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Abstract

Some oscillation criteria for the second order semilinear

elliptic differential equation

> Di[Ay(z,y)Dyy] + Blx,y) =0

i,4=1

are obtained. Generalized Riccati transformation and weighted

averaging technique are employed to established our results.

1. Introduction

We study the oscillation of the second order semilinear elliptic differen-

tial equation

i, j=1
in exterior domain Q(rg) = {z : |x| > ¢}, where ro > 0, x = (21, ,z,) €

R™ n > 2, D; = 0/0x;, and |z| denotes the usual Euclidean norm in R™.

Throughout this paper, we always assume that the following conditions

hold.
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(H1) B € C(Q(ro) x R,R) with B(xz,—y) = —B(z,y) for z € Q(ry) and
y > 0;

(H2) B(z,y) > p(x)f(y) for x € Q(rg) and y > 0, where p € C}. .(Q(ro), R),
e (0,1), and f € O(R,R)UCHR — {0}, R), yf(y) > 0 for y # 0;

(H3) A = (Aij)nxn is a real symmetric positive definite matrix with A4;; €
C’ll(;cr”(Q(ro) x R,R1), and A;j(x, —y) = Ajj(x,y) for all 4,7, z € Q(ro),

y > 0.

Denote by Amax(z,y) the largest eigenvalue of the matrix A. Suppose
that there exists a function A € C([rg,o0) x R,R*") such that

)‘(Tvy) > maX)\maX(:Evy)7 r> To.

|z|=r

Furthermore, assume that there exists a function a € C([rg,o0),R™)
and a constant £ > 0 such that

f'(y) k
N y) > % forall y#0, r>ro.

As usual, a function y € CF¥(Q(rg),R) is called a solution of (L)) if
y(x) satisfies (L)) for all € Q(rg). We restrict our attention only to the
nontrivial solution of (L), i.e., to the solution y(x) satisfying sup{|y(x)| :
xz € Q(r)} > 0 for every r > 1. Regarding the question of existence of solu-
tion of (L.I]) we refer the reader to the monograph [2]. A nontrivial solution
y(z) of (I.JJ) is said to be oscillatory in £(rg) if the set {z € Q(rg) : y(z) = 0}
is unbounded, otherwise it is said to be non-oscillatory. (L)) called oscilla-
tory if all its nontrivial solutions are oscillatory. Note that not every solution
of a nonlinear equation is extendible to the whole domain. Therefore, when

dealing with the oscillation of (I.I]), only extendible solutions are considered.

An important special case of (L)) is the following equation

> Dilaij(z)Djy] + B(z,y) = 0. (1.2)
ij=1

Concerning ([2)) there exists well-elaborated oscillation theory. In 1980,
by employing the vector Riccati transformation, Noussair and Swanson [6]
first gave Wintner-type theorem [10] for (L2) (Theorem 4, [6]). Swanson
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[8] summarized the oscillation results for (L2)) up to 1979. Very recently,
some classical oscillation theorems such as Hille [3], Kameven [4], Kong
[5], Philos 7] and others for second order ordinary differential equations
have been extended to (L2) with B(z,y) = p(x)f(y), see, for instance,
[11, 12, 113, 14, [15] and references quoted therein.

In this paper, by using the generalized Riccati transformation ((2.6),
Section 2), weighted averaging techniques [1, 9] and following the ideas of
Coles [1] and Willett [9], we shall establish new oscillation criteria for (L.II).
The theorems obtained here extend and improve the main results in [6, [11,
13, 14]. Finally, some examples are given to illustrate the advantages of our

results.

2. Preliminaries

For simplicity, we introduce the following notations to be used through-

out this paper. For given function p € C1([rg,00),R), we define

o) = Zarer) ™, elr) =exp (=25 [ ple)sms)

n T0

Py = o) [ pledda + atnt )t = o)}

Wn

where S, = {x € R" : |z| = r} for r > 0, do and w,, denote the spherical

integral element and the surface measure of unit sphere in R", respectively.

Let & denote the set of all non-negative locally integrable function ¢ on
R* which satisfied

/ h o(s) / Sg(u)¢2(u)du)_19< / ) Su)du)ds =00, (2.1

/OO bu) du < oo, (2.2)

u2

and

where 6 € C(R™,[0,00)) with 6 non-decreasing.

Let S C S be the set of all non-negative locally functions ¢ on R™
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satisfying

fg w) du
S 1 ¢()d@

In order that either (ZI) and (23] can be satisfied by a non-negative

= 0. (2.3)

locally integrable function ¢, it is necessary that ¢ is non-integrable on R,

/OO o(s)ds = oo. (2.4)

Members of the classes & and Sy will be called weight functions [1, 9].

For ¢ € G, let

ie.,

Qp(s,r) = (2.5)

Lemma 2.1. Let y = y(z) be a non-oscillatory solution of Eq.(I1) in
Q(b) for b > rg, p € CY{([b,<),R). Then the function Z € C([b,00),RT)
defined by

/)W dJ+M)()] (2.6)
satisfies the generalized Riccati inequality
Z2(r)
Z'(r) < —=P(r) — , 2.7
() < —P(r) = o8 (27)

where W (z) = (AVy)(z)/f(y(z)), Vy and v(z) = z/|z|, (x # 0), denote

the gradient of y and the outward unit normal, respectively.

Proof. Differentiation of the i-th component of W (x) with respect to x;
gives that

I'W) o (5
DiW(z); = —fz(Z)Diy<Zaij($,y)Djy)
i=1
N

1
+mDi<;aij(ZL‘,y)Djy) for all .
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Summation over ¢, note that (LIJ), leads to
diviW (z) < —p(x) — f'(y) (WTAT'W)(2).

Using Green’s formula (cf [2]) in (26]) and (H3), we get

e o 2
< ) Z(r)— w(r){/rp(x)da — [p(r)a(r)] +@ /ST|W(QC)| dg}'

The Cauchy-Schwartz inequality follows that

rl—n 2
/ST W (z)? do > o {/37 W(z) - v(z) da] .
Therefore,
2(0) < E826) = o) [ )i = otr)atry
1-n
+clj:a(r) {/S, W(z) - I/(IL’)dO’} 2}
- 2820 = o) [ ploydo = ptryatr)!
ri=n r
+c]jna(r) [iér)) a p(r)“(r)r}
2
- P0Gy
This completes the proof. O

We now consider some properties of solutions Z(r) to (Z1]). Clearly, an
integral inequality with respect to (2.7 is
Z*(u)
g(u)

du for r>b>rg. (2.8)

2(r) < Z(b) —/bTP(u)du—/br

Lemma 2.2. Suppose that there exist p € C'([rg,00),R) and ¢ € I
such that

liminf Qy(-,r) > —oo. (2.9)

T—00
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Let Z(r) be a solution of (2.1). Then

00 Z2(S)
/ ) ds < oo. (2.10)

Proof. Let Q(s,r) = Qg(s,r) and assume that

e’} 22(8) C
/ 705) ds = o0. (2.11)

Multiplying (2.8]) by ¢(u) and integrating it from s to r, for r > s > b, we

obtain
) “ 22(r)
/ d(u)Z(u)du < [Z (s,7) / o(u) du / )/s ) dr du.
(2.12)
Since ¢ € §, (2.4) holds. This implies that
_ fb (u)d fb T)dr du
Q) = oty au® / i eorT
b <f>(u)d
fSTQS(u)d /P )du+0(1) as r — oo.
Thus, by (23],

" d(w) du s 72y
Z(s)— Qs,7) < Z(b) - f; jgui Q) [ Do) s s
’ (2.13)

Using (2.9) and (2I1]), we conclude from (ZI3]) that there exist constants
by, ba, (ba > by > b), and 6 > 0 such that

Z(b1) —Q(by,r) < —6 forall 7> bo. (2.14)

Let
Vir)= [ o¢(u)Z(u)du. (2.15)

b1

The Cauchy-Schwartz inequality follows that

Vi(r) < [/b?” g(u)¢2(u)du} [/b?” Z;(S;) du]. (2.16)
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Putting (2.14), (2.15) and (2.16) into (2.12]), we obtain

V(r)

IN

=5 [ otwau— [ o] [ otrieyar] Vi) an

by b1
= —G(r), r>b.
Hence,
G'(r) = 80(r) + 00| [ gy ar]V3r)

b1

> o) [ a1 (e V) (217)

1
However, from the definition of G(r), we get

0<6 ' d(u)du < G(r) < |V (r)]. (2.18)
b1

Inequalities (Z17)) and (2.I8]) imply that
_9 , T 9 -1 T
GTANO(G)E (1) = 6(r)| /b 9()? () du) - 0(5 [ o) du).
1 1
Integrating the above inequality from by to r, we have

/T ¢(u)(/ug(7)¢2(7) ar) 0 (s buqs(f) dr)du

b1 b1

< er_z(u)H(G(u))G’(u)du

= /G(T)Mdu</oo Mdu<oo
_— 2 bl

G W Gb) U

which contradicts condition (2.I). This completes the proof. O

Lemma 2.3. Let Z(r) be a solution of ([2.1), and suppose that there
exists p € Cl([rg,0),R) such that [ Z*(u)/g(u)du < oo. Then for any

¢ € o, limsup Qy(-,7) < 00, and

T—00

limsup Qg (s,7) < Z(s) — /OO du. (2.19)

T—00
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In addition, if
/ P(u) du < oo, (2.20)

then

) > /TOO P(u) du—l—/Too Z2(w) du. (2.21)

g(u)

Proof. As in the proof of Lemma 2.2, we know that (2ZI2]) holds. This
implies that

[Low)Z(u)du [T o(u) [ Z%(T)/g(T)dT du

Q(s,r) < Z(s) — Towde e )du . (222

Since ¢ € S, (24]) holds. Thus,
[l o) [ Z2(r)g(r)drdu [T Z%(u)
o S [ e
The Cauchy-Schwartz inequality and (23]) imply that
ST () Z () dul 7 9(w)¢* (w) du)? [ " 2%(u) ]5

0 < lim d = 0.

Seue T S <l I roral el

Hence, by (2.22)), 1i£n_>sogp Q(s,r) < oo, and (2.19) holds.

If (220) holds, then for any € > 0, there exists a b* > b such that
| [7° P(u) du| < £/2 for all > b*. This implies that there is a M > 0 such
that | [7° P(u) du| < M for all r > s. Since ¢ € S, [24) holds. Thus, there

is a b > b* such that

b*
d
%<m for all T‘Zb**
s u

Then, for all r > b**,

Qs,r)— / ooP(u)du‘ -

17 p(u) fu P(r)drdu fb* w) [ P(r)dr du
T o(u)du [7 #(u)du
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which implies that

T—00

lim Q(s, r) = / ~ P(u) du.

Thus, (2.21]) holds. O

3. Oscillation Criteria

From Lemmas 2.2 and 2.3, the following theorem is immediate.

Theorem 3.1. If there exists p € C([rg,o0),R), ¢ € S, and ¢ € I
such that (2Z9) and limsup Qy(-,7) = oo hold, then (L)) is oscillatory.
r—00

Corollary 3.1. If

/ u :/ P(u) du = oo,
g(u)
then (ILT)) is oscillatory.

Proof. Let ¢(r) =1/g(r), 8(s) = 1. Then

T

lim gzb(s)(/s g(u)¢2(u)du)_1d8 = lim ' L(/S ﬂ)_lds = 00,

e o) g\ 9w

and
i 2 (] )

This implies ¢ € . Since,

Tliglo Q¢('7 T) — Tli{go fT (;S(Sf)rj;(‘sp)(;g duds _ rllg.lo T P(u) du — 0,

thus, by Theorem 3.1, (L)) is oscillatory. O

Remark 3.1. Corollary 3.1 improves Theorem 4 in [6] and Theorem

2.3 in [14].

Theorem 3.2. Suppose that there exists p € C([rg,00),R) and ¢ € I
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such that
O(r) :== /OO P(u)du < oo for r>bh. (3.1)
If
© Q2 (g s O(r
/ @gJE,i)) exp (2/ (j((T)) dT) ds = oo, (3.2)

then (L)) is oscillatory.

Proof. Suppose that (L)) is non-oscillatory. By Lemma 2.1, there exists
a constant b > rg and a function Z € C([b, o), R) such that ([2.7) holds on
[b, 0), it follows from (B.I]) and Lemma 2.3 that

Z(r)>0O(r)+ /OO Z;((:))ds for r > b. (3.3)
Let u(r) = [7° Z*%(s)/g(s)ds, then
oy Z3(r)
u(r) = o) (3.4)

Multiplying B4) by exp (2 7 ©(7)/g(7)dr) and integrating it form r to rq,
we obtain, for 1 > r > b,

u(r) > wu(ry)exp (2 /:1 Q(S)ds)

g(s)
" 72(g) — s)u(s SO(r
+/r Z7(s) 9(23( Ju )exp (2/7” (3((7_)) dT)dS. (3.5)

It follows from (3.3)) that
Z(r)>0(r)4+u(r) forr>b,
which implies that
Z3(r) — 20(r)u(r) > ©%(r) + u?(r) for r>b.

This and (3.5]) imply that

= 01 (s) “o(n) * u2(s) *o(n)
u(r) 2/7’ gJEs) exp (Q/T Wdr)ds—i—/r 405) exp (2/T () dT>dS,
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which contradicts to condition ([B.2)). So, the proof is complete. O

Theorem 3.3. Suppose that there exists p € C([rg,00),R) and ¢ € I

such that ©(r) > 0 holds for sufficiently large r > rq. If there exists a locally

integrable function n(t) : [rg,00) — RT and &(r fmn w)du + &(ro) such
that
r _l
. « 2
Tim (2%(r) j 5 / (s (3.6)

where © is defined as in Theorem 3.2, and

O(r) = exp ( — 4/T Q(S)ds), O (r) = /T n(s)®(s)ds,

ro 9(5) ro

then (L)) is oscillatory.

Proof. We proceed as in proof of Theorem 3.2, and obtain that (B.3])

holds. So,

Z(r)>0(r)+ /OO Zgz((;) ds>0 for r>b. (3.7)

Let u(r) = [7° Z?(s)/g(s)ds. Then

20) 1
o) = 90r)

() =

O(r) + u(r)]? > ﬁemu(r),

which implies that

u(r) < u(b) exp < 4 br i((j)) ds> = u(b)®(r),
therefore,
00 22(8)
/T s <upa()
Hence
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Consequently,
r T Z2(7') T 00 Z2(7‘)
o (o) Lo ([ 5o

- r N Z2(S) } . 0022(5) }
= [t — o= Has+ ) —e) [ =a
< C19%(r),

S0,

/br %22(3) ds < Co + C19*(r), (Cy > 0). (3.8)
Using ([B.8) and Cauchy- Schwarz inequality, we obtain
(/bTZ(s)ds>2 (/bT %Z%s)ds) (/br%ds>
€2+ 1) (/b %ds).

It follows from (3.7)) that for sufficiently large r,

/bre(S)dSS/bTZ(T)dTSCS{(I)*(T)(/;%CZS)F,

which contradicts condition (B.6). Hence, (L)) is oscillatory. O

IN

IN

Corollary 3.2. If there exist n(r) and &(r) defined as in Theorem 3.
such that

/OO N($)@(s)ds <00 and lim </ %ds>_

[NIE

/T O(s) ds = o0,

then (IL1)) is oscillatory.

Remark 3.2. Theorem 3.3 improves Theorem 3 in [11] and Theorem
2.5 in [13].

Using the same techniques, we may obtain a slightly different form of
Theorem 3.3. Now, we state here for completeness.

Theorem 3.4. Suppose that there exists p € C'([rg,00),R) and ¢ € I
such that ©(r) > 0 holds for sufficiently large r > 1. If there exists a locally
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integrable bounded function n(t) : [rg,00) — RT and &(r fmn u) du +
&(ro) such that

s [([ s ([ 25 0)]” Lot

where © and ®(r) are defined as in Theorems 3.2 and 3.3, respectively, then
(L) is oscillatory.

Corollary 3.3. If there exist n(r) and £(r) defined as in Theorem 3.4
such that

1
o s 3
®(s)ds < li O(s
/ (3)ds < o0 oo (/ £(s) > /
then (L) is oscillatory.

Remark 3.3. Some interesting corollaries can be obtained from Theo-
rems 3.1-3.4, by choosing the appropriate function 6(r), the details are left

to the reader.

Example 3.1. Consider the Laplace equation

1 + arsin |z]

A
YT TP

y=0, (3.9)

for |[z| > 1, wherea e R, 0< <1, n>2 A(r,y) =1,a(r) =1, and k = 1.
Let p(r) = 3(n — 1)w,r™ 2. Then ¢(r) = r'=", g(r) = wy,, and

P(r) :wn[l —I-Sﬁsinr _(n— 14)74(;1 —3)].

/m%:/OOP(S)ds:

By Corollary 3.1, (8.9) is oscillatory.

Hence,

Example 3.2. Consider the elliptic differential equation

0 1 y 0,1 0y

= e e e e T 3.10
60, Tl w1 90r) * 90 el o) TRFYTVOI=0 310
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for |x| > 1, where v > 1/2 is a constant, n = 2, A(r,y) = 1/r, k = 1, and
a(r)=1/r.
For Theorem 3.2, let p(r) = 0, then we have ¢(r) =1, g(r) = 27, and

P(r)= %—27, O(r) = %77, /17" (j((j))ds =~lnr.

/1’” @92+(S) P <2 /1 (3((:)) dT> ds = 2m7” /1 " 207 g

Now, we take ¢(r) = 1 and 6(r) = 1, it is easy to check ¢ € Jp. Thus, all
conditions of Theorem 3.2 are satisfied and hence (B.10) is oscillatory.

So,

Example 3.3. Consider the semilinear elliptic equation

0o, 1 0y 0 1+cos’y Oy
81’1 ‘IL’|% 61‘1 81’1 |x‘% 61‘2

4|z|sin |z| + 4 + cos |z

8|x\%

(y+y°) =0,
(3.11)

)+

for |z| > 1, where n =2, A\(r,y) = 1/7’%, a(r) = 1/7’%, and k = 1.

I

For Corollary 3.2, let p(r) = 0, we can get that ¢(r) =1, g(r) = 271,

and
m(4rsinr +4 + cosr) m(4+4cosr) _ 3w
and
"1 1
< - Zds) = —.
O(r) < exp( 6/1 Sds) ;G

Here, we take n(r) =1, and £{(r) = r. Then

/ n(s)@(s)dsﬁ/ iﬁds<oo,
1 1 S

d
" (/T%ds>_% /T@(S)ds23(%)1/2/r3_1/4d3—>oo asr — 00.
1 1 1

On the other hand, taking ¢(r) = 1 and 6(r) = 1, it is easy to check
¢ € . So all conditions of Corollary 3.2 are satisfied and hence [BI1]) is
oscillatory.
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