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EXACT STRONG LAWS FOR SIMULTANEOUS

ST. PETERSBURG GAMES

BY

ANDRÉ ADLER

This paper is written in memory of Professor Sándor Csörgő who passed

away on February 14, 2008. Sándor was both a mentor and a friend. I will

miss him.

Abstract

Herein we show a simple way to make the St. Petersburg

Game fair for both Peter and Paul. By just considering the min-

imum of two simultaneous games we establish a way that could

easily have been understood three centuries ago. Similarly, we

show how to play the St. Petersburg Game by observing the max-

imum of two concurrent games. After showing how to make this

fair for both Peter and Paul by playing two games at a time we

extend this so that they can play m simultaneous St. Petersburg

Games.

1. Introduction

We let X denote the winnings of Paul in a generalized St. Petersburg

Game. By a generalized St. Petersburg Game it is understood that the coin

may be biased where p is the probability that heads appears on any one toss.

Thus P{X = q−n} = pqn−1 with 0 < q = 1 − p < 1. We play this game

repeatedly and the goal has always been to figure a way to make this game

fair for both Peter (the house) and Paul (the player). The problem is that

Paul’s expectation is infinite. This created the paradox three hundred years
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ago, see Csorgo and Simons (2006). It was clear that if a game had a finite

expectation then the player should pay the house that amount for each play

of that game. But once the expectation became infinite a fair entrance fee

was no longer possible. What was not understood three hundred years ago

was that the first moment of the random variable associated with the St.

Petersburg Game was barely infinite. Which meant that a weighted strong

law could be established, making it fair for both Peter and Paul, see Adler

and Rosalsky (1989).

By fair we want to find a cumulative entrance fee, say bN , that Paul

would pay by the N th play so that the sum of his winnings,
∑N

n=1Xn, would

balance in the sense that
∑N

n=1Xn/bN converges to one in some way. In

Feller (1968), page 252, there is a solution in the weak sense, i.e., convergence

in probability. But that isn’t an acceptable way to play this game since the

almost sure upper limit is infinite while the almost sure lower limit is finite.

It turns out that these almost sure lower limits are the same as the weak law

limits, see Adler (1990). But from this weak law and Adler and Wittmann

(1994) we know that there is a weighted strong law that will make this game

fair for everyone, see Adler (2000). These strong laws only apply to these

type of random variables, those barely with or without finite means, see

Klass and Teicher (1977), of which our random variable X just happens to

be one of them. Similarly the weights must be of the order n−1. A strong law

cannot exist whenever we observed sums of i.i.d. random variables whenever

the common mean is zero or infinite, see Chow and Robbins (1961). So, in

those cases we are forced to look at weighted sums of our winnings. In

the weighted case, Paul’s winnings after N plays is
∑N

n=1 anXn while his

entrance fee is still bN .

Now we turn to a different way to solve this game. The motivation

comes from Csorgo and Simons (2005). In that paper they looked at order

statistics from the St. Petersburg distribution. In this paper we look at

simultaneous games and repeat that process. With just two simultaneous

games we see how the Bernoulli’s could easily have played this game making

both Peter and Paul happy, see Theorem 1.

The key here is to examine the minimum of two simultaneous games.

Let X1 and X2 be i.i.d. copies of X. Then set W(2) = X1 ∧X2. We do this

repeatedly obtaining the sequence W(2)n. Similarly, we will establish strong

laws with the max of our simultaneous games, M(2) = X1∨X2. But that will
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require our unusual weighted strong laws, since the distribution of the max

is similar to that of the underlying distribution, see Adler (2003). However,

with the minimum there is no need to use our exact strong laws.

The distribution of W(2) is

P{W(2)=q−n} = 2P{X1=q−n}P{X2 > q−n}+P{X1=q−n}P{X2=q−n}

= 2pqn−1
[

1− P{X2 ≤ q−n}
]

+ [pqn−1]2

= 2pqn−1

[

1−
n
∑

j=1

pqj−1

]

+ [pqn−1]2

= 2pqn−1
[

1− (1− qn)
]

+ [pqn−1]2

= 2pqn−1
[

qn
]

+ [pqn−1]2

= pq2n−2(p + 2q)

and the distribution of M(2) is

P{M(2)=q−n} = 2P{X1=q−n}P{X2<q−n}+P{X1=q−n}P{X2=q−n}

= 2pqn−1
n−1
∑

j=1

pqj−1 + [pqn−1]2

= 2pqn−1(1− qn−1) + p2q2n−2

= pqn−1
[

2− (2− p)qn−1
]

.

Now, the mean of W(2) is

EW(2) =

∞
∑

n=1

q−npq2n−2(p + 2q) = (p + 2q)p

∞
∑

n=1

qn−2

=
(p+ 2q)p

q

∞
∑

n=0

qn =
p+ 2q

q
.

Hence our first result could have easily been established three hundred years

ago.

Theorem 1. limN→∞

∑N
n=1 W(2)n

N
= p+2q

q
almost surely.

Thus by playing two games at the same time we can find a simple way

that both Peter and Paul will be interested in playing. As for the max of

two simultaneous games, in order to make that fair for both Peter and Paul
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we are required to use our work on exact strong laws. Before we proceed,

two comments about our notation are in order. The first is that we set

lg x = log (max{e, x}) so that we avoid dividing by zero. The second is that

the constant C will be used as a generic upper bound that is not necessarily

the same in each appearance.

Theorem 2. For all β > 0 we have

lim
N→∞

∑N
n=1

(lgn)β−2

n
M(2)n

(lgN)β
=

2p

q(lg q−1)β
almost surely.

Proof. Let an = (lg n)β−2/n, bn = (lg n)β and cn = bn/an = n(lg n)2.

We also need to define a sequence of integers, kn, such that

(q−1)kn ≤ cn < (q−1)kn+1.

Next, we partition our random variables in the usual way

1

bN

N
∑

n=1

anM(2)n

=
1

bN

N
∑

n=1

an
[

M(2)nI(1 ≤ M(2)n ≤ cn)−EM(2)nI(1 ≤ M(2)n ≤ cn)
]

+
1

bN

N
∑

n=1

anM(2)nI(M(2)n > cn)

+
1

bN

N
∑

n=1

anEM(2)nI(1 ≤ M(2)n ≤ cn).

The truncated second moment of the maximum of two St. Petersburg

games is

EM2
(2)I(1 ≤ M(2) ≤ cn) =

kn
∑

k=1

(

q−1
)2k

pqk−1
[

2− (2− p)qk−1
]

≤ 2p

kn
∑

k=1

q−k−1 ≤ Cq−kn.

Hence the first term vanishes almost surely by the Khintchine-Kolmogorov
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Convergence Theorem, see page 113 of Chow and Teicher (1997), and Kro-

necker’s lemma since

∞
∑

n=1

1

c2n
EM2

(2)nI(1 ≤ M(2)n ≤ cn) ≤ C

∞
∑

n=1

q−kn

c2n

≤ C
∞
∑

n=1

1

cn
= C

∞
∑

n=1

1

n(lg n)2
< ∞.

As for the second term we have

P{M(2)n > cn} ≤ P{M(2) > q−kn} = 1− P{M(2) ≤ q−kn}

= 1−
kn
∑

k=1

pqk−1
[

2− (2 − p)qk−1
]

= 1− 2p

kn
∑

k=1

qk−1 + (2− p)p

kn
∑

k=1

q2(k−1)

= 1− 2(1 − qkn) + (1− q2kn) = 2qkn − q2kn

thus the second term vanishes, with probability one, by the Borel-Cantelli

lemma since

∞
∑

n=1

P{M(2)n > cn} ≤ C
∞
∑

n=1

qkn ≤ C
∞
∑

n=1

1

cn
< ∞.

Now, for the expectation of the truncated first moment

EM(2)nI(1 ≤ M(2)n ≤ cn) =

kn
∑

k=1

(

q−1
)k
pqk−1

[

2− (2− p)qk−1
]

=

kn
∑

k=1

2pq−1 − (2− p)p

kn
∑

k=1

qk−2

= 2pq−1kn − (2− p)pq−1
kn
∑

k=1

qk−1

= 2pq−1kn − (2− p)q−1
(

1− qkn
)

∼ 2pq−1kn.

Since lg cn ∼ kn lg(q
−1) and lg cn ∼ lg n we have

EM(2)nI(1 ≤ M(2)n ≤ cn) ∼
2p lg n

q lg(q−1)
.
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Therefore

∑N
n=1 anEM(2)nI(1 ≤ M(2)n ≤ cn)

bN
∼

(

2p

q lg(q−1)

)
∑N

n=1
(lgn)β−1

n

(lgN)β

→
2p

q lg(q−1)β

which completes the proof. �

We next extend this last result to m games. Here we are playing m

games repeatedly and looking at the maximum times it takes to see a head

in these independent games. Thus the distribution of M(m) is

P{M(m) ≤ q−n} = (1− qn)m

since M(m) = X1 ∨X2 ∨ · · · ∨Xm with each Xi being i.i.d. copies of X and

P{X ≤ q−n} =
n
∑

i=1

pqi−1 = p
n−1
∑

i=0

qi = 1− qn.

Using that, we have

P{M(m) = q−n} = P{M(m) ≤ q−n} − P{M(m) ≤ q−(n−1)}

= (1− qn)m − (1− qn−1)m

=

m
∑

j=0

(

m

j

)

(−qn)j −

m
∑

j=0

(

m

j

)

(−qn−1)j

=
m
∑

j=1

(

m

j

)

(−1)j
[

qnj − qnj−j
]

=
m
∑

j=1

(

m

j

)

(−1)jqnj
[

1− q−j
]

.

Next, we establish a generalization of Theorem 2 to m simultaneous

games.

Theorem 3. For all β > 0 we have

lim
N→∞

∑N
n=1

(lgn)β−2

n
M(m)n

(lgN)β
=

mp

q(lg q−1)β
almost surely.
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Proof. As in the last proof, let an = (lg n)β−2/n, bn = (lg n)β, cn =

bn/an = n(lg n)2 and define kn such that (q−1)kn ≤ cn < (q−1)kn+1.

The usual partition of M(m)n suffices

1

bN

N
∑

n=1

anM(m)n

=
1

bN

N
∑

n=1

an
[

M(m)nI(1 ≤ M(m)n ≤ cn)− EM(m)nI(1 ≤ M(m)n ≤ cn)
]

+
1

bN

N
∑

n=1

anM(m)nI(M(m)n > cn)

+
1

bN

N
∑

n=1

anEM(m)nI(1 ≤ M(m)n ≤ cn).

The first term almost surely disappears since

EM2
(m)I(1 ≤ M(m) ≤ cn) =

kn
∑

k=1

(

q−1
)2k

m
∑

j=1

(

m

j

)

(−1)jqkj(1− q−j)

=

m
∑

j=1

(

m

j

)

(−1)j(1− q−j)

kn
∑

k=1

(

qj−2
)k

≤
m
∑

j=1

(

m

j

)

(−1)j+1(q−j − 1)

kn
∑

k=1

q−k

≤

m
∑

j=1

(

m

j

)

q−j

kn
∑

k=1

q−k ≤ C

m
∑

j=1

(

m

j

)

q−jq−kn

≤ Cq−kn

allowing

∞
∑

n=1

1

c2n
EM2

(m)nI(1 ≤ M(m)n ≤ cn) ≤ C
∞
∑

n=1

q−kn

c2n
≤ C

∞
∑

n=1

1

cn

= C

∞
∑

n=1

1

n(lg n)2
< ∞.
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As for the second term, we have

P{M(m)n > cn} ≤ P{M(m)n > q−kn} = 1− P{M(m)n ≤ q−kn}

= 1−

[

P{X ≤ q−kn}

]m

= 1− (1− qkn)m

= 1−

m
∑

j=0

(

m

j

)

(−1)jqknj =

m
∑

j=1

(

m

j

)

(−1)j+1qknj

≤
m
∑

j=1

(

m

j

)

qknj

hence

∞
∑

n=1

P{M(m)n > cn} ≤

∞
∑

n=1

m
∑

j=1

(

m

j

)

qknj =

m
∑

j=1

(

m

j

)

q−j

∞
∑

n=1

q(kn+1)j

≤

m
∑

j=1

(

m

j

)

q−j

∞
∑

n=1

[

1

n(lg n)2

]j

< ∞.

Finally, our truncate first moment is

EM(m)nI(1 ≤ M(m)n ≤ cn) =

kn
∑

k=1

(q−1)k
m
∑

j=1

(

m

j

)

(−1)jqkj(1− q−j)

=
m
∑

j=1

(

m

j

)

(−1)j(1− q−j)

kn
∑

k=1

q−kqkj

=
mp

q
kn +

m
∑

j=2

(

m

j

)

(−1)j(1− q−j)

kn
∑

k=1

(qj−1)k

∼
mp

q
kn ∼

mp

q(lg q−1)
lg n

since

∣

∣

∣

∣

∣

m
∑

j=2

(

m

j

)

(−1)j(1− q−j)
kn
∑

k=1

(qj−1)k

∣

∣

∣

∣

∣

≤ C
m
∑

j=2

(

m

j

) kn
∑

k=1

(qj−1)k

≤ C
m
∑

j=2

(

m

j

) ∞
∑

k=0

qk

≤ C

m
∑

j=2

(

m

j

)

= O(1).
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Putting this all together we have

EM(m)nI(1 ≤ M(m)n ≤ cn) ∼
mp lgn

q lg(q−1)

thus

∑N
n=1 anEM(m)nI(1 ≤ M(m)n ≤ cn)

bN
∼

(

mp

q lg(q−1)

)
∑N

n=1
(lgn)β−1

n

(lgN)β

→
mp

q lg(q−1)β

which completes the proof. �

Naturally one can play m concurrent games and observe the minimum

of those games. But as it was shown in Theorem 1, all we need is two games

to make the St. Petersburg Game fair for both Peter and Paul when using

the minimum as a criteria.
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