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FACTORS FOR |N̄, pn, θn|k SUMMABILITY

OF FOURIER SERIES

BY

HÜSEYİN BOR

Abstract

In the present paper, the author presents a generalization

of some known results on the |N̄, pn|k summability factors for the

|N̄ , pn, θn|k summability factors. Some new results have also been

obtained.

1. Introduction

Let
∑

an be a given infinite series with partial sums (sn). We denote

by tn the n-th (C, 1) mean of the sequence (nan). A series
∑

an is said to

be summable |C, 1|k , k ≥ 1 , if (see [4, 6])

∞
∑

n=1

1

n
|tn|

k < ∞. (1)

Let (pn) be a sequence of positive numbers such that

Pn =

n
∑

v=0

pv → ∞ as n → ∞, (P−i = p−i = 0, i ≥ 1). (2)

The sequence-to-sequence transformation

σn =
1

Pn

n
∑

v=0

pvsv (3)
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defines the sequence (σn) of the Riesz mean or simply the (N̄ , pn) mean of

the sequence (sn), generated by the sequence of coefficients (pn) (see [5]).

The series
∑

an is said to be summable |N̄ , pn|k, k ≥ 1, if (see [1])

∞
∑

n=1

(Pn/pn)
k−1|∆σn−1|

k < ∞, (4)

where

∆σn−1 = −
pn

PnPn−1

n
∑

v=1

Pv−1av, n ≥ 1. (5)

In the special case pn = 1 for all values of n |N̄ , pn|k summability is the same

as |C, 1|k summability.

Let (θn) be any sequence of positive real constants. The series
∑

an is

said to be summable |N̄ , pn, θn|k, k ≥ 1, if (see [8])

∞
∑

n=1

θk−1
n |∆σn−1|

k < ∞. (6)

In the special case if we take θn = Pn

pn
, then |N̄ , pn, θn|k summability reduces

to |N̄ , pn|k summability. Also if we take θn = n and pn = 1 for all values

of n, then we get |C, 1|k summability. Furthermore if we take θn = n, then

|N̄ , pn, θn|k summability reduces to |R, pn|k (see [3]) summability.

Let f(t) be a periodic function with period 2π and integrable (L) over

(−π, π). Without any loss of generality we may assume that the constant

term in the Fourier series of f(t) is zero, so that

∫ π

−π

f(t) dt = 0 (7)

and

f(t) ∼
∞
∑

n=1

(an cosnt+ bn sinnt) =
∞
∑

n=1

An(t). (8)

We write

ϕ(t) =
1

2
{f(x+ t) + f(x− t)} , ϕ1(t) =

1

2

∫ t

0

ϕ(u) du.
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2. Known Results

In [7] Mishra has proved two theorems for |N̄ , pn| summability factors.

Later on, Bor [2] has generalized these theorems for |N̄ , pn|k summability

factors in the following forms.

Theorem A. Let (pn) be a sequence such that

Pn = O(npn) (9)

Pn∆pn = O(pn pn+1). (10)

If ϕ1(t) is of bounded variation in (0, π) and (λn) is a sequence such that

∞
∑

n=1

1

n
|λn|

k < ∞ (11)

and

∞
∑

n=1

|∆λn| < ∞, (12)

then the series
∑

An(t)
Pnλn

npn
is summable

∣

∣N̄ , pn
∣

∣

k
, k ≥ 1.

Theorem B. If the sequences (pn) and (λn) satisfy the conditions (9)−(12)

of Theorem A and

Bn ≡

n
∑

v=1

vav = O(n), (13)

then the series
∑

an
Pnλn

npn
is summable |N̄ , pn|k, k ≥ 1.

3. Main results.

The aim of this paper is to generalize Theorem A and Theorem B for

|N̄ , pn, θn|k summability methods.

Now we shall prove the following theorems.

Theorem 1. Let (θnpn
Pn

) be a non-increasing sequence. If all conditions
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of Theorem A are satisfied with the condition (11) replaced by;

∞
∑

n=1

θk−1
n n−k|λn|

k < ∞, (14)

then the series
∑

An(t)
Pnλn

npn
is summable |N̄ , pn, θn|k, k ≥ 1.

Theorem 2. If the conditions (9)−(10) and (12)−(14) are satisfied and

(θnpn
Pn

) is a non-increasing sequence, then the series
∑

an
Pnλn

npn
is summable

|N̄ , pn, θn|k, k ≥ 1.

Remark. It should be noted that if we take θn = Pn

pn
in Theorem 1 and

Theorem 2, then we get Theorem A and Theorem B, respectively. In this

case the condition (θnpn
Pn

) which is a non-increasing sequence is automatically

satisfied and condition (14) reduces to condition (11).

We need the following lemmas for the proof of our Theorems.

Lemma 1([7]). If ϕ1(t) is of bounded variation in (0, π), then

∑

vAv(x) = O(n) as n → ∞.

Lemma 2([2]). If the sequence (pn) such that conditions (9) and (10)

of Theorem A are satisfied, then

∆
{ Pn

pnn2

}

= O
( 1

n2

)

.

4. Proof of Theorem 2.

Let (Tn) denotes the (N̄ , pn) mean of the series
∑

anPnλn(npn)
−1.

Then, by definition, we have

Tn =
1

Pn

n
∑

v=0

pv

v
∑

r=0

arPrλr(rpr)
−1

=
1

Pn

n
∑

v=0

(Pn − Pv−1)avPvλv(vpv)
−1.
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Then, for n ≥ 1, we have

Tn − Tn−1 =
pn

PnPn−1

n
∑

v=1

Pv−1avPvλv(vpv)
−1.

By Abel’s transformation, we have

Tn − Tn−1 = Bn λnn
−2 − pn(PnPn−1)

−1

n−1
∑

v=1

pvPvBvλv(v
2pv)

−1

+pn(PnPn−1)
−1

n−1
∑

v=1

PvPv∆λvBv(v
2pv)

−1

+pn(PnPn−1)
−1

n−1
∑

v=1

PvBvλv+1∆
{ Pv

v2pv

}

= Tn,1 + Tn,2 + Tn,3 + Tn,4, say.

To prove the theorem, by Minkowski’s inequality, it is sufficient to show that

∞
∑

n=1

θk−1
n |Tn,r|

k < ∞, for r = 1, 2, 3, 4.

Firstly, we have that

m
∑

n=1

θk−1
n |Tn,1|

k =
m
∑

n=1

θk−1
n |λn|

k|Bn|
kn−2k

= O(1)

m
∑

n=1

θk−1
n |λn|

knk n−2k

= O(1)

m
∑

n=1

θk−1
n n−k|λn|

k

= O(1) as m → ∞,

by (13) and (14).

Now, applying Hölder’s inequality, we have that

m+1
∑

n=2

θk−1
n |Tn,2|

k =

m+1
∑

n=2

θk−1
n

( pn
Pn

)k 1

P k
n−1

|

n−1
∑

v=1

pvPvBvλv

v2pv
|k



404 HÜSEYİN BOR [September

≤
m+1
∑

n=2

θk−1
n

( pn
Pn

)k 1

Pn−1

n−1
∑

v=1

pv

{Pv|Bv||λv |

v2pv

}k

×
{ 1

Pn−1

n−1
∑

v=1

pv

}k−1

= O(1)

m
∑

v=1

pv|λv|
k
{Pv

pv

}k

vkv−2k

m+1
∑

n=v+1

(θnpn
Pn

)k−1 pn
PnPn−1

= O(1)

m
∑

v=1

pv|λv|
k
{Pv

pv

}k

v−k
(θvpv

Pv

)k−1
m+1
∑

n=v+1

pn
PnPn−1

= O(1)

m
∑

v=1

|λv |
k
{Pv

pv

}k−1

v−k
(θvpv

Pv

)k−1

= O(1)

m
∑

v=1

θk−1
v v−k|λv |

k = O(1) as m → ∞,

by (13) and (14). On the other hand, since

n−1
∑

v=1

Pv |∆λv| ≤ Pn−1

n−1
∑

v=1

|∆λv| ⇒
1

Pn−1

n−1
∑

v=1

Pv|∆λv| ≤

n−1
∑

v=1

|∆λv| = O(1),

by (12), we have that

m+1
∑

n=2

θk−1
n |Tn,3|

k ≤
m+1
∑

n=2

θk−1
n

( pn
Pn

)k 1

P k
n−1

∣

∣

∣

n−1
∑

v=1

PvPvBv∆λv

v2pv

∣

∣

∣

k

≤

m+1
∑

n=2

θk−1
n

( pn
Pn

)k 1

Pn−1

n−1
∑

v=1

Pv∆λv

{Pv |Bv|

v2pv

}k

×
{ 1

Pn−1

n−1
∑

v=1

Pv|∆λv|
}k−1

= O(1)

m
∑

v=1

|Bv |
kv−2k

{Pv

pv

}k

Pv|∆λv|

m+1
∑

n=v+1

(θnpn
Pn

)k−1

×
pn

PnPn−1

= O(1)

m
∑

v=1

vkv−2kvk|∆λv|
(θvpv

Pv

)k−1
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= O(1)
(θ1p1

P1

)k−1
m
∑

v=1

|∆λv|

= O(1)

m
∑

v=1

|∆λv| = O(1) as m → ∞,

in view of (9), (12) and (13).

Finally, using the fact that ∆{ Pv

v2pv
} = O( 1

v2
) by Lemma 2, we get

m+1
∑

n=2

θk−1
n |Tn,4|

k ≤
m+1
∑

n=2

θk−1
n

(

pn
Pn

)k 1

P k
n−1

{

n−1
∑

v=1

Pv |Bv|λv+1∆
{ Pv

v2pv

}

}k

= O(1)
m+1
∑

n=2

θk−1
n

( pn
Pn

)k 1

P k
n−1

{

n−1
∑

v=1

pv
Pv

v2pv
|Bv||λv+1|

}k

= O(1)

m−1
∑

n=2

θk−1
n

( pn
Pn

)k 1

Pn−1

n−1
∑

v=1

(Pv

pv

)k

pv|λv+1|
kv−2k

×|Bv|
k
{ 1

Pn−1

n−1
∑

v=1

pv

}k−1

= O(1)

m
∑

v=1

(Pv

pv

)k

pv|λv+1|
kv−2kvk

m+1
∑

n=v+1

(θnpn
Pn

)k−1

×
pn

PnPn−1

= O(1)

m
∑

v=1

(Pv

pv

)k−1

v−k|λv+1|
k
(θvpv

Pv

)k−1

= O(1)
m
∑

v=1

θk−1
v v−k|λv+1|

k = O(1) as m → ∞,

by (13) and (14). Therefore, we get that

m
∑

n=1

θk−1
n |Tn,r|

k = O(1) as m → ∞, for r = 1, 2, 3, 4.

This completes the proof of Theorem 2.

Proof of Theorem 1. Theorem 1 is a direct consequence of Theorem

2 and Lemma 1. If we take pn = 1 and θn = n in Theorem 1 and Theorem
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2, then we get the following corollaries. It should be noted that, in this case

condidtion (14) reduces to condition (11).

Corollary 1. If ϕ1(t) is of bounded variation in (0, π) and (λn) is a

sequence such that conditions (11) and (12) are satisfied, then the series
∑

An(t)λn, at t = x is summable |C, 1|k, k ≥ 1.

Corollary 2. If the conditions (11)−(13) are satisfied, then the series
∑

anλn is summable |C, 1|k, k ≥ 1.
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