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Abstract

In this article, we study delay differential equations having

forms

x′ (t) + P (t) x (t− τ )−Q (t)x (t− σ) = 0

[x (t)−R (t) x (t− ρ)]′ + P (t)x (t− τ ) = 0

and

[x (t)−R (t)x (t− ρ)]′ + P (t) x (t− τ )−Q (t)x (t− σ) = 0,

where P,Q,R ∈ C
(

[t0,∞) ,R+
)

and τ, σ, ρ ≥ 0. We use recursive

methods to obtain new oscillation criterions.

1. Introduction

In the recent years, the oscillation theory of delay differential equations

has grown rapidly. It is a relatively new field with interesting applications

from the real world. In fact, delay differential equations appear in modeling

of the problems as population dynamics and transformation of information.

We refer readers to [1]-[41] for theorical studies on this subject.

Received May 28, 2007 and in revised form August 10, 2007.

AMS Subject Classification: 34K40, 34K99, 34C10.

Key words and phrases: Delay, differential equation, neutral, oscillation.

293



294 BAŞAK KARPUZ AND ÖZKAN ÖCALAN [June

In [21], G. Ladas and Y. G. Sficas obtained every solution of

x′ (t) + px (t− τ)− qx (t− σ) = 0 (1)

is oscillatory when

τ ≥ σ ≥ 0,

p > q ≥ 0,

q (τ − σ) ≤ 1,

(p− q) > 1
e
(1− q (τ − σ)) .

(2)

Also, A. Faiz studied (1) and obtained new results in [11].

First study of the equation (1) with continuous coefficients

x′ (t) + P (t)x (t− τ)−Q (t)x (t− σ) = 0 (3)

was done in [23] by G. Ladas and C. Qian of which solutions are oscillatory

under conditions

P,Q ∈ C ([t0,∞) ,R+) ,

τ ≥ σ ≥ 0,

P̄ (t) := P (t)−Q (t− τ + σ) ≥ 0,
∫ t

t−τ+σ
Q (s) ds ≤ 1,

(4)

lim inf
t→∞

∫ t

t−τ

P̄ (s) ds >
1

e
(5)

or

lim sup
t→∞

∫ t

t−τ

P̄ (s) ds > 1.

Furthermore, J. Shen and X. Tang improved the condition (5) by replacing

lim inf
t→∞

Pi (t) >
1
ei
, i ∈ N, (6)

where

Pi (t) :=







1, t ≥ t0, i = 0
∫ t

t−τ

P̄ (s)

(

1+

∫ s

s−τ+σ

Q(u−τ)du

)

Pi−1(s)ds, t≥ t0+iτ, i∈N
(7)

in [34].
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Oscillatory behavior of

[x (t)− rx (t− ρ)]′ + px (t− τ) = 0 (8)

is investigated by many authors. We improve the result of [22] by G. Ladas

and Y. G. Sficas holding

1 ≥ r ≥ 0, p ≥ 0,

p (τ − ρ) > 1
e
(1− r)

(9)

conditions for oscillation. Also, the case including continuous functions as

coefficients

[x (t)−R (t)x (t− ρ)]′ + P (t)x (t− τ) = 0 (10)

have been studied by I. Kubiaczyk, S. H. Saker and J. Morchalo in [18], J.

S. Yu , M. P. Chen and H. Zhang in [40], K. A. Dib and R. M. Mathsen in

[4].

The equation

[x (t)−R (t)x (t− ρ)]′ + P (t) x (t− τ)−Q (t)x (t− σ) = 0 (11)

is also studied by many authors. J. H. Shen and L. Debnath in [35] by

getting rid of the known condition

∫

∞

t0

P̄ (s) ds = ∞,

showed that all solutions of (11) are oscillatory when

P,Q,R ∈ C ([t0,∞) , R
+) ,

ρ ≥ 0, τ ≥ σ ≥ 0,

R (t) ≥ 0, P̄ (t) ≥ 0

(12)

and

R (t) +

∫ t

t−τ+σ

Q (s) ds ≡ 1,

∫

∞

t0

P̄ (s) e
1

δ

∫ s

t0
uP̄ (u)du

ds = ∞, δ = max {ρ, τ} .
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Also, most of the known papers require

R (t) +

∫ t

t−τ+σ

Q (s) ds ≤ 1 (13)

and (5). For instance, Z. Luo, J. Shen and X. Liu in [27].

We call a solution of a delay differential equation non-oscillatory if the

function satisfying the equation for t ≥ t0 has eventually constant sign,

otherwise we call the function oscillatory. And when we write an expression,

we assume that it holds eventually.

2. Improved Oscillation Criterion for (3)

In this section, we build new oscillation criterion for (3) and without

furthermore mentioning, we assume (4) holds.

The following well-known lemma is from [14].

Lemma 1. Assume that x (t) is an eventually positive solution of (3)

and (4) holds. Then

z (t) := x (t)−
∫ t

t−τ+σ

Q (s)x (s− σ) ds (14)

satisfies

z′ (t) ≤ 0, z (t) > 0 (15)

eventually.

Before stating our results, we need to define some special functions.

Assume that (4) holds for t ≥ t̄ and

Qi (t) :=







1, t ≥ t̄, i = 0
∫ t

t−τ+σ

Q (s)Qi−1 (s− σ) ds, t ≥ t̄+ iσ, i ∈ N,
(16)

where t̄ ≥ t0.

Lemma 2. Assume that all conditions of Lemma 1 are held. Then for
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n ∈ N, eventually positive z (t) in (14) satisfies

z′ (t) + P̄ (t)

n
∑

i=0

Qi (t− τ) z (t− τ) ≤ 0 (17)

eventually.

Proof. Assume that x (t) is an eventually positive solution of (3). Then

there exists a t1 ≥ t0 such that x (t) > 0 for t ≥ t1. Set t2 := max {t1 + τ, t̄}.
From (14) and (15), we have

0 < z (t) ≤ x (t) , t ≥ t2. (18)

Rewritting (14) as

z (t) +

∫ t

t−τ+σ

Q (s)x (s− σ) ds = x (t) , t ≥ t2,

we have

z (t) +

∫ t

t−τ+σ

Q (s1)

(

z (s1 − σ) +

∫ s1

s1−τ+σ

Q (s2 − σ) x (s2 − 2σ) ds2

)

ds1

= x (t) , t ≥ t2 + σ.

Since z′ (t) ≤ 0, we have

x (t) ≥ z (t) + z (t− σ)

∫ t

t−τ+σ

Q (s) ds

+

∫ t

t−τ+σ

Q (s1)

∫ s1

s1−τ+σ

Q (s2 − σ) x (s2 − 2σ) ds2ds1

≥ z (t)

(

1 +

∫ t

t−τ+σ

Q (s) ds

)

+

∫ t

t−τ+σ

Q (s1)

∫ s1

s1−τ+σ

Q (s2 − σ) x (s2 − 2σ) ds2ds1

= z (t) (Q0 (t) +Q1 (t))

+

∫ t

t−τ+σ

Q (s1)

∫ s1

s1−τ+σ

Q (s2 − σ) x (s2 − 2σ) ds2ds1

= z (t)

1
∑

i=0

Qi (t) +

∫ t

t−τ+σ

Q (s1)

∫ s1

s1−τ+σ

Q (s2 − σ) x (s2 − 2σ) ds2ds1
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for t ≥ t2 + σ. Repeating the above procedure for n times, we have

z (t)

n
∑

i=0

Qi (t) +

∫ t

t−τ+σ

Q (s1) · · ·
∫ sn

sn−τ+σ

Q (sn+1 − nσ)x (sn+1 − (n+ 1) σ) dsn+1 · · · ds1 ≤ x (t)

or

z (t)

n
∑

i=0

Qi (t) ≤ x (t) (19)

for t ≥ t2 + nσ. Since

z′ (t) + P̄ (t)x (t− τ) = 0,

we have

z′ (t) + P̄ (t)
n
∑

i=0
Qi (t− τ) z (t− τ) ≤ 0, t ≥ t2 + nσ + τ

by considering (18) and (19). This is the desired result. �

For the rest of the section, we define

α (n) := lim inf
t→∞

∫ t

t−τ

P̄ (s)

n
∑

i=0

Qi (s− τ) ds (20)

and

β (n) := lim sup
t→∞

∫ t

t−τ

P̄ (s)

n
∑

i=0

Qi (s− τ) ds. (21)

Remark 3. In the view of (16), (20) and (21), α (n) and β (n) are

non-decreasing sequences respect to n.

As an immediate consequence of these definitions, we can give the fol-

lowing theorem which improves Theorem 2.6.1 in [14].

Theorem 4. Assume that all conditions of Lemma 1 are held. Further-



2008] OSCILLATION CRITERIA 299

more, assume that there exists n ∈ N such that

α (n) >
1

e
(22)

or

α (n) ≤ 1
e
, β (n) > 1− 1−α(n)−

√
1−2α(n)−α2(n)

2
(23)

holds. Then every solution of (3) is oscillatory.

Proof. Assume for contrary that x (t) is an eventually positive solution

of (3). Then, in the view of (22) or (23) z (t) in (14) can not be an eventually

positive solution of (17).This contradiction completes the proof �

Remark 5. It is easy to see that known results are obtained with n = 0

in Theorem 4.

Corollary 6. Assume that all conditions of Lemma 1 are held. Fur-

thermore, assume that there exists n ∈ N such that

lim inf
t→∞

(n+ 1)

∫ t

t−τ

P̄ (s) n+1

√

√

√

√

n
∏

i=0

Qi (s− τ)ds >
1

e

holds, then every solution of (3) is oscillating.

Proof. Proof is clear by the relation between arithmetic and geometric

mean. �

Theorem 7. Assume that conditions of Lemma 1 are satisfied and Q (t)

is a non-increasing function then if there exists n ∈ N such that

lim inf
t→∞

∫ t

t−τ

P̄ (s)

n
∑

i=0

(Q (s− τ) (τ − σ))i ds >
1

e
,

then every solution of (3) is oscillatory.

Proof. Considering (16), we have,

Q0 (t) = 1,

Q1 (t) =

∫ t

t−τ+σ

Q (s) ds
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≥ Q (t) (τ − σ) ,

Q2 (t) =

∫ t

t−τ+σ

Q (s)Q1 (s− σ) ds

≥ (τ − σ)

∫ t

t−τ+σ

Q (s)Q (s− σ) ds

≥ (Q (t) (τ − σ))2 .

It is not hard to see that

Qi (t) ≥ (Q (t) (τ − σ))i , i ∈ N

for sufficiently large t. Then, considering (20),

α (n) ≥ lim inf
t→∞

∫ t

t−τ

P̄ (s)

n
∑

i=0

(Q (s) (τ − σ))i ds >
1

e
,

the proof is done. �

Theorem 8. Assume that conditions of Lemma 1 are satisfied. If

α (∞) >
1

e
,

then every solution of (3) is oscillating.

Proof. Since α (n) is non-decreasing, there exists n1 ∈ N such that

α (n1) ≥
1

e

and a number n2 > n1 with

α (n2) >
1

e
.

Thus, every solution of (3) is oscillatory by Theorem 4. �

As metioned in the introduction, the following theorem can be found in

[14] as Theorem 2.2.4 considering the autonomous case with the result (2)

of which proof is done in a different way by us.

Theorem 9. Assume that (2) holds. Then every solution of (1) is
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oscillatory.

Proof. First of all, we calculate Qi (t) functions for this case. Clearly,

Q0 (t) ≡ 1 and

Q1 (t) =

∫ t

t−τ+σ

qQ0 (s− σ) ds = q (τ − σ) ,

Q2 (t) =

∫ t

t−τ+σ

qQ1 (s− σ) ds = (q (τ − σ))2 .

Then, it is easy to see

Qi (t) = (q (τ − σ))i , i ∈ N.

Now, there are two possible cases.

Case 1. q (τ − σ) < 1. In this case,

α (∞) = lim inf
t→∞

∫ t

t−τ

(p− q)

∞
∑

i=0

(q (τ − σ))i ds

= τ (p− q)
1

1− q (τ − σ)
.

Thus, by (2)

α (∞) >
1

e

and all solutions of (1) are oscillatory by Theorem 8.

Case 2. q (τ − σ) ≡ 1. In this case,

α (∞) = ∞ >
1

e
.

Thus, every solution of (1) is oscillatory by Theorem 8. �

3. Improved Oscillation Criterion for (10)

In this section, we investigate (10) with conditions P,R ∈ C ([t0,∞) ,R+)
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with

0 ≤ R (t) ≤ 1 (24)

and τ, ρ ≥ 0. The following lemma can be found in [35].

Lemma 10. Assume that x (t) is an eventually positive solution of (10)

and (24) hold. Then

z (t) := x (t)−R (t) x (t− ρ) (25)

satisfies

z′ (t) ≤ 0, 0 < z (t) (26)

eventually.

For the rest of the section, we define

Ri (t) :=

{

1, t ≥ t0, i = 0

R (t)Ri−1 (t− ρ) , t ≥ t0 + iρ, i ∈ N.
(27)

As an immediate consequence of preceding results and definitions, we

have the following lemma.

Lemma 11. Assume that assumptions of Lemma 10 are held. Then

for n ∈ N, eventually positive z (t) in (25) is a solution of the following

inequality

z′ (t) + P (t)
n
∑

i=0

Ri (t− τ) z (t− τ) ≤ 0. (28)

Proof. Assume that x (t) is an eventually positive solution of (10). Then,

there exists t1 ≥ t0 such that x (t) > 0 for t ≥ t1 − τ . From (25) and (26),

we have

0 < z (t) ≤ x (t) , t ≥ t1. (29)

Rewriting (25) as

z (t) +R (t)x (t− ρ) = x (t) , t ≥ t1,
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we have

z (t) +R (t) (z (t− ρ) +R (t− ρ) x (t− 2ρ)) = x (t) , t ≥ t1 + ρ

and considering non-increasing behavior of z (t),

z (t) (1 +R (t)) +R (t)R (t− ρ)x (t− 2ρ) ≤ x (t) , t ≥ t1 + ρ

that is

z (t)
1
∑

i=0
Ri (t) +R2 (t)x (t− 2ρ) ≤ x (t) , t ≥ t1 + ρ.

A pattern appears to be emerging and it is natural to assume

z (t)
n
∑

i=0
Ri (t) +Rn+1 (t)x (t− (n+ 1) ρ) ≤ x (t) , t ≥ t1 + nρ

or

z (t)
n
∑

i=0
Ri (t) ≤ x (t) , t ≥ t1 + nρ (30)

for n ∈ N. Since

z′ (t) + P (t) x (t− τ) = 0,

we have

z′ (t) + P (t)
n
∑

i=0
Ri (t− τ) z (t− τ) ≤ 0, t ≥ t1 + nρ+ τ, n ∈ N

from (30). The proof of the lemma is done. �

For the sake of convenience, we set

α (n) := lim inf
t→∞

∫ t

t−τ

P (s)

n
∑

i=0

Ri (s− τ) ds (31)

and

β (n) := lim sup
t→∞

∫ t

t−τ

P (s)

n
∑

i=0

Ri (s− τ) ds. (32)

Remark 12. Considering definition of Ri (t) functions α (n) and β (n)

are non-decreasing sequences.
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The following theorem improves Theorem 3.2.1 in [10] by removing the

condition
∫

∞

t0

P (s) ds = ∞.

Theorem 13. Assume all conditions of Lemma 10 are held. If there

exists n ∈ N such that

α (n) >
1

e
(33)

or

α (n) ≤ 1
e
, β (n) > 1− 1−α(n)−

√
1−2α(n)−α2(n)

2 , (34)

then every solution of (10) is oscillating.

Proof. Proof is trivial. �

Theorem 14. Assume that conditions of Lemma 10 hold. If

α (∞) >
1

e
,

then every solution of (10) is oscillatory.

Proof. Proof is similar to the proof of Theorem 8 and omitted. �

The following theorem improves Theorem 6.1.3 in [14] by removing the

condition on ρ.

Theorem 15. Assume that 0 ≤ r ≤ 1 and 0 ≤ p, ρ, τ . If

τp >
1

e
(1− r) (35)

holds, then every solution of (8) is oscillatory.

Proof. We need to calculate Ri (t) functions. One can easily show that

Ri (t) = ri, t ≥ t0 + iρ, i ∈ N.

Now, there exists two possible cases.
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Case 1. r < 1. Thus,

α (∞) = lim inf
t→∞

∫ t

t−τ

p

∞
∑

i=0

rids =
τp

1− r

by (35)

α (∞) =
τp

1− r
>

1

e

that every solution of (8) is oscillatory by Theorem 14.

Case 2. r ≡ 1. In this case,

α (∞) = ∞ >
1

e
.

Thus, Theorem 14 can be applied to reveal oscillatory behavior of solutions

of (8).

The proof is completed. �

4. Oscillation of (11)

In the following subsections, we give two different oscillation criterions

for (11). First of them is adaptation of Section 2 and Section 3 and the other

one is improving these results with the key idea of [34]. Throughout this

section, we let κ := max {ρ, σ} and assume (12) and (13) hold for t ≥ t̄ ≥ t0.

4.1. Oscillation criterion 1

In this section, we combine results of Section 2 and Section 3 to obtain

advanced oscillation criterion for the equation (11).

We have the following lemma from [35].

Lemma 16. Assume that (12) and (13) hold, and x (t) is an eventually

positive solution of (11). Setting

z (t) := x (t)−R (t)x (t− ρ)−
∫ t

t−τ+σ

Q (s)x (s− σ) ds, (36)
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then

z′ (t) ≤ 0, z (t) > 0

eventually.

We set,

Hi (t) :=







1, t ≥ t̄, i = 0

R (t)Hi−1 (t−ρ)+

∫ t

t−τ+σ

Q (s)Hi−1 (s−σ) ds, t ≥ t̄+iκ, i∈N.

(37)

Lemma 17. Assume that all conditions of Lemma 16 hold. Then even-

tually positive z (t) in (36) eventually satisfies

z′ (t) + P̄ (t)
n
∑

i=0

Hi (t− τ) z (t− τ) ≤ 0 (38)

for every n ∈ N.

Proof. The proof is very similar to proofs of Lemma 2 and Lemma 11,

and is omitted for reasons of space. �

As in preceding sections, we set

α (n) := lim inf
t→∞

∫ t

t−τ

P̄ (s)

n
∑

i=0

Hi (s− τ) ds (39)

and

β (n) := lim sup
t→∞

∫ t

t−τ

P̄ (s)

n
∑

i=0

Hi (s− τ) ds. (40)

Remark 18. By the definition in (37), α (n) and β (n) are non-decreasing

respect to n.

Theorem 19. Assume all conditions of Lemma 16 are held. If there

exists n ∈ N such that

α (n) >
1

e
(41)
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or

α (n) ≤ 1
e
, β (n) > 1− 1−α(n)−

√
1−2α(n)−α2(n)

2 , (42)

then every solution of (10) is oscillatory.

Proof. Proof is trivial. �

Theorem 20. Assume all conditions of Lemma 16 are held, furthermore

R (t) and Q (t) are non-increasing functions. If there exists n ∈ N such that

lim inf
t→∞

∫ t

t−τ

P̄ (s)

n
∑

i=0

(R (s− τ) +Q (s− τ) (τ − σ))i ds >
1

e
,

then every solution of (11) is oscillating.

Proof. By the definition in (37),

H0 (t) = 1,

H1 (t) = R (t) +

∫ t

t−τ+σ

Q (s) ds

≥ R (t) +Q (t) (τ − σ) ,

H2 (t) = R (t)H1 (t− ρ) +

∫ t

t−τ+σ

Q (s)H1 (s− σ) ds

≥ R (t) (R (t− ρ) +Q (t− ρ) (τ − σ))

+

∫ t

t−τ+σ

Q (s) (R (s− σ) +Q (s− σ) (τ − σ)) ds

≥ R2 (t) +R (t)Q (t) (τ − σ) +R (t)Q (t) (τ − σ) + (Q (t) (τ − σ))2

= (R (t) + (Q (t) (τ − σ)))2 .

Generally, we obtain

Hi (t) ≥ (R (t) + (Q (t) (τ − σ)))i

for i ∈ N and sufficiently large t. Therefore,

α (n) ≥ lim inf
t→∞

∫ t

t−τ

P̄ (s)
n
∑

i=0

(R (s− τ) +Q (s− τ) (τ − σ))i ds >
1

e
.

Application of Theorem 19 completes the proof. �
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Theorem 21. Assume all conditions of Lemma 16 are held. If

α (∞) >
1

e
, (43)

then every solution of (11) is oscillating.

Proof. With a similar way to proofs of Theorem 8 and Theorem 14,

proof can be done. �

The following theorem considers the equation (11) with autonomous

case as

[x (t)− rx (t− ρ)]′ + px (t− τ)− qx (t− σ) = 0 (44)

with

p > q,

τ ≥ σ,

1 ≥ r + q (τ − σ) ≥ 0.

(45)

Theorem 22. Assume that (45) and

τ (p− q)

1− (r + q (τ − σ))
>

1

e
(46)

are held, then every solution of (44) is oscillatory.

Proof. First, calculate the Hi (t) functions. Obviously,

H0 (t) = 1, t ≥ t1,

then

H1 (t) = r + q (τ − σ) , t ≥ t1 + κ,

and

H2 (t) = rH1 (t) + q (τ − σ)H1 (t) = (r + q (τ − σ))2 , t ≥ t1 + 2κ.

By continuation, we obtain

Hn (t) = (r + q (τ − σ))n , t ≥ t1 + nκ.
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Case 1. r + q (τ − σ) < 1. Thus,

α (∞) = lim inf
t→∞

∫ t

t−τ

(p− q)

∞
∑

i=0

(r + q (τ − σ))i ds

=
τ (p− q)

1− (r + q (τ − σ))
,

which implies by (46) that every solution of (44) is oscillatory by Theorem

21.

Case 2. r + q (τ − σ) ≡ 1. In this case,

α (∞) = ∞ >
1

e
.

Thus, Theorem 21 can be applied. The proof is completed. �

4.2. Oscillation criterion 2

In this section, we join our key idea with the key idea in [34] to obtain

a new criterion. We define the following functions

H̄lj (t) :=







1, t ≥ t̄, j = 0
∫ t

t−τ
P̄ (s)

l
∑

i=0
Hi (s− τ) H̄lj−1 (s) ds, t ≥ t̄+ (l + j) κ, j ∈ N,

where Hi (t) functions are defined in (37).

We result our study with the following theorem which improves Theorem

3 in [34].

Theorem 23. Assume that (12) and (13) hold. Also, assume that there

exists a pair of positive integers n,m such that

lim inf
t→∞

H̄nm (t) >
1

em

holds. Then every solution of (11) is oscillatory.

Proof. If these conditions are held, then (38) can not have an eventually

positive solution. This implies (11) can not have eventually positive solution.

Since the equation is linear multiplying, an eventually negative solution by
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−1 forms an eventually positive solution. Thus every solution of (11) is

oscillatory. �

5. Applications

This section is dedicated to illustrative examples.

Example 24. Assume A ∈ C ([t0,∞) ,R+) , B > 0 and τ > σ ≥ 0. And

consider

x′ (t) + (A (t) +B)x (t− τ)−Bx (t− σ) = 0 (47)

with

0 < m ≤
∫ t

t−τ
A (s) ds ≤ τ < 1

2e , B (τ − σ) ≡ 1.

It is obvious that (5) can not be applied. And,

τ <
1

2e
<

1

2
< 1− 1−m−

√
1− 2m−m2

2

implies the known result

β (0) > 1− 1− α (0)−
√

1− 2α (0)− α2 (0)

2

can not be applied where α (n) and β (n) are defined in (20) and (21) re-

spectively. Either, (6) is not useful, in fact,

A0 (t) = 1,

A1 (t) =

∫ t

t−τ

A (s) (1 +B (τ − σ)) ds = 2

∫ t

t−τ

A (s) ds ≤ 2τ <
1

e

and

A2 (t) = 2

∫ t

t−τ

A1 (s) ds ≤ 4τ2 <
1

e2
.

So, in general we have

Ai (t) ≤ (2τ)i <
1

ei
,

which implies (6) can not be applied. Clearly, all known results are useless.
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Obviously, for sufficiently large t values

Qi (t) = 1, i ∈ N.

Denoting greatest integer function with ⌈.⌉, we can see that

α

(⌈

1

me

⌉)

= lim inf
t→∞

∫ t

t−τ

A (s)

⌈ 1

me⌉
∑

i=0

1ds

=

(⌈

1

me

⌉

+ 1

)

lim inf
t→∞

∫ t

t−τ

A (s) ds

≥
(⌈

1

me

⌉

+ 1

)

m >
1

e

holds. Thus, by Theorem 4, every solution of (47) is oscillatory.

Example 25. Assume A ∈ C ([t0,∞) ,R+) , and ρ, τ ≥ 0. And consider

[x (t)− x (t− ρ)]′ +A (t)x (t− τ) = 0 (48)

with

0 < m ≤
∫ t

t−τ

A (s) ds ≤ τ <
1

2e
. (49)

As in Example 24, most of the known results are useless either.

Obviously, for sufficiently large t values

Ri (t) ≡ 1, i ∈ N.

Since,

α

(⌈

1

me

⌉)

>
1

e

Theorem 10 guaranties that every solution of (48) is oscillatory. α (n) is as

defined in (31).
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