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ON THE LAW OF THE ITERATED LOGARITHM

FOR L-STATISTICS WITHOUT VARIANCE
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Abstract

Let {X,Xn; n ≥ 1} be a sequence of i.i.d. random vari-

ables with distribution function F (x). For each positive inte-

ger n, let X1:n ≤ X2:n ≤ · · · ≤ Xn:n be the order statistics of

X1, X2, · · · , Xn. Let H(·) be a real Borel-measurable function de-

fined on R such that E|H(X)| < ∞ and let J(·) be a Lipschitz

function of order one defined on [0, 1]. Write µ = µ(F, J,H) =

E(J(U)H(F←(U))) and Ln(F, J,H) = 1

n

∑n

i=1
J
(

i

n

)

H(Xi:n),

n ≥ 1, where U is a random variable with the uniform (0, 1) dis-

tribution and F←(t) = inf{x; F (x) ≥ t}, 0 < t < 1. In this note,

the Chung-Smirnov LIL for empirical processes and the Einmahl-

Li LIL for partial sums of i.i.d. random variables without variance

are used to establish necessary and sufficient conditions for having

with probability 1: 0 < lim supn→∞

√

n/ϕ(n) |Ln(F, J,H)− µ|

< ∞, where ϕ(·) is from a suitable subclass of the positive, non-

decreasing, and slowly varying functions defined on [0, ∞). The

almost sure value of the limsup is identified under suitable con-

ditions. Specializing our result to ϕ(x) = 2(log log x)p, p > 1 and

to ϕ(x) = 2(log x)r, r > 0, we obtain an analog of the Hartman-

Wintner-Strassen LIL for L-statistics in the infinite variance case.

A stability result for L-statistics in the infinite variance case is

also obtained.
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1. Introduction

Let {X,Xn; n ≥ 1} be a sequence of independent and identically dis-

tributed (i.i.d.) real random variables with distribution function F (x) =

P (X ≤ x), x ∈ R = (−∞,∞) and let {U,Un; n ≥ 1} be a sequence of i.i.d.

random variables with the uniform (0, 1) distribution. For each positive inte-

ger n, let X1:n ≤ X2:n ≤ · · · ≤ Xn:n be the order statistics of X1,X2, · · · ,Xn.

Let H(·) be a real-valued Borel-measurable function defined on R. A linear

combination of order statistics (in short, an L-statistic) is a statistic of the

form

Ln =
1

n

n
∑

i=1

ci,nH(Xi:n)

where the weights ci,n, 1 ≤ i ≤ n are real numbers and n ≥ 1. Define

Lt = logemax{e, t} and LLt = L(Lt) for t ∈ R. The classical Hartman-

Wintner-Strassen law of the iterated logarithm (LIL) states that

lim sup
n→∞

(lim inf
n→∞

)

∑n
i=1 H(Xi)√
2nLLn

=
+

(−) σ almost surely (a.s.) (1.1)

if and only if

EH(X) = 0 and σ2 = EH2(X) < ∞. (1.2)

Moreover, if (1.2) holds, then

C

({

n
∑

i=1

H(Xi)/
√
2nLLn; n ≥ 1

})

= [−σ, σ] a.s., (1.3)

where C ({xn; n ≥ 1}) stands for the cluster set (i.e., the set of limit points)

of the numerical sequence {xn; n ≥ 1}. See Hartman and Wintner (1941)

for the “if” part and Strassen (1966) for the converse. The conclusion (1.3)

is due to Strassen (1964).

Alternative proofs of the Hartman-Wintner (1941) LIL were discovered

by Strassen (1964), Heyde (1969), Egorov (1971), Teicher (1974), Csörgő

and Révész (1981, p. 119), de Acosta (1983), Li (1987), and Einmahl and Li

(2005). Substantially simpler proofs of Strassen’s (1966) converse were ob-

tained by Feller (1968), Heyde (1968), and Steiger and Zaremba (1972). Mar-

tikainen (1980), Rosalsky (1980), and Pruitt (1981) simultaneously and inde-
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pendently obtained a “one-sided” converse to the Hartman-Wintner (1941)

LIL. Specifically, they proved that each part of (1.1) individually implies

(1.2).

Many authors, including Helmers (1977), Helmers, Janssen, and Serfling

(1988), Li, Rao, and Tomkins (2001), Mason (1982), Sen (1978), van Zwet

(1980), and Wellner (1977a,b), have investigated the strong limiting behavior

for a class of L-statistics of the form

Ln(F, J,H) ≡ 1

n

n
∑

i=1

J

(

i

n

)

H(Xi:n), n ≥ 1 (1.4)

where J(·) is a real-valued function, often called a score function, defined

on [0, 1]. Helmers (1977), Mason (1982), Sen (1978), van Zwet (1980), and

Wellner (1977a) have studied the strong law of large numbers (SLLN) for

Ln, n ≥ 1 and have shown that under a variety of conditions on J(·) and

H(·)

lim
n→∞

Ln(FU , J,H)= lim
n→∞

1

n

n
∑

i=1

J

(

i

n

)

H(Ui:n)=

∫ 1

0
J(t)H(t)dt (finite) a.s.,

where FU is the distribution function of the random variable U and Ui:n, 1 ≤
i ≤ n, are the order statistics of the Ui, 1 ≤ i ≤ n, n ≥ 1.

If J(·) is a Lipschitz function of order one defined on [0, 1] and

E|H(X)| < ∞, (1.5)

let us write
{

Z = J(U)H(F←(U)),

Y = −Z + µ−
∫ 1
0 (I(U ≤ t)− t) J ′(t)H(F←(t))dt,

(1.6)

where F←(t) is the quantile function

F←(t) = inf {s; F (s) ≥ t} , 0 < t < 1,

and

µ = µ(F, J,H) = EZ = E (J(U)H(F←(U))) . (1.7)
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Then µ exists and is finite and Y and Z are both well-defined random vari-

ables under (1.5). Moreover,

σ2
Y = Var(Y ) = EY 2. (1.8)

To see this, note that (1.8) is equivalent to

EY = −E

(
∫ 1

0
(I(U ≤ t)− t)J ′(t)H(F←(t))dt

)

= 0. (1.9)

Since E (I(U ≤ t)− t) = 0, (1.9) follows from an application of Fubini’s

theorem, subject to the existence of the integral

I =

∫ 1

0
J ′(t)H(F←(t))dt =

∫ 1

0
H(F←(t))dJ(t) = E

(

J ′(U)H(F←(U))
)

.

But the score function J(·) has an almost everywhere (with respect to

Lebesgue measure) bounded derivative J ′(·). From this fact and the equality

E|H(X)| = E|H(G(U))| < ∞, it follows that I exists and is finite; clearly,

σ2
Y < ∞ if and only if

EZ2 < ∞. (1.10)

Recall that a sequence of random variables {ξn; n ≥ 1} is said to be

bounded in probability if

lim
x→∞

sup
n≥1

P (|ξn| ≥ x) = 0.

Combining the Chung-Smirnov LIL (see Chung (1949) and Smirnov (1944))

and the Finkelstein functional LIL (see Finkelstein (1971)) for empirical pro-

cesses, Li, Rao, and Tomkins (2001, Theorem 2.1) proved that the following

three statements are equivalent:

(1.10) holds;

lim sup
n→∞

√

n/(2LLn) |Ln(F, J,H) − µ| < ∞ a.s.;

{√
n (Ln(F, J,H) − µ) ; n ≥ 1

}

is bounded in probability.
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Moreover, if any of the three statements above holds, then

lim sup
n→∞

(lim inf
n→∞

)
√

n/(2LLn) (Ln(F, J,H) − µ) =
+

(−) σY a.s., (1.11)

C
({

√

n/(2LLn) (Ln(F, J,H) − µ) ; n ≥ 1
})

= [−σY , σY ] a.s., (1.12)

and

√
n (Ln(F, J,H) − µ)

d−→ N(0, σ2
Y ), (1.13)

where “
d−→” denotes convergence in distribution. This powerful result con-

tains many previous results obtained under more restrictive conditions, al-

though it is still not the last word as the authors mention in an open problem

(to weaken the conditions on J(·)). The authors illustrate with examples

that their result can handle some cases that previous results could not; for

example, the Gini mean-difference statistic.

The main purpose of the present note is to find necessary and sufficient

conditions for

0 < lim sup
n→∞

√

n/ϕ(n) |Ln(F, J,H)− µ| < ∞ a.s.,

where ϕ(·) is from a suitable subclass of the positive, nondecreasing, and

slowly varying functions. But we also treat the case where the limit is 0 a.s.

We emphasize that we are not assuming that EZ2 < ∞ where Z is as in

(1.6).

The plan of this note is as follows. Our main results, Theorems 2.1 and

2.2, and their proofs and corollaries are presented in Section 2. The proofs

are obtained via a nice application of the Chung-Smirnov LIL (see Chung

(1949) and Smirnov (1944)) for empirical processes and the Einmahl-Li LIL

(see Einmahl and Li (2005)) for partial sums of i.i.d. random variables with-

out variance. This work of Einmahl and Li (2005) is related to previous work

of Martikainen (1984); it appears that slightly different proofs of Theorems

2.1 and 2.2 can be given using this work of Martikainen (1984) instead of
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that of Einmahl and Li (2005). In Section 3, we provide an example to

illustrate our results.

2. Main Results

Let H be the set of continuous, nondecreasing functions ϕ(·) : [0, ∞) →
(0, ∞), which are slowly varying at infinity. By monotonicity, the slow

variation of ϕ(·) is equivalent to limt→∞ ϕ(et)/ϕ(t) = 1. Very often one

can even show that limt→∞ ϕ(tf(t))/ϕ(t) = 1, where f(·) is a nondecreasing

function such that limt→∞ f(t) = ∞. Set fτ (t) = exp((Lt)τ ), 0 ≤ τ < 1.

Given 0 ≤ q < 1, let Hq ⊂ H be the class of functions ϕ(·) such that

lim
t→∞

ϕ (tfτ (t))

ϕ(t)
= 1, 0 ≤ τ < 1− q

and set H1 = H.

We consider q to be a measure for how slow the slow variation is. So

functions in H0 are the “slowest” and it will turn out that this class is par-

ticulary interesting for LIL type results (see Theorem 2.2 below). Examples

of functions in H0 are ϕ(t) = (Lt)r, r ≥ 0 and ϕ(t) = (LLt)p, p ≥ 0.

The following Theorem 2.1 gives LIL type results when λ > 0 and

stability results when λ = 0 with respect to a large class of normalizing

sequences, without assuming that EZ2 < ∞, where Z is defined in (1.6).

Theorem 2.1. Let {X,Xn; n ≥ 1} be a sequence of i.i.d. random vari-

ables with distribution function F (x) = P (X ≤ x), x ∈ R and let H(·) be a

real-valued Borel-measurable function defined on R satisfying (1.5). Let J(·)
be a Lipschitz function of order one defined on [0, 1] and let Ln(F, J,H), n ≥
1, Z, and µ be defined by (1.4), (1.6), and (1.7), respectively. Given a func-

tion ϕ(·) ∈ Hq where 0 ≤ q ≤ 1, set Ψ(x) =
√

xϕ(x), x ∈ R. If

lim
x→∞

log log x

ϕ(x)
= ∞ (2.1)

and

EΨ−1(|Z|) < ∞ and λ =

√

2 lim sup
x→∞

Ψ−1(xLLx)

x2LLx
E (Z2I{|Z| ≤ x}), (2.2)
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then when λ < ∞ we have

(1− q)1/2λ ≤ lim sup
n→∞

√

n/ϕ(n) |Ln(F, J,H) − µ| ≤ λ a.s. (2.3)

Conversely, if q < 1, then the relation

lim sup
n→∞

√

n/ϕ(n) |Ln(F, J,H) − µ| < ∞ a.s. (2.4)

implies that (2.2) holds with λ < ∞.

Moreover, the limsup in (2.3) is positive and finite if and only if (2.2)

holds with 0 < λ < ∞.

For slowly varying functions ϕ(·) ∈ H0 and λ as in (2.2) with 0 < λ <

∞, we obtain for L-statistics {Ln(F, J,H), n ≥ 1} the following complete

analogue of the Hartman-Wintner-Strassen LIL. Of course, (2.5) follows from

(2.6) but nevertheless it is worthwhile to label them separately.

Theorem 2.2. Assume that H(·) is a real-valued Borel-measurable

function defined on R satisfying (1.5) and that ϕ(·) ∈ H0 satisfies (2.1).

Assume that {X,Xn; n ≥ 1}, J(·), Ln(F, J,H), Z, µ, and Ψ(·) are as in

Theorem 2.1. Let 0 ≤ λ < ∞. Then

lim sup
n→∞

(lim inf
n→∞

)
√

n/ϕ(n) (Ln(F, J,H) − µ) =
+

(−) λ a.s. (2.5)

and

C
({

√

n/ϕ(n) (Ln(F, J,H) − µ) ; n ≥ 1
})

= [−λ, λ] a.s. (2.6)

if and only if condition (2.2) holds.

Remark 2.1. Due to condition (2.1), Theorems 2.1 and 2.2 do not

include as a special case the classical Hartman-Wintner-Strassen LIL for

L-statistics obtained by Li, Rao, and Tomkins (2001, Theorem 2.1). It is

interesting to note that, under the condition (2.1), the limiting behavior

in Theorems 2.1 and 2.2 is determined by the distribution of Z, whereas,

by contrast, the three conclusions (1.11), (1.12), and (1.13) depend on the

distribution of Y , where Y is defined in (1.6).
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Remark 2.2. In general, it is not easy to find F←(t), 0 < t < 1. How-

ever, if the distribution function F (·) of the random variable X is continuous,

then

Z = J(U)H(F←(U))
d
= J(F (X))H(X)

where “
d
=” denotes “equal in distribution”.

Remark 2.3. We conjecture that Theorems 2.1 and 2.2 are still true

without condition (1.5).

Remark 2.4. We note that if EZ2 < ∞, then the constant λ in Theo-

rems 2.1 and 2.2 is simply

λ =

√

2(EZ2) lim sup
x→∞

Ψ−1(xLLx)

x2LLx
.

We shall illustrate Theorem 2.2 by considering the following two special

cases:

Case I. Choose ϕ(x) = 2(LLx)p where p > 1. Then one can check that

lim
x→∞

Ψ−1(xLLx)/(x2LLx)

1/(2(LLx)p−1)
= 1.

Case II. Take ϕ(x) = 2(Lx)r where r > 0. Then one also easily sees

that

lim
x→∞

Ψ−1(xLLx)/(x2LLx)

LLx/(Lx)r
= 1.

Thus, Theorem 2.2 yields the following two results.

Corollary 2.1. Assume that H(·) is a real-valued Borel-measurable

function defined on R satisfying (1.5). Let p > 1. For any constant 0 ≤ λ <

∞, we have:

lim sup
n→∞

(lim inf
n→∞

)

√

n

2(LLn)p
(Ln(F, J,H) − µ) =

+

(−) λ a.s.
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and

C

({
√

n

2(LLn)p
(Ln(F, J,H) − µ) ; n ≥ 1

})

= [−λ, λ] a.s.

if and only if

E

(

Z2

(LL|Z|)p
)

< ∞ and λ =
√

lim sup
x→∞

(LLx)1−pE (Z2I{|Z| ≤ x}).

Corollary 2.2. Assume that H(·) is a real-valued Borel-measurable

function defined on R satisfying (1.5). Let r > 0. For any constant 0 ≤ λ <

∞, we have:

lim sup
n→∞

(lim inf
n→∞

)

√

n

2(Ln)r
(Ln(F, J,H) − µ) =

+

(−) λ a.s.

and

C

({
√

n

2(Ln)r
(Ln(F, J,H) − µ) ; n ≥ 1

})

= [−λ, λ] a.s.

if and only if

E

(

Z2

(L|Z|)r
)

< ∞ and λ =

√

2−r lim sup
x→∞

LLx

(Lx)r
E (Z2I{|Z| ≤ x}).

If condition (2.2) is satisfied with λ = 0, we obtain the following stability

result for L-statistics.

Corollary 2.3. Assume that H(·) is a real-valued Borel-measurable

function defined on R satisfying (1.5). Let ϕ(·) ∈ H and let Ψ(·) be as in

Theorem 2.1. If

EΨ−1(|Z|) < ∞ and lim
x→∞

Ψ−1(xLLx)

x2LLx
E
(

Z2I{|Z| ≤ x}
)

= 0, (2.7)

then

lim
n→∞

√

n/ϕ(n) (Ln(F, J,H)− µ) = 0 a.s. (2.8)
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Moreover, if ϕ(·) ∈ Hq for some 0 ≤ q < 1, then condition (2.7) is necessary

and sufficient for (2.8) to hold.

Proof of Theorems 2.1 and 2.2. Let {U, Un; n ≥ 1} represent a

sequence of i.i.d. random variables with the uniform (0, 1) distribution. Then

it is well known that

{X, Xn; n ≥ 1} d
= {F←(U), F←(Un); n ≥ 1}.

It now follows that

{Xi:n; 1 ≤ i ≤ n, n ≥ 1} d
= {F←(Ui:n); 1 ≤ i ≤ n, n ≥ 1},

where Ui:n, 1 ≤ i ≤ n, are the order statistics of Ui, 1 ≤ i ≤ n. Thus, one

may set without loss of generality Xn = F←(Un) and Xi:n = F←(Ui:n) for

1 ≤ i ≤ n and n ≥ 1. Note that

P (Ui 6= Uj for all 1 ≤ i < j < ∞) = 1.

So we have that

n
∑

i=1

J(
i

n
)H (Xi:n)

=
n
∑

i=1

J(
i

n
)H (F←(Ui:n))

=

n
∑

i=1

J(Ui:n)H (F←(Ui:n))

+
n
∑

i=1

(

J(
i

n
)− J(Ui:n)

)

H (F←(Ui:n))

a.s.
=

n
∑

i=1

J(Ui)H (F←(Ui))

+
n
∑

i=1

(J(Dn(Ui:n))− J(Ui:n))H (F←(Ui:n))

=

n
∑

i=1

J(Ui)H (F←(Ui)) +Rn (say), n ≥ 1

(2.9)

where Dn(t) ≡ n−1
∑n

i=1 I{Ui ≤ t} is the empirical distribution function

of U1, U2, ..., Un. Since J(·) is a Lipschitz function of order one defined on
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[0, 1], there exists a constant 0 ≤ C < ∞, depending on J(·) only, such that

|J(t1)− J(t2)| ≤ C|t1 − t2| uniformly for t1, t2 ∈ [0, 1]. Hence

|Rn| ≤ C max
1≤i≤n

|Dn(Ui:n)− Ui:n|
n
∑

i=1

|H(F←(Ui:n))|

≤ C sup
0≤t≤1

|Dn(t)− t|
n
∑

i=1

|H(F←(Ui))| , n ≥ 1.

Since (1.5) holds, i.e., E|H(F←(U))| = E|H(X)| < ∞, by the Kolmogorov

SLLN, we have

lim
n→∞

∑n
i=1 |H(F←(Ui))|

n
= E|H(X)| a.s.

Note that the Chung-Smirnov LIL for empirical processes (see Chung (1949)

and Smirnov (1944)) states that

lim sup
n→∞

√

n

2LLn
sup

0≤t≤1
|Dn(t)− t| = 1

2
a.s.

Thus, for any given ϕ(·) ∈ H satisfying (2.1), since

|Rn|
√

nϕ(n)
≤ C

√

n

2LLn
sup

0≤t≤1
|Dn(t)− t|×

√

2LLn

ϕ(n)

∑n
i=1 |H(F←(Ui))|

n
, n≥1,

we have

lim
n→∞

Rn
√

nϕ(n)
= 0 a.s. (2.10)

It then follows from (2.9) and (2.10) that, for any given ϕ(·) ∈ H satisfying

(2.1),

lim
n→∞

√

n/ϕ(n)

(

Ln(F, J,H)− n−1
n
∑

i=1

J(Ui)H (F←(Ui))

)

= 0 a.s. (2.11)

It is easy to see that ϕ(·) ∈ Hq and (2.1) imply that Ψ−1(xLLx)
x2LLx is slowly

varying at infinity with

lim
x→∞

Ψ−1(xLLx)

x2LLx
= 0.
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Thus (2.2) with λ < ∞ is equivalent to

EΨ−1(|V |) < ∞ and lim sup
x→∞

Ψ−1(xLLx)

x2LLx
E
(

V 2I{|Z| ≤ x}
)

=
λ2

2
(2.12)

where V = J(U)H(F←(U)) − µ = Z − µ. Then, by Theorem 1 of Einmahl

and Li (2005), (2.12) implies that

(1− q)1/2λ ≤ lim sup
n→∞

√

n/ϕ(n)

∣

∣

∣

∣

∑n
i=1 J(Ui)H(F←(Ui))

n
− µ

∣

∣

∣

∣

≤ λ a.s.

(2.13)

and (2.3) follows from (2.11) and (2.13).

Conversely, by Theorem 1 of Einmahl and Li (2005), if 0 ≤ q < 1, then

the relation

lim sup
n→∞

√

n/ϕ(n)

∣

∣

∣

∣

∑n
i=1 J(Ui)H(F←(Ui))

n
− µ

∣

∣

∣

∣

< ∞ a.s. (2.14)

implies that (2.12) holds with λ < ∞ and, moreover, the lim sup in (2.14) is

positive if and only if (2.12) holds with 0 < λ < ∞. Thus combining (2.4)

and (2.11) yields (2.14) and hence (2.12) holds with λ < ∞. As was noted

above, (2.2) with λ < ∞ is equivalent to (2.12), and the last assertion in

Theorem 2.1 is now immediate.

Similarly, if ϕ(·) ∈ H0 and (2.1) holds then by combining Theorem 2 of

Einmahl and Li (2005) and (2.11), the proof of Theorem 2.2 follows. �

3. An Interesting Example

In this section, we shall provide an example to illustrate our results.

Example. Take J(t) = 4t− 2, 0 ≤ t ≤ 1, and H(x) = x, x ∈ R. Then

the L-statistic

Ln(F, J,H) =
1

n

n
∑

i=1

(

4 · i
n
− 2

)

Xi:n
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is related to Gini’s mean difference,

2

n(n− 1)

∑

1≤i<j≤n

|Xi −Xj | =
1

n

n
∑

i=1

(

4 · i− 1

n− 1
− 2

)

Xi:n,

which is a well-known U -statistic for unbiased estimation of the dispersion

parameter

θ = E(|X1 −X2|);

see, e.g., Serfling (1980, p. 263) or Shorack and Wellner (1986, p. 676). Li,

Rao, and Tomkins (2001, Theorem 3.3) established analogues of the classical

SLLN, LIL, and central limit theorem for Gini’s mean difference. Given a

function ϕ(·) ∈ Hq satisfying (2.1) where 0 ≤ q ≤ 1, let Ψ(·) be as in

Theorem 2.1. Then it is easy to check that, for any constant 0 ≤ λ < ∞,

(2.2) holding with Z = (4U − 2)F←(U) is equivalent to

EΨ−1(|X|) < ∞ and lim sup
x→∞

Ψ−1(xLLx)

x2LLx
E
(

Z2I{|Z| ≤ x}
)

=
λ2

2
. (3.1)

Note that µ = EZ = E|X1 −X2| = θ and that

lim sup
n→∞

2

n(n− 1)

∑

1≤i<j≤n

|Xi −Xj | < ∞ a.s.

if and only if

E|X| < ∞;

see Li, Rao, and Tomkins (2001, Theorem 3.3(i)). So, under (3.1), we have

(1− q)1/2λ ≤ lim sup
n→∞

√

n

ϕ(n)

∣

∣

∣

∣

∣

∣

2

n(n− 1)

∑

1≤i<j≤n

|Xi −Xj | − θ

∣

∣

∣

∣

∣

∣

≤ λ a.s.

Conversely, if q < 1, then the relation

lim sup
n→∞

√

n

ϕ(n)

∣

∣

∣

∣

∣

∣

2

n(n− 1)

∑

1≤i<j≤n

|Xi −Xj | − θ

∣

∣

∣

∣

∣

∣

< ∞ a.s. (3.2)

implies that (3.1) holds with λ < ∞. Moreover, the lim sup in (3.2) is
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positive if and only if (3.1) holds with 0 < λ < ∞. If q = 0, then for any

constant 0 ≤ λ < ∞,

lim sup
n→∞

(lim inf
n→∞

)

√

n

ϕ(n)





2

n(n− 1)

∑

1≤i<j≤n

|Xi −Xj | − θ



 =
+

(−) λ a.s.

and

C











√

n

ϕ(n)





2

n(n− 1)

∑

1≤i<j≤n

|Xi −Xj| − θ



 ; n ≥ 1









 = [−λ, λ] a.s.

if and only if condition (3.1) holds.
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42(1980), 103-108.

20. P. K. Sen, An invariance principle for linear combinations of order statistics, Z.

Wahrsch. verw. Gebiete, 42 (1978), 327-340.

21. R. J. Serfling, Approximation Theorems of Mathematical Statistics, John Wiley,

New York, 1980.

22. G. R. Shorack and J. A. Wellner, Empirical Processes with Applications to Statis-

tics, Wiley, New York, 1986.

23. N. V. Smirnov, An approximation to distribution laws of random quantities de-

termined by empirical data, Uspehi Matem. Nauk., 10(1944), 179-206 (in Russian).

24. W. L. Steiger and S. K. Zaremba, The converse of the Hartman-Wintner theorem,

Z. Wahrsch. Verw. Gebiete, 22 (1972), 193-194.

25. V. Strassen, An invariance principle for the law of the iterated logarithm, Z.

Wahrsch. Verw. Gebiete, 3(1964), 211-226.

26. V. Strassen, A converse to the law of the iterated logarithm, Z. Wahrsch. Verw.

Gebiete, 4(1966), 265-268.



432 DELI LI, DONG LIU AND ANDREW ROSALSKY [September

27. H. Teicher, On the law of the iterated logarithm, Ann. Probab., 2 (1974), 714-728.

28. W. R. van Zwet, A strong law for linear functions of order statistics, Ann. Probab.,

8 (1980), 986-990.

29. J. A. Wellner, A Glivenko-Cantelli theorem and strong laws of large numbers for

functions of order statistics, Ann. Statist., 5 (1977a), 473-480.

30. J. A. Wellner, A law of the iterated logarithm for functions of order statistics,

Ann. Statist., 5 (1977b), 481-494.

Department of Mathematical Sciences, Lakehead University, Thunder Bay, Ontario, P7B

5E1, Canada.

E-mail: dli@lakeheadu.ca

Department of Mathematical Sciences, Lakehead University, Thunder Bay, Ontario, P7B

5E1, Canada.

Department of Statistics, University of Florida, Gainesville, FL 32611, U.S.A.

E-mail: rosalsky@stat.ufl.edu


	1. Introduction
	2. Main Results
	3. An Interesting Example

