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DIFFUSION UNDER GRAVITATIONAL AND
BOUNDARY EFFECTS

BY

TAI-PING LIU AND SHIH-HSIEN YU

1. Introduction

Consider the initial-boundary value problem for the Boltzmann equation

atf+£vif_§vff:Q(f)v T = (l’,y,Z), (i\vt)g) €H+ x Rt XRSv

f " a o — ) Y21\ f
(‘Taya 07 75)’§3>0 p(.’lf,y, ) \/é (£)|§3>07 (Maxwell diﬂ'use
3
p(IL’, Y, t) = \/§€R3 _é- f(xa Y, 07 g)d& boundary COIlditiOIl)
£%<0,

T M(€) for some small € > 0,

0 < f(Z,0,8) < e Ve
(1.1)

where

H* = {(x,y,2) € R3z > 0},

R+ = {t € R|t > 0},

_le?
M(¢) = (219%’ (a global Maxwellian distribution in velocities

¢ € R? with boundary temperature 6 > 0),

g =(0,0,9), g > 0 (the constant gravitational force).
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168 TAI-PING LIU AND SHIH-HSIEN YU [March

This models the propagation of gas of finite total mass in the upper half
space (x,y, z), z > 0 around the solid at (x,y,0). We study this phenomena
on the level of Boltzmann equation in the kinetic theory. The boundary con-
dition is the classical diffuse reflection condition: The gas is reflected off the
solid with the Maxwellian distribution of the given boundary temperature
and satisfying the conservation of mass. The gravitational force pulls the
gas back to the solid surface. The main purpose of the present paper is to
study the diffusion of the gas under these two combined effects. We show
that the propagation of the gas toward vacuum is governed by a process
similar to the two-dimensional surface heat diffusion, Main Theorem A and
Main Theorem B.

For gas near vacuum, thermodynamics, in particular fluid equations such
as the Euler and Navier-Stokes equations do not apply, see Sone [13] and
Aoki |1]. In our study based on the kinetic theory, there are the following
two main analytical points. The first is that the diffusion reflection boundary
condition is modeled by a stochastic process. This approach, initiated by the
second author, [14], is physically natural as the diffuse reflection boundary
condition and the Boltzmann equation were conceived with the probabilistic
thinking. It is only through the analytical setting in [14] that the limiting
theory, such as the central limit theorem and the law of large number, can be
used to bear on the quantitative estimate of the effect of the boundary. In the
present paper, we encounter stochastic process with random variables not
independent. This causes some analytical difficulties, see (L6]) and Lemma
3.9. The second main analytical point is that we do not, and cannot, assume
the gravitational force as a perturbation with small total effect. Instead, the
gravitational force is treated as a main part; the other main part is the
boundary condition. Instead, because we are interested in the behavior
near vacuum, the collision term is viewed as a perturbation. Thus we will
carry out the main analytical steps for the free transport equation with
gravitational force and the thermal diffuse reflection boundary condition,

Ot +&-t—g- Vet =0,

t(2,9,0,1,8)es 0 = pla,y, ) LEM()] 50,

Py, 1) = / t(z,y,0,€)dE,

EER3
£3<0,

[ [t(F,0,8)] < ele=lle= 5 M(9).
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With the pointwise structure of t(&, ¢, £), we then build and justify the ansatz
for the full nonlinear Boltzmann equation. The new tool to obtain the point-
wise structure of t(&,t,£) is a probability theory to represent the solution
of t(&,t,£). The probabilistic representation generalizes that of [14] to take
into account of the gravitational force. The stochastic processes in [14] are
generated in a bounded gas region by the infinitely many consecutive par-
ticle collisions with the diffuse boundary. One views the reflected velocity
as a random variable. Similarly, in this paper we have a probabilistic repre-
sentation of the solution t(Z,¢, &) due to the gravitational force, which pulls
particle towards the surface continuously to generate infinitely many con-
secutively collisions with the diffuse surface of a planet. These consecutive
collisions with the random reflected velocities generate the stochastic pro-
cesses {&}ier+ and {U;}icp+. We also denote the stochastic processes by

their components
Ty = (xta Yt Zt)J

,l_;t = (Ugvvgﬂ}?)'

The probability space (2, Py) for the stochastic processes {&; };cp+ and

{U:}ier+ is defined as follows

w = {Vj}jEN e = H(R x R x R+), Vj = (‘6‘17‘/]’27 Vf)a

j=1
!
Py(Vp, €Ap, 1<k<)=]] [ GW"GW)Hw*)dv'dv?dv®,
k=1 Ak
where
2 2
e m Y for v >0
G(v) = —, H(v) = orv="y,
276 0 else.

For any w = {V }jen € Q the stochastic processes {&(Zo,&0,w)}er+
and {U(Zo, &0, w) }scr+ can be realized as a random particle with a trajec-
tory T = X(t7 j'07 507 W) = (Xl(ta 507 507 W), X2(t7 j'07 507 W), XS(t7 j'07 507 UJ)),

— —

(Z¢(Zo, S0, w) = X (t; %o, o, w), Bi(To, o, w) = X (t; %o, 80,w)), with the law
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of motion in the free space by

)Z(t; Zo,&p,w) = —g when X3(t; Zo, &, w) > 0,
X(O;f()vg(]vw) = 507

—

X(07 j»07 507 O.)) = 607
with {‘7] }ien the sequence of random reflective velocities at the boundary:

X3(7p; &0, &0, w) = 0,

— —

X(Tn—F;iO,fO,W) = Vn+17
T <TI <Tg<---,

where {7, },>0 is the sequence of collision time at the diffuse boundary. From
this sequence of random reflected velocities one has a sequence of random
collision times {7;};en, i.e.,

2y, = 0 for j € {0} UN,
0<T<Tp< <7<,
Tj—Tj_1£2Vj3/g for j > 1,

where 70 = (1/2920 + |€3]2 4+ £3) /g is the initial deterministic collision time.

In Corollary 3.4 one construct a probability measure P from the prob-
ability measure Py, the stochastic processes {&:, U;}icr+, and the non
negative-valued initial data t(Z,0, &) to represent t(&,t, &) if [+, ps t(#,0,€)
dédx = 1. The probability representation of t(Z,t,§) is

(&, t,€)dRdE = P (& € & + d&, ¥, € € + df),

and the probabilistic representation of the boundary flux function p(z,y,t)

1S

o
p(z,y,t)dadydt=> " P ((2r,,yr,) € (x,2+dz) X (y,y+dy), m € [t t+dH]).
§=0
(1.3)
The stochastic process {(x,, Y, ) Inen generates a 2-dimensional diffuse
phenomenon whose wave propagation structure is closely related to heat dif-
fuse in 2-D but its physical generating mechanism is irrelevant to the thermal
diffusion for the gas dynamics. The stochastic process {&:, }nen is a Marko-
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vian process. The increment {&,, — @, ,}n>0 is an i.i.d.. This process is
related to the random reflected velocity {Vn}neN as follows: The three com-
ponents {V,1}en, {Vi2}nen, and {V,2},en are three ii.d. with distribution
functions G , G, and H. The time lapse ¢, and the horizontal displacement
dn = (¢r, — %7, _|,Yr, — Yr,_,) between two consecutive collisions under the

constant gravitational field —g is

{Un:'rn_'rn—l :2Vn?’/gy (1 4)

dn = (':UTn - ':UTnfl?yTn - yTnfl) = (O-nVTI:}’O-nVT%)

By a strong central limit theorem, (which can be obtained through Fourier
transformation and complex contour integral), one can relate the time lapse

n

T, = Z o; (random time for first consecutive n-collision)
j=1
and the horizontal displacement

n

D, = Z d; (random walk for first consecutive n-collision)
j=1
to the number n of collisions as follows:

_ [t—nE[oq]|?

e CVarloq] _|t—nE[oq]|+t
P(TnE(t,t—th))SC T+e c dt,

_ a2 4y2
e CVarlol] _lzltlyltn
- e C

P(Dne(:E,:E+da:)><(y,y+dy))§0< dxdy

n

(1.5)
for some constant C' > 0. From this, we see that the decaying rates of P(T,, €
(t,t +dt)) and P(D,, € (z,z + dz) x (y,y + dy)) are exponentially fast at
infinity. This yields the weak, exponentially decaying connection between the
space and time variables outside the region |z| > O(1)(1+t)'/2. One needs to
study the strong connection between the space-time variable in the diffusion
region |z| < O(1)(1 4t)"/2. In the neighborhood of the diffusion region, one
needs to estimate the joint probability distribution of T,, and D,, when |D,,| <
O(l)néﬂ for some 7 € (0,1/6). The joint probability distribution function

is almost a product of the marginal probability distribution functions in the
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S . 1
diffusion region |z| < n217

P (D, € (z,x+dzx) x (y,y +dy), T,, € (t, ¢t +dt))

. (z2+y2)+(t—nE[01])2 m_‘_
n = :
<C 3/2 te o dxdydt. (1.6)
n

To obtain (L6]) one needs rather detailed analysis than that for (L), since
the random variables T,, and D,, are not independent. An auxiliary stochas-
tic process Y p_,(ox)? is introduced to analyze the fluctuation of T,, for the
purpose of estimating the joint probability of T,, and D,, in a diffusion region,
see Lemma 3.9

By the marginal probability distributions P(T,, € (¢,t+dt)) and P(D,, €
(x,z +dx) x (y,y + dy)) in (L3, the estimate in (L.6]) for the joint proba-
bility distributions of T,, and D,, within the region |D,| < n!/2t7, and the
expression of p(z,y,t) in (L3]), one will obtain a global diffusion property on
the boundary flux function p(x,y,t)

_ (#2442
(egt) <0 [T T
xr,Y, S e
T Y (1+1)

This diffusion property of the boundary flux function implies the Main The-
orem A, Section 3:

Theorem 1.1.(Main Theorem A) Suppose that the initial configuration
t(2,0,8) of (L2) satisfies
HE.0.) <V (e E M) (17)
for a given o € (0,1). Then, there exists C, > 0 such that the solution
t(Z,t, &) of (L2) satisfies
z2+y2
¢TI

(1+1)

gz

t(@,1,6)| < O(1) e (etbhn/c ) (M) 1)

Furthermore, if the initial data t(Z,0, &) satisfies a zero total excess mass
condition (or zero total fluctuation condition)

/ t(&,0,€)dedE = 0, (1.9)
HxR3
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then the solution t(Z,t,£) satisfies

_ ey
e Cx (1+1)

@91 < 0y

4 e—(|x|+y|+t)/0*> (e—%M(g)>a
for some 4" € (0,1/6). (1.10)

The equation (L)) is treated as the perturbation of (L.2)) when the gas
is sufficiently rarefied. The main complications in dealing with the nonlinear

collision term Q(f) are:

(1) Main Theorem A needs not impose that the solution t(&, ¢, £) is a positive-
valued function, though the notion of a probability measure would re-
quire it. Any initial data t(&, 0, &) can be decomposed into a difference of
two positive-valued functions t(Z,0, &) = (t(£,0,&)A0)+(t(£,0,£) V0) so
that Main Theorem A can be applied to both initial data —(t(&,0,&) A0)
and (t(&,0,£) V0). From the linear superposition property of (L.2]), one
will have the estimates for the solution of t(&,t,¢) without the condi-
tion t(&,0,£) > 0. In contrast to this, for the nonlinear problem (1), a

non-negative valued function,
f(£,0,§) 20

is needed. When this condition is false, the damping effect in the collision
operator () could become an amplifying effect. In particular, for a hard
potential model the amplifying effect could become un-manageable for
constructing a solution local in time.

(2) Compared to (L), in (I.I0) there is an extra decaying property in the
time variable. This extra decaying factor is necessary in order to obtain a
global in time existence theory. Such an extra time decaying property is
common in much existing research on the nonlinear problems for viscous
conservation laws.

(3) One can not have sharp estimates in the (z,y)-(z, §) variables at the same
time. One can not have sharp information in (z,y)-variable from those
particles with high velocity or at a high altitude, since these particles
can travel from far away in the space. One shall not expect any fluid-
like structure for those particles such as an extra exponentially decaying

factor in the (z,y)-variable. We introduce a norm to reflect this fact and
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use it to analyze this nonlinear problem:

T,t
el = sup <§u§ st
t€[0,7] ?GGRS (% —(l=|+lyl+t) /co)m
§)|

+ sup |g( ’)>3/4 )111

rcH —9z
£ER3 5

with Cy = %C’* where C, is given in Main Theorem A.
We use the method of continuity to show that
{T e R : |||f|]|lr < €/3} = RY where (&, t,€) is the solution of (L.
Finally in Section 4, we prove the following theorem.

Theorem 1.2.(Main Theorem B) There ezist g > 0 and Cy > 0 such
that when € < € the solution of the initial value problem (L)) satisfies

(M)

0 <f(&,t,&) < Cpe -
_ Tty 22442
(e Co(l+D) +e—7goy +t> gz

(1.12)
T+ e~ o M(¢).

As in [14], our approach is based on the stochastic formulation of the
free transport motion (L2]). The stochastic formulation yields explicit solu-
tion representation. In this, we are following the classical approach of using
the Green’s function. For the Boltzmann equation, the Green’s function
approach has been initiated in [9], [10] in the case without the boundary
effects. The study of Green’s function for initial-boundary value problem in
[11] is for the perturbation around a Maxwellian and is therefore not appli-
cable here. For the study of gases near vacuum, it is natural to consider the
free transport equation, as is the case in the present consideration. For the
study on the well-posedness of initial value problem for gases near vacuum
based on the free transport motion, see [8] and references therein. For the
study of the Boltzmann equation with a source, it is common to consider
the Boltzmann equation without the source first and then use the Duhamel’s
principle to study the effect of the source. Such an approach works either
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for local in time, [2], or for the case when the source is small, see [5] and
references therein. In our case here, the source is the gravitational force and
thus is not small. We need to consider the source as an essential part of our
stochastic formulation for the explicit representation. For analytical study
of the boundary thermal effects, see [12], [13] [4], and references therein.

2. Preliminaries

The collision operator Q with Grad’s angular cutoff potential with an
inverse power force law r~* is defined in the form:

Q(f) = Q+(f) — Q—(f) (gain-loss decomposition)

Q+(f) = B+(f. f), (gain operator)
Q_(f) =B_(f. f), (loss operator) 2.1)
B.(f.g) = a(V.0)(F()g(€)) + g(€)h(€L))de. d,

1
? R3x S
B(fug) =5 [ a(VO)(Oe(E) + EOR(E)dEudes

where

V=|¢-¢&| 0=cos (E:Ej 'w>.

Here, the condition for Grad’s angular cutoff potential for an inverse power
force law imposes the following on ¢(V, 6):

qoV7| cos | < q(V,0) < q1V7| cos 8| for some 0 < qo < ¢1,

Those collision operators are classified as follows:

s<4 s=4 s>4 s =00

Collision model: @ | soft potential | Maxwell molecule | hard potential | hard sphere
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Maxwellians and Collision Invariants

Theorem 2.1.(Boltzmann (1872)) If Q(M) = 0, then the state M is

called a Mazwellian distribution and it is in the form

_le—al?
e

W,p>0,9>0,§€R3.
s

M(&) =My i0 =p

The collision invariants x;, i = 0,1,2,3,4, are the five polynomials in & € R3

XO(&) = 17
xi(&) =€ fori=1,2,3,
xa(€) = [¢[*.

Those collision invariants are orthogonal to the collision operator Q:

/ Xi(§)Q(h)d¢ =0 for i =0,...,4, for any h under consideration.
R3

Lemma 2.2.(Positive-valued operators) Suppose that h is a non-negative

valued function in &. Then,

g_[h](€) = =525 >0 for all £ € R,
Q+(h)(€) = 0.

The equal sign holds only when the non-negative valued function h is identical
to 0.

This lemma follows directly from the definition of @_ and Q4 in (2.1).
Grad’s Estimates on Collision operator

Theorem 2.3.(Grad [6]) Suppose that the collision operator Q satisfies

the Grad’s angular cutoff condition for a potential with an inverse power

force law r=°. Then, for given M = My 5 and a > 0 there exists Cp such
that

11+ I MB (MO, Mh) |1 < Collgllzz - [z, (2:2)
where ¥ = 22 g = supgegs |8(6)]-
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3. Stochastic Representations of Solutions of the Transport
Equation

3.1. Probabilistic representation of a transport equation with dif-
fuse reflection boundary condition

One can derive a probabilistic representation for the solution of the
transport equation

Ot +&- Vgt —g-Vet =0,

t(x7y707t7€)|§3>0 :p(xayat) %M(g)‘§3>07

plat) = [ g —€5(a 00,80

£3<0
[, @0.odedz =1, 1@.0. 20
R3 xH+

(3.1)

The sample space and the probability measure

The probability space (€2, Py) is defined by the sample space

0= ﬁ H*
j=1
with the probability measure P given by
Py ((n5"45) 0 (7' By)) = Po (7' 4;) Po (v Bi) for Ay, B;CHY,ij,
and

Py (W;IAZ-) :/A G(vHG(WHH(v®)dv dv?dv?,
i

where 7; : {Vj}jGN €O+ V; e H' and

02 v _ 22

e 20 —e~ 28 for v > 0,
G(v) = , Hv)=<10
V2m 0 for v < 0.

For any (%o, &p,w) € HT x R3 x , we introduce the following stochastic
processes
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Basic parameters

£0€H+ §0€R3

60:(66758758)

notion w € N

—

wf( 17‘727‘737‘747'”)7
V= (VL VA V) € B

definition | Zy=(x0, Yo, 20)

Deterministic variables

0= ((|€8 |2 +2920)7+€3) /g

first collision time

do = 70(&),€5)

horizontal dis-

Wo=(x0,y0)+do

description location where

placement up to |the first collision

the first collision| taking place

mutual independent i.i.d.’s

{V}'ben € HlR
]:

{V7}jen € 'H1R
j:

{Vi}jen € [IRT
j=1

Distribution G(v) = G(v) = H(v) =
. Po(Vie(v,v+dv)) Po(VZe(v,w+dv)) Po(V3€(v,v+dv))
function — s I

random variables between two collision

on=2V2/g the time lapse between the n-th and n + 1-th

collision, n > 1

the horizontal displacement between the n-th and
n + 1-th collision, n > 1

dn = (O'nVr}a O-nVn2)

random walks

Th= Z;L:l o} the time lapse between n+1 and the first collision
Tn="Tn+ 70 n + 1-th collision time
Dp=>,d the horizontal displacement between n+1 and the

first collision

W= (20,%0)+do+Dp
Sn:z?:l(f’l)z

the location where n 4 1-th collision taking place

an auxiliary process

(3.2)
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The continuous processes (random path): )Z'(t; %o, o, w) = (X1(t; o, o, w),
X2(t7 j)07 607 CU), Xg(t7 :ﬁOa {07 w))

the dynamics

the initial data

the random reflected velocity

X(ta j’07507(“‘}) = _§
for t & {m9,71,...,}

(0 m07£07 ) - i’\0

X
X(Oa m07€07 ) - {0

X(Tn—l“_; i07 5070‘)) = Vn

Xg(Tn—l;£07€07w) = 0
for n=1,...

The stochastic process

notions

definition

T = (xtyytyzt)

(!L"ta Yt, Zt)

= X(tv j’07507("})

ﬁtE(Ug,U?,U?) (vt7vt7vt

123)

= X(t7 507507(“))

Remark 3.1. The random variables d,, and o, are not independent.

Lemma 3.2.

lim
n—oo

Z"J

P

b =1,

(3.3)

(3.4)

Proof. The random variables {o;};>1 are i.i.d. Define the event E; =

{o; > 1}. Thus, one has that

n—oo

;) = lim nPy(E;) = o0

Z PO(EZ)
i=1

Then, by the Borel-Cantelli Lemma one has

Py {E; infinite often} = 1.

This and o; > 0 yield this lemma.

O

From (B.4]), one has lim,,_,o, 7, = 0o. This limit yields that for almost

all w € Q for any t € R there exists n such that

Tn(w) <t < Tpja(w) or 0 <t < 7(w).

With this, one can define the random trajectory

—

X(t7 j’07 507(“))(5

T
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(¢, Y1, 2¢)) is defined by

for t e (0,79)
- - t2 o>
Ty = Zo + t&o — 59,
for te (th-1,7)
(e, 1) = Wt + (= Tae1) (Vi Vi2),
2= V3t — Tn1) — g (t — Tu1)?.

The trajectory of the random particle & = X (t, &g, &o,w) is illustrated
in Figure 1.

¥=X(1) = /\

z
X(0) v 7, &
X(T)\fV,
v, Xy X(t,)  X(t,)
o = Vs
y - b X() ~
5((1,, \ 8
X(1,) X(t,)
X
Figure 1.

Theorem 3.3. The probabilistic representation of the solution t(&,t, &)

of B)) s
t(i) t7 g)didé. = X(z_ggt_ gt2)t($_£1tv y_£2t) 2_531:_ gt2, 0) £+§t)d£d£

+/ X(t = 70)Po (&, € & + d&, T € £ + dE)
(:T:o,ﬁo)GHXRS

Xt(i(]v 0)£O)d£0d£07 (35)

p(r,y,t)dzdydt

= ¢< (& — gt)t(e — &bty — &3t it + 57,0, ) dodwdydt
o€R?

+/ X(E=10) Y Po(ry € (t,t + dt),
H+XR3 n=1



2008] DIFFUSION UNDER GRAVITATIONAL AND BOUNDARY EFFECTS 181

Wy € (z, 2+ dx) x (y,y + dy))t(Zo, 0, {o)dEodSo, (3.6)

where x(z) is a characteristic function for the set {x| = > 0}, and both T,
and W, are functions of (o, &, w) € HY x R3 x Q.

Proof. Let t(Z&,t,£) denote the probability density function of

t(2,t,£)dBdE
= X(’Z - £3t - th)t(a: - £1t7 y—= £2t7 Z = £3t - gt27 075 + §t)d£d£

—l—/ X(t — TQ)P() (ft €EX+dE, U € £+ df) t(fo, 0, fo)d:ﬁodfo. (37)
(:i:'o,ﬁo)GHXR?’

From the definition of the random path X (t), for any regular set 'y C
H* x R3 and its trajectory I'; under the flow & = £, £ = —g, the probability

enclosed in the region I'; is invariant in time whenever I'; stays away from
the boundary z = 0. Thus,

d

—/ </ Po(ft €EX+dE, v €&+ dﬁ)t(fo,@,fo)dfodﬁo) dxdé =0
dt Jr, \ Ju+xrs

for any 'y € H* x R3. By letting |T'g| — 0 and the above yields that the
probability density function t(#,t, &) satisfies

Ot+& Vgt —gG- Vet =0. (3.8)
The function
3 1 2 3 9,2
ég’@té? _(50 - gt)t(l’ - 50@ y— gOtv _got + §t 707 £O)d$dydtd£0
&oeR

represents the number of the first collision particles (the deterministic colli-
sion) in the region given by x € z +dx, y € y +dy, z = 0, 79 € (t,t + dt).
Thus, the function p(x,y,t)dzdydt denotes the number of particles with all
possible number of collisions (with random and deterministic collisions ) at
ze(x,x+dr),ye (y,y+dy), z=0,te (t,t+dt)

p(x,y, t)dzdydt

g
= ¢8<gt/2 _(ég - gt)t((lf - é.(l)t7 Yy — fgt7 _égt + §t27 07 fo)dflfdydfdt
£o€ER?
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—l—/ X(TO_t)ZPO(Tn S (t,t—l-dt),
H+ xR3 n—1
Wn € (1‘, T+ dl‘) X (yv Y+ dy))t(fo, 07 £O)d£0d£0 (39)

Here, the random variables 7,, and W,, are functions of &g, &, and w. This
function can be estimated directly from the stochastic process given in (3.2).
Next, we will need to relate p(z,y,t) to t(#,t,£). Since t(Z,t,€) is time-
reversible in the interior domain through the flow generated by (B.8]), the
only non time-reversible part appears at the boundary z = 0. Thus, we just
need to relate p(z,y,t)dzdydt and t(&,t,)dEdE|,_ g3~0. Let

dz = —&3dt (3.10)

the infinitesimal line element in the z-component for particle arriving bound-
ary z = 0 with impinging velocity . This yields, for n > 1,

/3 < Po(zy € x+da,yr €y+dy,z € z+dz, t = 7y,
geﬂgg (Z0,50)EHT xR3

fel+ d§)d£0d§0> dg

= / Po(ﬂan €r+ dl‘v Yrn €Y+ dyv Tn € (t7t + dt))t(j(b 0, gO)diodSO
(Zo,00)€HT xRS

_ / Po(Wy € (2,2 +d) x (y,y +dy),n € (t,¢ +db))
(Zo,T0) €HT xR3

Xt(:ﬁo,0,€o)t(50,0,§0)dfodfo. (3.11)
Again by (3.I0), one has

(—&%(x,y,0,t,€)dxdydt) dé

£3<0
£ER3
1
B <A§<% —(& — gt)t(x — &ty — &5t —E5t + §gt2, 0, §O)d§0> dxdydt
£ER3
+/3 0(/ X(t—TO)PO(IL’tEIE—Fd{Ij’ytEy_i_dy’zteZ_i_dZ’
EGTRS (Zo,80)EH XR3

5 cc+ d&)t(fo,o,&])dazodso)dg (3.12)

z=0

One can partition the event {z = 0} into U2 ({7, = t} and use (B1I) to
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result in that

£3<0(_£3t($7 Y, 07 t7 {)dmdydt)d&

ECR3

1
- ( Aﬁ;«%ﬁ (& — gt)t(e — &ty — &5t =&t + 591, 0, £O)d£> dadydt

£ER3
o0

+Z/ Y(t — 70)Po (Wy, € (z,2+dz) x (y,y+dy), m € (¢, t+dt))
(@0,80)EHXR3
t(Zo, 0, &o)dZodEo

= p(x,y,t)dzdydt. (3.13)

This proves (3.9).

Similar to the first identity in (3:I3) one has that

ey t)dodydt = [ €¥wp,0.t,)dudydsit = [ Fap.0.t.€)dads
£3>0 &3>0

On the other hand from the random velocity, one has

2
oy tdodydr = [ CE (o, OM(E! dg2d dodyds
£3>0 \/_
- VT (s, OM(E)de de2de? dudyd.
£3>0 \/_
By comparing the above two, we conclude that
- V2
o040 = sy OM(E) oo
From this and (3.8]), the probabilistic function t(&,¢,£) solves [B.1) with the
Maxwell diffuse reflection boundary condition. ([3.6]) from B.I3)). O

Corollary 3.4. There exists a probability measure P and two vector-
valued stochastic processes {&i}iep+ and {U;}icp+ such that the solution

t(&,t,€) of BI) can be represented as follows

t(&,t,&)ddds = P(&; € & + dZ,U; € § + dE). (3.14)
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Furthermore, the boundary flux function p(z,y,t) can be represented as

p(z,y, t)dtdedy = Z P (Z,, € |z,x+dx] X [y,y+dy],m, € [t,t +dt]).
n=0

(3.15)

Proof. For each (Zo,&,w) € HT x R? x Q the stochastic processes
{@¢ }1er+ and {¥;},ep+ are defined by

{ft(UJ) = X(t, 507507("})7
ﬁt(w) = X(tQ 507607(“))'

The probability measure P(&; € & + dZ,v; € £ + d§) is defined by

P(Z; € & + d&,v; € £+ df)

= X(Z - égt - gt2)t(‘r - gltay - §2t,Z - §3t - gt2707€ + gt)diﬁdf

+/ X(t — TQ)P() (ft € B+dE, vy Ef—i—df) t(:ﬁo, 0, fo)dfodfo. (316)
(Z0,60)€HXR3

£y

From this definition of P and (B.), one has (B.I5]). O

One can re-assembly P(Z,, € [z,z+dz] x [y,y+dy], 7, € (t,t+dt)) as
follows P(&,, _, € [Z,Z + dx] X [§,y + dy], Tn—1 € [t,t + dt]) and projectile
trajectories from (Z, 3) at ¢ to (x,y) at t according to the probability assigned
to the projectile trajectories. Then, it follows

P(&,, € [z,x+dz] x [y,y + dy], 70 € (t,t + dt))
= [ eeEAHE?)
R3,0<v3< 5t

2 1,3 2 1,3 2 2,3 2 2,3
-P<:Y:Tn16 [:1:— vy ,T— vy —I—daz}x[y— v ,Y— vy +dy| ,
g g g g

203 203
a1 € (t - %,t - % + dt> >dv1dv2dv3. (3.17)

This and (B15]) gives rise to the representation

xplx —vt(t — 1),y — v (t — 1), 7)dvi dvidr
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T s 03 — gtlt(z — vty — v°t, —v3t + gtz, 0,vt, 0%, 0v?)
v3<gt/2
dvtdvidv.  (3.18)

We next examine this from consideration of the characteristic curve method.
At any given point (z,y,0,&) € OHT x (—HT), the characteristic curve
reaches (x,y,0,£) at time ¢ can be classified into two classes from ¢ = 0

or from OH:

time interval | end points of the characteristic Conditions
curve in Ht x R3
Class 1 (0,1) (&M, y—E%t, &3 —3t%g,6+Gt), | & < —%g
(€, €)
Class 2 | (t—o1,t) (x — oy, y — 201,0,€ + goy), | —263=01g,
(z,9,0,8) 0<op<t

From this table, we can have that from the diffuse reflection boundary

condition given in (B

p(z,y,t)
= Jeaco —&t(x,y,0,t,8)d¢
EER3
_ o eBaffly o 2, 3, 92 =
— focagpe g —€la - €ty - 2o -c% - D 0.6 - gy
ECR3
V2T
+%<01<t,5€R3 —&p(x — o,y — Eor,t — UI)TM(f)df
0<0’15—£ 0
g
= Ag&t —(& — gt)t(a — &ty — &5t —&ot + th, 0,&)déo
0>2
£o€ER?

goi

7)dgldg%zal. (3.19)

O0<ol<t, 2
(¢',6%)eR?

4 / 9 y(w—Elor,y—Eor, t—01)G(E)G(EH

This gives an alternative derivation of (3.18]). Rewrite (3.18]) as an integral

equation

p(z,y,t) = Qz,y,t) * p(x,y.t) +t7(z,y,1), (3.20)
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whence
p(x,y,t) = (1 +) Qi y, t)) *t(z,y,1). (3:21)
=1

Here,

w2+y2 _ t2g2

Qz,y,t) = gc (%) G <y) Y <g_t> e

t 2 86?2 ’
Ql(l',y,t) = Q($7y7t) * Q($7y7t) *oeeeox Q(:Evyvt)7

~
[ convolutions

t
h(z,y,t) xg(z,y,t) = / / h(z —u,y —v,t — 7)g(u, v, 7)dudvdr,
0 JR2

t+(ac,y,t)=/R3|v3 — gtlt(z—v't, y—0?t, —v?’t—l—gt2,O,UI,vz,vg)dvldv2dv?’.

v3<%t

(3.22)
Remark 3.5. From the representation (3.21I]), we just need to obtain
a refined structure of Q;(x,y,t), then the structure of the boundary flux

function p(z,y,t) will follow.
Here, the functions Q(z,y,t) and Q;(z,y,t) are the joint probability
density functions of the horizontal displacement random variables Z§:1 d;
and the hitting time variables me:l d,, with respect to the total number [

of collisions:
Qe )dndydt=P(dy € (a, 0-+d2)x (y,y-+dy), 01 € (8, t-+d0),
{ Qi(z,y, t)dedydt=P (D, € (z, z+dz) x (y, y+dy), T, € (¢, t+dt)) . (3.23)
The probability density function .#(t) of the random variable o, is

2 2,2
g—te_% for t > 0,
T(t) =< 40 (3.24)

0 for ¢t <0.

Lemma 3.6. The function t*(x,y,t) defined in (3.22)) satisfies

e N - . )
/0 </R2 t (%%t)da;dy) dt = /H+XR3 t(2,0,&)d2d¢. (3.25)
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Proof. Suppose that t(z,0,£) > 0 and foRg t(&,0,£)dZd¢ = 1. The
measure t* (z,y,t)dtdrdy can be identified with the probability measure

t* (2, y, t)dedydt = P((xr,,yry) € (z,2 4 dx) X (y,y + dy), 70 € (L, + dt)).

Due to the constant gravitational field —g, every particle will be pulled back
to the surface z = 0 in finite time. This yields

| PUnm) € Gt da) x g+ dyhoo € (1 dt)
0 R2

_ 1:/ (&, 0, ¢)d@de.
HxR3

[e'e] N - B ) )
/0 (/th (a:,y,t)dxdy> dt =1= AHXRBt(w,O,f)dwdf.

For any positive-valued initial value t(&,0, &) this lemma also holds by mul-
tiplying it with a normalizing constant. A general real-valued function
t(2,0,£) can be decomposed into the difference of two positive-valued func-
tions. Apply the above to the two positive-valued functions, and so the

Thus,

lemma holds for the difference as well. O

Lemma 3.7.(Delay Estimates) For a given a € (0,1) suppose the initial
data t(Z,0,€) satisfies

10,9 < (7 FMm(g)) eV (3.26)
Then, there exists C1 > 0 such that the function t*(z,y,t) satisfies

2
- (R e

[tT(x,y,t)| < O(1)e (3.27)

Proof. From the definition of t* in (3:2I]), one has that

th(z,y,t) < (/ +/ )
v3<gt/a gt/A<v3<gt/2
29(—v3t+§2) 4503, (v9)?

% |U3 _ gt|e—\/(w—v1t)2+(y—02t)2— 20 *dvtdv?dv®

= </ vi<gt/4 +/ vi<gt/4 >

21,12 20,12
+ +
|v1‘2+‘02‘2<\z\16t\y\ |v1‘2+|v2‘22\w\16t\y\
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2 .

912453 (09)?

_ _ 142 _p24)2_ 2 Teg=1tT

x |0 — gtje V@0 H—%) 2 “dvldvdo’

+</ gt/A<vd<gt/2 +/ gt/A<vd<gt/2 >

2 2 2 2
124, 124,
|v1‘2+|v2‘2<\1\16t\2y\ ‘U1|2+|v2|22\1\16t\2y\

3 V(@—olt)? e S LR
x|v? — gt|e” V@V H— ) == 5 e gl gy du

3v/ 22412 g2t2 _ 92t2_ ‘1\2-‘-\?;‘2
< 0(1) <e_ 1 ¢ BT

THe Y 4 e 80 32¢20

IN

_3 w2+y2_ag2t2 _ag\/z2+y2_ag2t2
O(l) e 1 1% t e 610 Co0

2,2
- (%4-\/:62—1-;/2) /C1

IN

O(1)e for some Cy, Cy > 0. (3.28)

3.2. Central limit theorems for space-time displacements

In this subsection we derive the central limit theorems for the 2-di-
mensional random walk D,, and the 1-dimensional random walks T,, and S,,
defined in (3.2).

From a direct calculation, one has that

2
© 926~ 20 270
E[Uz’]:/ e 2o 0.
0 gt g

929\ ? ve~ 5 T ? —27
Var(ai):E[(ai)z]—E[aiF:/O (%) - dv—<\/2g—9>:9(8922 ).

(3.29)

Lemma 3.8.(Central Limit Theorem) There exists C > 0 such that the

stochastic processes Ty, Sn, and Dy, given in (3.2) satisfy

(t—nE[oq])?

n

dt 13k
(3.30)

2

(0-nE[o1])?
P{S, € (0,0 +do)} <ofe (\U—n[E[C?%]\+n) N P 1)
do - vn ’ '
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_ @24
dxdy n

Proof. Take the Fourier transformation of the probability density func-
tion .7 (t) of the random variable o; i.e.

E[e—73] = / eIt 7 (1) dt
R
By the i.i.d. property of {o;};cn one has that

E[e—inTn] - F |:e_i772;b:1 cr]-] _ (E[e—itnal])n

— <IEJ [1 —inoy — %%772 + 0(773)])”

= <1 — inEloy] — VarT[al]nz + O(n3)>

. Var [~
e~ innE[o1]— YA 2 1m0 ) for In| < 1. (3.33)

The exponentially decaying structure in .7 (t) results the generating function
E[e~™71] is an analytic function in 7 when n € {n € C| |y| < 1} and the
function O(n) is also analytic around n = 0.

For |[t—nE[o1]| < n/C (in the hyperbolic scale region) by inverse Fourier
transformation of E[e‘mT”], using the complex contour integral method,

m .
— / (in)kei(t—nE[Ul])neinIE[Jl}nE[e—inTn]dn
R
:/(in)kei(t—nE[m])ne—mnnﬂo(l)nng’dn
R

1 [@=nEloy)) o Var(o)) 0’
RN 7 7°+0(1) _
= T&q1 /(277) e v e 2 Vdip
R

n 2
_ (t—nEloy))? Var » ( il "IE[”11)>
2Var 011 In _ [o1] nVar[o] 19 i
_ Y +o() L
- k+1 U
77\<H0\f |7|=2K0v/n

2
(t n[E[o'l]) Var[oq] <7’]72‘M)

2Var[oq]n B _ AV nVar [o1] +0(1 ﬁ _
= k+1 / / (477) ke : ( )ﬁdn
[n|=rov/n
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_ (t=nE[o])?
<o)V oy (3.34)
< +0(1)——= :
Var [o1] n'T nVar [o1]

re {|Re<z>| o Im(z) € ( ;%)}
U{lRe( )| < Ko/m, Im(z) = 1%}.

Here, we have used the condition that O(1)n? is an analytic function in 7 in
order to apply the complex contour integral to yield the exponentially sharp

estimates.

We use weighted energy estimates to prove the exponential decaying
structure in t-variable. Denote by 7, (t) the probability density function of

Th,
P(T, € (t,t +dt))

Tult) = ==

=T« TA) -+ T(L).

n convolutions in ¢.

1
</ ‘e(t—gE[ol]n)/C%(t)th) 2 '

By Holder inequality,

/oo ‘e(t—%E[ol]n)/C%(t)‘Q Ut

o) 2
< HEla/C </ g(t)et/c“dt> / ‘%_1(7)6(7—315[01}("—1))/0‘ dr.(3.35)
R —00

We consider

2
dt

A [ 7 (4= 7) 7, (e

2
_Eal]/C’/y )et=D/C g ()l SE-1)/C g | gy

Now one can expand /¢ =1 +t/C + (t/C)? and substitute it into
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Jo 7 (t) e¥/Cdt to get that
2 5
</ ﬂ(t)et/cdt> =1+ 2E[01]/C + O(1)1/C? < e2Blnl/C
R
for sufficiently large C' > 0. This and (3.35]) result in that

/oo ‘e(t_gE[al]n)/C%(t)rdtge_;IE[al}/C/

oo

‘ea—%E[al](n—l))/c T 1 (t) ‘2dt,

- - (3.36)
and so
/ OO‘e(t_%m"l]")/c%(t)‘zdtge—%("—l)E[Uﬂ/C / oo‘e(t—%E[aﬂ)/C y(t)f "
- - (3.37)

Similarly we have that

/ " et el 7o) ar < o301/ / *

—00

‘e—(t—%E[m])/C 7() ‘th,
(3.38)

The exponential decay estimates in ([3.30) and (3.38]) give the exponen-
tial decaying structure in ¢ and n outside a hyperbolic region |t — nE[o1]| >

%E[al]n. Thus the estimate (3.30) follows. By same argument, one can

prove (3:32)) and B3T)). O

Lemma 3.9.(Estimates on Joint Probabilities) There exists v € (0,1/6)
and C > 0 such that, for |z| < n%J”,

P{D, € (z,z+dz) x (y,y +dy), Tpe (t,t+dt)}

dxdydt
_<w26+y2>_<t—ng[aﬂ>2 (sl
e n n _ —nli{oq n
< C +e o |, (3.39)

372

P{D, € (z,z+dx) x (y,y +dy), T, € (t,t+dt)}
\"
dxdydt
_ @24y (t-nE[oq)?
e Cn Cn _ (It=nE[o1]|+n)

<C c , 3.40
< 2 +e ( )

and

5, (P 1Pn € (2 +d2) x (y,y +dy), Tu€ (4t +dt)}
¢ dxdydt
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_(@%+y?) _ (t—nE[oy])?
e~ Cn Cn _ (It=nE[oq]|+n)

T ) +e c . (3.41)

<C

Proof. We only prove ([3.40) and (3.41]), the estimate for (3.39) follows

by similar argument.

Let {‘7] }jen denote the stochastic process representing the random re-
flected velocities, where ‘7]- = (le, Vf,Vj?’). Since le, ij, and Vj3 are in-
dependent random variables, the probability measure P{D,, € (z,x + dzx) X
(y,y +dy), Ty, € (t,t + dt)}/(dzdydt) can be represented as the following

iterated convolution integral

P{D, € (z,x +dz) x (y,y +dy), T, € (t,t +dt)}

dxdydt
P50 (VL V) € (w2 + dx) X (y,y + dy), Ty € (8,1 + dt))
dxdydt
ot ot P(325, 0;(VL, VP € (2,2 + d) X (y,y + dy))
_ /0 /0 /0 -
< [T 7 6))dty -+ dtns, (3.42)
j=1
where
o = t1,
0i=t;—tigforie{2,...,n—1},
Sp =1 —ty 1.

Since {le }ien and {ij}jeN are mutual independent i.i.d. with the Gaussian

distribution function G(v), it follows that

z? + y2
o n 12
P(SI, (V) VA o +dn) x (yy +dy) e 2025110l
= - . (3.43)
dxdy 207 >0y |65/
First, we introduce the stochastic processes {A,, }nen:
An=) (o ~Elof)). (344)

J=1
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2

I2+y . 1‘2+y2 . I2+y2 An
One can expand the factor S P = WERA, <n1E[a§})(1 + 0(1)=2),

and split the integration domain in terms of A, i.e. {|A,] < O(l)néﬂ} U

{|A,] € 0217, 3nE o]} U {|A,] > LnE[o2]}. We have

P{D, € (z,2 +dz) x (y,y +dy), Tn € (t, ¢t +dt)}
Oz
dxdydt
B 22 + y?
2057 10512 n
ot ptaetg j=110j
= 8:p</// _ 9(5-)dtn---dt>
oo Jo o 20m 3N 0502 E ’ '
__THy
803 51165/
t1 e j=1
< -dt
< ow|(f [ / |5|z Wy H 5t -t
z? —I—y
t1 tn— lo 89]E 0'1 n—1
201// / T (6n) || Z(8;)dty, - -dtq
497TE /2 ]131 ’
z? +y
t1 n—1 89E Ul 2 2
o[ () )
497TE /2 nz" "
n—1
< [ 7 6;)dtr - - dt
j=1
B z? +y?
e 80E[O’%]n 5 l_;’_ 1 5
+O(1)WP{|AH| € < Var [o7] n2 7,§nE[01]>}
1
FOWP(A,| > tnEla)
x? + 32
——
e (80E[07]) n3/2 P(T, € (t,t +dt))
(467E[o?]n) 3/2 dt

_@ty
e WELIIN pT, (1,1 +d))
(467E[o?]n) 3/2 dt

+O(1)n~2
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2%+ y?
—n2 " 8OE[0?n
e C e 1
—n/C
+0(1) 677N +O(1)e
B 22 + 92 s E[oy]n)?
o SOE[oi]n 4Var [o1]n
—n/C
= 0(1) +0(1)e/C, (3.45)

n2

This concludes (3.40). For (3:41]) one has

o, <P{Dn € (z,z+dz) x (y,y+dy), Ty € (t,t—i—dt)})

dxdydt
w4yt
_ 205" |62 n
t t1 tnle =1 10;
[ [ i
t< 0 Jo 0 297rzj:1]5j|2 ]131 (95) 1
u
t1 nle 29E01 n
T (05)dty, - - dt
<// / 297TE0'1 H 1
7=1
2ty
t1 tn— le 29EO’1 (x2+y2) . n—1
On 8;)dt,, - - dt
// / W i\ )]1;[15(]) '

_ a4y
80E[0?]n

FO)P(|,] > LnElo?)

+O(1)

_ z2 + y2
e 20Ellln o p(T, e (¢t + dt))
~ 207E[0?n ! dt
_Ty
Lo+ WE[tIn p(T, € (t,¢ + dt))
407E[o?]n dt
%+ y2
2y _72
—n— 80E[oi|n
o +O(1)e T

40mE[o?]n
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B x? + y? (- E[oy]n)?
— O(l) (n n” §—§+3'y> e SQE[U%]W, 4Var [O’]]Tl —i—O(l)e‘”/C, (346)

and (B.41]) follows. O

Lemma 3.10. For any given (x,y,t) there exists C > 0 such that the
infinite sum Y o, Qi(x,y,t) satisfies, fort > 1,

00 _z2+y2
e C(1+t) —(lz
> Qi y,t) < O(U(w +e +|y+t)/0>7 (3.47)
=1
and there exists v € (0,1/6) such that
o) @24y
e~Cain
Z|8th(:E,y,t) < O(l)(m—Fe (1 |+y|+t)/C>’ (348)
=1
0o _2?4y?
e Ca+H e
> IVaQula,y,0)| < O<1><(1 e '*y'“)/(’). (3.49)

Proof. 1t is sufficient to prove ([3.47), since (3.48) and ([3.49) will follow
by the same argument. By (8.23]) one can related Q;(x, y, t)dzdydt to P(D; €
(x,z+dzx) x (y,y +dy), T, € (t,t + dt)) estimated in Lemma 3.9.

The proof of (347 is done in the four cases, according to the value of
r= /2% + 92

Case 1. r > t.
We use ([3.32) for I € (0,2r/E[o1]) and (3:30) with k& = 0 for [ € (2r /E[o1], 00)

in the following summation of Q;:

o0 21"/E 0'1] o0
ZQl($7y7t) = Z Ql 1’ 5 Y, )+ Z Ql(l',y,t)
= I=[2]/E[on]
2 [t—E[oq]12
2r/E[o1] 401E[a§] ~ Varo
e e 1
- 0(1)< > ——+ Z —
=1 =27 /E[o1]

= 0(1)e™"/€ for some C > 0. (3.50)
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Case 2. r € (t%J”,t).
We use [3.32) for [ € (0,2E[o1]t) and [B.30) with k& = 0 for [ € (2E[o1]¢, 00)

in the following summation of Q;:

00 Q]E[O'l]t
ZQl(xayat) = .T y7 Z Ql :1: y7
=1 =1 1=2E[o1 ]t
r2 |t—E[o1]1)?
2Elon]t = aom(2n < " Var o
=1 1=2E[01]t !

2
= 0(1) (e_t%_Ct + e_t/c> for some C' > 0. (3.51)
Case 3. r € (O,t%J”).
We use [B39) for | € (3t/E[o1],2t/E[o4]), and B30) with k = 0 for [ €

0, 1t /E[o1]) U (2t/E[01], 00) in the following summation of Q;:
2

1t/Elo1] 2t/E[o1]

ZQl(x7y7 Z Ql :L‘ yv Z Ql(x y7 + Z Ql(x7y7t)
=1 l——t/E[oﬂ 1=2t/E[o1]
|t—E[oq]0)? 2 |t—E[o])
21/Elou] e Var [2111 2t/E[o] e 4ElLTI o Var [Ll]z
SOl X Tt 2 g
=1 1=1t/E[o1]
_ \{;E[aﬂl\z 2
> e ar[oq]i e CO+t)
+ Z 7> = O(1)———— for some C > 0. (3.52)
1=2t/E[o1] Vi (1+1)

Before proceeding to the proof of Main Theorem A, we denote I'(7) a

trajectory of the flow I'(r) = —g with condition I'(t) = Z and I'(t) = &:
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For a given (&,t) € H" x R, the trajectory I'(7) is given by

L(r) = (UY(7),I*(7),I%(r)),

I'Y(r)=a+&(r —1),
I2(1) =y +&(r — 1), (3.53)
(

P3(r) = 2+ E3(7 — t) — §(t — 7)2,

(¢3)2+2g2—¢°
g

kTO:t—

Proposition 3.11. For any fized ag > 0 and v > 0 there exists Cy > 0

such that the trajectory T given in ([B.53) satisfies

_3(rt(m2+r3(n(? )

_gm3(m) . R 20 (1+7) 300 ()| +02 (1) |+7)
<e 0 M(F(T))> < +e 2Cx

2(14+7)
T=T0
_@?)
< 0(1) c i + — g (3.54)
P EEE— e * .
- 2(14+7)
and
t I FS(T) 3 T . @0
/e— - <e—gre”|v|(r(¢))>
70
_3(rt () I2+Ir? (0%
e 20« (1+7) _3<\r1<7)\+61r2<r>\+7) g
2C%
T T
e Cx(i+t (42| +1)
- - = + w3+
< 0(1) ] +e c for all (#,¢&,t) € H" xR°xR™.(3.55)

Proof. We denote

Ly(r) = (PY(7),T%(7),0), T1(7) = (0,0,T%(7)),
&) = (2,9,0), &L =(0,0,z),
d(T) = ‘FH(T) — £|||.

From the conservation law of total energy one has

ID(7)? +29T%(7) = [D(1)[* + 29T (t) = [¢]* + 292 (3.56)
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We have the estimate for 7 € (79, 1)

max {|f(t)\2, |r'(T)\2} > gd(7). (3.57)
This and ([3.56]) yield
max{e—%wg),e—#” M(r'(f))} < ﬁe—‘q%ﬁ?. (3.58)

Note ([B.57)) follows directly form the fact that % is the maximum horizontal
displacement of a projectile with fixed speed v under a constant gravitational

force.

Case 1. |Z)| < V1 +t.

In this case by the property that I'3(7) = 2 + &3(t — 7) — 3g(t — 7)% it

follows

o _3(rr @) 2+ (0)%)
o3 “fle 20 (1+7) _ 3 @I+ (0)]+7)
~ o M(T 2C
e (T'(7)) ST+ +e .

T=T0
< o) (=2 L 0()—— (3.59)
e~ 9 —— +e 20« .
B 21 +7)7 r=r (L412)
and
b agerdm) Sy o 0
/ e % <€_gre )M<F<T>>>
70
B 9 i G T )
e 30 (147) _w d
2Cx
% di+ry ¢ ’
t « FS(T) gFS(‘r) @0 1 37
<o [ e (e STy e )4
< ”/me ( ’ > <2<1+T>v+e > ’
1
< 01 3.60
< ()(1+t),y (3.60)

Case 2. |Z)| € (V1+t,1).

We break this case into two situations:

a. |Dy(7)| > 21&| for all T € [ro, ].
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In this situation one has

o _3(rr @) 2+ (1)%)
_atm) o [e 20+ (147) _3(r ()| +[r2(r)|47)
e o M(I'(r)) +e 2C%

2(14+7)
T=T0
NS 2 |2
< 001 g3 (1) [e%y} e Cx(+7) _ 37 o1 e Cx(1+D) 361
e 8 — e 20 — (3.
< oQ) 2(1+171)7 - ()(1+t)7 (3:61)
T=T0
and
t « F3(7') 3(7—) . @0
/ e % <e—"re M(F(T))>
T0
_3(rt @242 @)%
e 20« (1+7) _3<\r1(r>\+cwr2<r>\+r>
2Cx
S T
. a0 )12
« F3(T) F3(7—) T Cx(1+7) _ 37
S O(l)/ e Oge <6_g 6 > 674-6 2C% dT
70 2(1+7)7
|3 12
< o)t =P 3.62
b. 79 < T, Where
Te = max T.
T<t
Ty (7)|=5]2|/6
In this situation by (B.58]) one has
3(rt(m2+r?(n)?)
_gr3<T>M I N 20*@7) _3(\r1<7)\2+cwr2<7)\+r>
[ *
e (I' (1)) B +e
T=T0
\iH\z
< O(1) e it ! < e 363
e~ 100 + e 2Cx - .
< 0(1) T IOh e )

and

3t P+ %)
e 20 (1+7) 3t @)+ r2 () |47)
X dr

2C
si+rn ¢
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=12
121

Il
t 3 3 @Q T Ca(1tT
g9l (1) gl (1) e Cx(+7) _ 37
< 01 e o e 0 - 40 |dr
( )/T* < > (2(1+T)” )

o1 ¢ aggl3(r) _ 990lF)| 1 n _ P
0 100 —_—_— *
()L ‘ ‘ 2+ 1) € T

0

I |2
e Ta(lFD
< O(l)m. (3.64)

Case 3. |Z|| > (1 +t). We also break this case into the same situations as

(3:62) and (3.64). Here, the estimate (3.62)) is also valid for |€|| > ¢. Thus,
there is only one situation need to verify:

_3Urt (24 (i)

a3 . e 20+ (1+7) _ 300 ()| +[02(n)[+7)
e M(T + 20
<e ( (T))> < 2(1 + T)'Y € )

T=T0
< 0(1) Tl <# I e—f&)
214+ 7) -
312
e C=UFD 1@+
S 0(1) <W +e Cx ) (365)

and

t T « 3 T 3 T . @0
</ +/ >€_ 0o (r) <e_gr6< )M(F(r))>
Tx T0

_ 3t () P+r? (03
e 2C.(1+7) _3(rt @+ (n) |47
% dr

2C
T

=12
121

Il
t a F3(T) gF3(T) @0 e_m 37
o1 —% - 42 |d
/. e N e

T aggl3(r)  920lZ|l 1 s
O(1 i T 108 L 20« | d
" ()/T ‘ ’ <2(1+m+e > '

0

IN

L2
|21

e Cx(+H _1E i+
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Proof of Main Theorem A. From (3.26), (3.27)), and (I.7) one has that

th(z, y, )| < O(1)e~ V= +)/C o1 some C' > 0. (3.67)

This, (3.47), and (3:21)) yield that

@24 y?
T oty
p(z,y,t) < O(1) <6(1 y + e_(x+|y+t)/o> for some C' > 0.  (3.68)

Since t(&, t, £) is invariant along any characteristic curve I'(7) given by (8.53)),
we have, from (3.54]),

t(z,y,2,t,&,6%,6%) = p (T (70), I (70), 70) M(I'(79))
M(P(70))' = M(1(70))*
M(P ()1 (e Meh,2,6%))"

=p (F (To),r2(7'0),7'0)
=p (Fl(To),F2(T0),T0)

(@?+y?)
IEen Ry Jo|+]y|+¢ a
< Oﬂ)(ilft) +e~ et >< “TM(EL €2, 53)) for some C, >C. (3.69)

This concludes (L8] for some C, > 0.
To obtain (I.I0) we need to obtain a space-time shift estimate for an

initial data satisfying (L7)) and (L.9). From (325]) and (LI0) we have

AMQ@ﬁ@wﬁM@>ﬁ:0 (3.70)

We decompose t*(z,y,t) as follows
th(z,y,t) = t4()G(z)G(y) + tA(z,y,1),
(0= [y tdudy,
R2
ta(z,y,t) = t4(z,y,t) — 7 (1)G(2)G(y).

(3.71)

From (B.70), one has that [t (t)dt = 0. This and (3.67) result in that

/Ot th(r)dr| <
/

O(l)e‘ﬁ/cl for some C’ > 0,

th (z,y, t)dedy =0, (3.72)
R 2422542

tA(z,y,t)| < O(1)e” for some C" > 0.
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Substitute the decomposition t*(z,y,t) = t+(¢)G(x)G(y) + tX(z,y,t) into

B21)) then it follow from ([B.48), (3:49), and (B.72)) that

p(z,y,t) = (1 + ZQ:(%?M)) * (c‘%/ t(7)G(2)G(y)dr +tX(w,y,t)>
=1

0
= 3 Qi (x, ,t)> * tf+(7')G(ac)G( )dT
(; W(z,y /0 y

oo t
+Z/ / (Ql(x_jay_gﬂt_T)_Ql(xayat_T))tz(‘fagaT)didydT
=170 JR?

_ (s 9 Qu(z, ,t)) * tf*(T)G(m‘)G( )dr
(; 1z, y /0 Y

t 1 o
_/ / / (ja Zj) ' v(ac,y) Z Q[(l' — 8%,y — sY,t — T)tX(j7 Y, T)dejdng
0 JR2JO =1

22142

ooty
o (W*e ' '+y'+t)/c*>f°r some '€ (0, 1/6), C. > C'. (3.73)

This estimates the boundary function p(z,y,t). Thus (LI0) follows from
the characteristic curve representation in (B3.69) with the factor 1/(1 + ¢)
replaced by 1/(1 + )1+, O

4. Construction of Solutions of the Boltzmann Equation

We will apply the method of continuity to the nonlinear problem (ITI)
together with the strong linear estimates yielded by Theorem 1.1. First, we

introduce a norm || - ||y with T > 0
7.t
lelllr = sup <§u§ e 8(Z,t, &)
e ?eeRé (% +e—(lr|+y|+t)/Co> e‘%M(g)
57 t7
+ sup |g(—£)|3> (4.1)

& (M)

with Cy = %C*, where C, is the constant given in Theorem 1.1.
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Let f(Z,t,£) be the solution of (LI and let .# denote the set
I =AT :|[flllr < /Y, (4.2)
which is not an empty set since ||[f|[|jo = O(1)e < ¢2/3. Thus
0e s.

We will show that this set is both open and close.

The close part is a direct consequence of the definition of the norm
|| - ||]7- Next we continue to prove the open part.

First we decompose the collision operator @) into gain and lost parts
Q = Q1 — Q_. Then we consider the iteration scheme to construct a local
solution:

Ofo +& - Vafo — G- Vefo = —Q(fo),
Ok +€-Vaf, — G- Vefy = —Q_(fr) + Q4 (fy1) for k> 1.

(4.3)

Lemma 4.1.(Local Existence) Suppose that the initial data f(£,0,&) >
0 and that € is sufficiently small. Then, there exists a > 0 and 19 > 0 such
that the following holds for any given ty € & and for any t1 € (0,79)

[Fllltg 2 < ce®/?. (4.4)

Proof. First, let 79 = 1. Since the initial data (&, ¢, ) is a non-negative-
valued function, the solution f(&,¢,¢) is non-negative for t =ty € .#. Now,
we consider the following iteration scheme for t > tg

Ofo + & - Vafo — G- Vefo = —Q—(fo),
Oifpy +&-Vafy, — G- Vefy = —Q_(fir) + Q4 (fr—1) for k > 1, (4.5)
fk(£7t07£) = f(i\vtO)g) for k& > 0.

From Lemma 2.2 the loss operator Q)_(fx) can be expressed as a product
Q- (fr)(&) = q-[fx](§) - f(£). This, and the positivity of @4 as an operator,
ie., Qi(g)(€) > 0 for any non-negative valued function g, yields that the
functions f (&, t, &) are all non-negative valued functions

fr(@,t,) > 0 for t > tg, k> 0. (4.6)
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This iteration scheme yields that
O(fr—fo) + & - Valfi—fo) — g - Ve(fi—fo) +q-[f1 + fo](f1 — fo) = Q+(fo),

Ot(fp1 —T) +& - Va(forr =) — G- Ve(frr — i) Fa-[forr + ] (Fogr —fr)
= Q+(fk) — Q+(fk_1) for kz 1.

(4.7)
This gives rise to the representations:

(f1 = fo)(&,¢,€)

_ o a5 )as V2 (L = po) (C1(70)- T2(70): 70) g

NG
- / e PSR )i L (1) (D(r), 7, (1) dr. (4.8)

and K

(fe1 — ) (2,1, €)

S a5 D) V27 (pry1—pr) (T (10), T%(10), 70) M(T'(70))

Vo
b it : i
X /6_ I q_[T_H}(F(s),sf(s))ds(Q+(fk)_Q+(fk_1)) (F(T), T, F(T))dT, (49)

where I'(7) is given in ([B.53]), and

pl(l',y,t) = _/ 53f1($7y707t7£)d£ for [ > 0.
£3<0

Here the function g_[fry1 + fx](Z, ¢, ) is a non-negative valued function

t
so that the integration factor e Jro 0= [r1tf)/20ds 3y 4 representation (4.9)

is bounded by 1 from the above. Thus, we can have the comparison

|f0(£7 2 £)| < m(£7 t, 5)7
(4.10)

|(fk’+1 - fk)(£7t7£)| < mk(£7t7£) for ¢ > to,

where m(&,t,£) and mg(Z,t,£) are the solutions of

om+¢-Vom—g-Vem =0,

m(:ﬁa t07 g) = ‘f(:ﬁa t07 g)‘7
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{atmo & Vamg— G- Vemo = Q4 (fo),

mO(:Ea t07€) = 07

omy +&-Vemy — g - Vemy, = Q1 (fr) — Q4 (fr—1)l,
my (&, t9,&) =0 for k > 1.

Thus, we have the following estimates

‘fo(f,t,f)‘ < Tt_to[f('vt()y')](iaé)? (411)

t
/to Tt {

|(f1 - f())(iﬁ,t,f)‘ <

@ (totr)[Jar@.0)|. @
and

|(Feq1 — fR) (@, 1,6
L (B (= o+ ) ar@. )

for k>1.  (4.13)
From (£II]) and Theorem 1.1, there exists a > 0 such that

<

«
ol lltg+1 < 562/3- (4.14)

This, (412]), 2.2), and Theorem 1.1 yield that, for ¢t € (to,to + 1),

z2+y2

" Co(I+1) _ lzltlyl+t 0
c ~ — +te Co e~ 0 M(g),
|(f1 — fo)(&,1,€)| < O(1)e3a® ( 1+ >

(M)

From (4.15)) we can make a priori assumption that, for k& > 0,

(4.15)

1fillr0+1 < 26 (4.16)

Under this assumption, we have from ([@I6]), [2.2)), (13), and Theorem 1.1
that, for ¢t € (tg,t0 + 1),

[(Frrr — ) (&, £,6)] < OL)P|(Fr — o) (2,1, 6))
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w2+y2
T Co(I+h) _ \ch\vyHt gz
G M

< O(1)ek+/3 ( ay e em T M(E), (4.17)
B e 3/4

(" m©) "

This, ([@I4]), and (£I0) yield that
1
lflll1 < 5o (1+0()e?) 2. (4.18)

This concludes a priori assumption (A.I6]), and the lemma follows

O
Lemma 4.2.(Anastz Closure) The local solution f of (LI]) constructed
in Lemma 4.1 with the property ([&4) satisfies

If[lleo+1 = O(D)e. (4.19)

Proof. The local solution f constructed in Lemma 4.1 satisfies that

fllligs1 < ce®. (4.20)
. - "
Next we continue to compute fto TT[Q(F (-, 7, -)|(#, €)dT for t € (tg, to + 1]
Consider the partition of unity {x;}

‘ )1 for (z,y) €[y — i+ 3 x[-
X]J(«T,y)—

D+,
0for (z,y) € (j— 3.5+ 3] x(1-31,1+
> xjulry) = 1.

1)

From (1, x;i(z,y)Q(f)) = 0, we can apply (LI0) to xji(z,y)Q(f), to show
that there exist v € (0,1/6) and « € (0,1/2) such that

[T [Q(f(- O =T T{ZMQ }( 5)‘
_@=)%+-1?

T Colt—7m)
< Ogeéz<e( -

e DD (el ty-tl4t-7)/Co
e
I

_2(%+12)
e COT

O e G
(1+7)2

X
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_ w2+y2

1 Cot _lzltlyl+t agz z
— 0(1)C3é3 (e D e >e—%(e—%|v|(g))%4.21)

(t—7)(14+7)\ (t+1)

Now, we can use the representation

F(#,1,€) = TUR(-0,)](#,€) + / T QU 7, )] (&, €)dr,

0

for any t € (0,t9 + 1) and (£2I)) to estimate p(z,y,t)

peunt) < [ €090, 0.6)0¢

/§3<0 ¢ < /0 T [QUF(, 7)) (4,0, odT) dg'

22 442

i
0(1)e<m N e—<x+|y+t>/co>

+

IN

14+t

_ w2+y2
e Co(+t)

+O(1)e4/3 <m

. e—(|x|+y|+t>/co> ' (4.22)
Next, we use

Of + & Vof — g - Vef + ¢_[fIf = Q4 (f)
to represent the solution f(&,t,&) again:

f(Z,1.6) = ¢ o q““”S”S’“S’”%(rl<To>,r2<m>,m>%wf<m>>

¢, . .
. / e~ ST =@ sL6Nds g (F)(D(r), 7, D(r))dr,  (4.23)
70
where the trajectory T'(7) is defined in (3.53)). From (£20),
Q+(F)(T(r), 7T (7))l (4.24)
e o {e‘ 0 I\/I(F)> ,

= L (CH2+@?)? V202 3 3 2
P oY § ) oM@ 47 _gr _gr . 2
a0 +e Cx e (F) .

From this one has

|Q+(A)(T(7), 7,1(7))|
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3ag+28g
4

IA

oy (o

@hH2ar2)? Bo
e 2O o EZE T4
X| ———— Cx

(1+7)2
3ap+2B8p—2

il 4

= O(1)eV? (M (£)) ¢ W’W( M )>
1,2 2,2
oy |
———5—+e - : (4.25)
(1+7)2

where ag > 0, fy € (1/2,1), and ap + 5y = 1. Let (ag, 5o) = (4, i) and use

q-[f] > 0, (3.56), @23), B.53), (A.25), (£20), and Proposition 3.11 to yield
that for all £ € R3

#(7,1,6)] < p<r1<m>,r2<m>,m> T -0 M(¢ / Q4 ()T (), 7, T(r))dr

< 0O(1)p(I'(70), T (10), 70)6 PEM(§)

+0(1)e'/? (e_gzl\/l(ﬁ))% /t e i <e_gl<;3M(f)> b

70

_ 32+ @)
e 20.047) _g V(D24 @22 47
e 2C% T
(1+7)3/2
gait; _ (=l \ | +t)
z * +x|+t
< O)eVe TMO| & 4.26
< Ol)evee 204 (4.26)
Next, we need to conclude the uniform bound by (e -5 M(£))3/4. We use the

first inequality in (4.24)) to yield that
f(Z,1,8)] < P(Tl(To),T2(To)770)@'\/|(f(70)) + t |Q+(H)(T(7),7,1(r))|dr
Vo 70

< O(L)ee 5 M(€) + O(1)eV/3 /t g (% w|(§))3/4

70
3/4
= 0(1)e (e—v M(g)) . (4.27)
The estimates ([£.26]) and ([A.27) yield that

HIf[l]z+1 = O(L)e. (4.28)
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O

Remark 4.3. The extra decaying factor 1/(t — 7)7 in the decaying
estimate (£.2I]) is the key element to close the ansatz assumption. With-
out this factor the estimate ([@22]) would become p(z,y,t) < O(1)e(1 +
/3 log(1 + 1)) (e—<w2+y2>/<00<1+t>>/(1 +1) + e—<\w\+ly\+t>/co>. It would be

difficult to close the global ansatz.

Proof of Main Theorem B. From Lemmas 4.1 and 4.2, we have that the
interval (tg,t9 + 1) is contained in .#. Thus, .# is an open set. We have
mentioned that .# is a closed set due to the definition of ||| - |||7. Thus,
4 =R, and

IFI[]e < /3 for all t € R.
Again, with this and Lemma 4.2 one has that
IlIfl|le < O(1)e for all t € R,

and the theorem follows. O
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