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SYMMETRICAL BROADWELL MODEL:
CALCULATION OF SOLUTION

BY

HENRI CABANNES

Broadwell equations, in symmetrical case, are equations (1), where i =
1,2,3. Unknowns functions n;(t) are densities, the variable ¢ is the time. To
simplify we omit coefficients, appearing in original Broadwell model. Then
functions n;(t) are inverse of time , and they have same dimensions as (1/t).

We will search general solution of equations (1) on the form (2).
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Functions A(t), a(t) and ¢(t) are functions to be determined, instead quan-
tities C; are constants, also to be determined. Putting formulas (2) in equa-

tions (1), one obtains equations (3) :
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The right hand-side of equations (3) are independent of index i, instead
left hand-side depends of that index. In order that equations (3) can be
reduced to a single equation unique, it is sufficient to choose & + 64Aa = 0

and 3a — ¢ = 0, what we will do. Equations (3) can be replaced by single
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equation (4), instead relations (2) become relations (5).
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Equation (4), which replace system (1) can be integrated a first time
under form (6), then a second time under form (7), from which we deduce

that ¢ is inverse of a time, and that is the same for constants C;.
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From equations (1) the sum of three densities n;(t) is a constant, we will

_ 6
note by 5. From equations (5) and (6), Zl ni(t) = K1 = n. We will then put
1=
nt — K9 = 7, dimensionless variable, and exp(—7) = T, also dimensionless,
then ndt = dr = —dTT. We choose as initial time, the time ¢y corresponding
to ¢ = 0. Then we choose Ko = nity, so that when t = tg, T =Ty = 1. From
equation (7) we can successively write :
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Relation (8b) defines function 7'(¢) and inverse (1), consequently the three

functions (), $(t) and ¢(t). Then: n; = —%% + %ﬁ@’ o= ﬂ‘;—f,
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To summarize: solution of symmetrical Broadwell equations is defined, on a
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parametric form by relations (8b) et (9b).

Dimensions of different quantities. n; being inverse of a time one
can, from equations (1), multiply unknowns n; by a constant k, and divide
variable ¢ by these constant. A = —¢/(6¢) is also the inverse of a time, and
is also multiplied by k. From formula (8a), ¢ is the inverse of a time, like
n;, and then like C;, instead o = /3, is the square of the inverse of a time,
like n? Then A, ¢ et C; are multiplied by k, instead « is multiplied by k2.
Therefore one can choose the three constants C; so that C;C2Cs = 73, what
we will do.
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