 104.797 | 134.879 | 182.309 | 287.174
21.126 | 35.613 | 49.805 | 65.023 | 82.235 | 102.655 | 128.266 | 163.032 | 217.198 | 335.046

© 00 N Ut W N

=
(=)
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Table 3. Values of E(X2,,) for 2a = 1,2,...,10.

T

N
Q

r

1 2 3 4 5 6 7 8 9 10
0.001 0.005 0.025 0.087| 0.269 0.765 2.129 6.168 20.872| 119.679
0.048 0.226 0.679 1.666 3.678 7.716 16.050| 34.784 86.032 | 329.119
0.430 1.572 3.858 7.993| 15.209 27.830 50.765 96.274| 205.262| 640.806
1.822 5.672| 12.320( 23.078| 40.194| 67.793| 114.289| 199.869| 388.768|1066.194
5.278| 14.673| 29.313| 51.268| 84.084| 134.162| 214.277| 354.315| 646.359|1616.270
12.182| 31.099| 58.402| 97.122|152.403| 233.416| 358.174| 568.042| 987.494|2301.667
24.197| 57.761|103.381|165.339(250.721| 371.984| 553.280| 849.255(1421.355|3132.728
43.225| 97.696|168.220|260.729 | 384.646| 556.261| 806.784(1205.983|1956.900|4119.555
71.374(154.127|257.025|388.186 [ 559.813| 792.609|1125.795|1646.121 [ 2602.907 | 5272.044
110.929(230.429|374.016 | 552.673| 781.881|1087.371|1517.348|2177.446 | 3367.996 [ 6599.911

© 0 N O U A W N

—
[}

Table 4. Values of E(X2,,) for 2a = 1,2,...,10.

T

D
Q

T

1 2 3 4 5 6 7 8 9 10
0.000 0.003 0.017 0.079 0.315 1.176 4.345 17.287 86.833 939.945
0.038 0.240 0.919 2.823 7.727 20.072 52.173| 144.931| 489.061| 3122.016
0.555 2.631 8.033| 20.244| 46.325| 101.705| 224.180| 524.910| 1457.689| 7063.727
3.334| 13.241| 35.086| 78.334| 160.767| 318.643| 635.055| 1338.126| 3288.630| 13328.784
12.700| 44.436| 106.657| 219.002| 416.987| 770.184| 1431.549| 2802.571| 6319.666| 22526.248
36.686| 116.536| 259.751| 501.177| 902.590| 1581.962| 2791.386| 5171.795(10928.674| 35309.443
88.092| 259.105| 544.926|1001.551|1727.107 2905.679| 4922.523| 8733.795|17532.310( 52374.913
185.422( 511.970(1027.136(1815.125(3022.181| 4918.925| 8062.609|13810.171(26584.969| 74461.492
353.708| 926.069|1786.401(3055.634|4941.716| 7825.033|12478.558|20755.457(38577.943|102349.480
625.250(1564.155|2918.356|4855.887|7661.988|11852.958|18466.209|29956.572|54038.710|136859.914

© 00 N O Ot W N =

—
(=)

6. Conclusions

We have derived expressions for moments of chi square order statistics
as finite sums of well known special functions. These expressions are more

efficient than previously known work.
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