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Abstract

Evaporation from a plane condensed phase in the case of

two species systems is studied on the basis of the kinetic theory of

gases, with a special interest in the long time behavior of the mix-

ture of vapors from initial equilibrium states. A standard finite-

difference analysis by the use of the Garzó–Santos–Brey model

Boltzmann equation is performed, and the long time behavior of

the mixture and the condition for steady evaporation are clari-

fied. Conventional gas-dynamic argument developed in [Y. Sone

and H. Sugimoto, in Adiabatic Waves in Liquid-Vapor Systems,

G.E.A. Meier and P.A. Thompson Eds., Springer, Berlin, 1990,

pp. 293–304] is also applied, and the obtained numerical solutions

are reported to be covered by the four-fold classification in this

reference. It is, however, shown by the same argument that a cer-

tain class of the initial equilibrium states is not covered by that

classification. The long time behavior of the mixture from this

class of initial states is also discussed.

1. Introduction

Half-space problem of the Boltzmann equation for evaporation and/or

condensation has been of great importance in the field of kinetic theory of
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gases (e.g., Refs. [1, 2, 3, 4, 5]).

From a physical or more specifically fluid-dynamic point of view, there

is a strong motivation to study the problem: the solution of the problem

provides the fluid-dynamic equation with the information about the appro-

priate boundary condition for gas flows at the interface with its condensed

phase [6, 7, 8]. A little more specifically, it is known that steady evaporation

and/or condensation may occur only conditionally and it is this condition

that plays the part of the boundary condition at the interface in fluid dy-

namics.

One of the interesting aspects of the problem is a dramatic change of

the condition at the reverse point (between evaporation and condensation)

and at the sonic point of the induced flow.1 For instance, steady evaporation

may occur only subsonically and perpendicularly to the interface, and there

is only one parameter that can be chosen freely among the three (pressure,

temperature, and Mach number) that specify the state of gas at a far field.

On the other hand, steady condensation may occur subsonically and super-

sonically and not always perpendicularly; one can choose the parameters

at a far field (pressure, temperature, and Mach numbers in perpendicular

and tangential directions) freely except one for subsonic case, while one can

do it freely within a certain condition (more specifically satisfying a certain

inequality) for supersonic case. These interesting features have been clari-

fied by intensive numerical analyses [9, 10, 11, 12] (see also the references in

Ref. [2]). It should be mentioned, however, that the abrupt change of the

condition at the reverse point was first clarified by an asymptotic analysis

by Sone [13] and that his analysis was later developed to achieve a compre-

hensive understanding of the changes not only at the reverse point but also

at the sonic point for condensation [14, 3, 5]. Thus fascinating structure of

the steady solutions of the half space problem has also been attracting the

researchers in mathematics, and rigorous mathematical theories have also

been developing (see, e.g., Refs. [15, 16, 17, 18] and the references therein).

In the present paper, we consider the half-space problem for evapora-

tion in two species systems. We follow the strategy of Sone and Sugimoto

[10]. That is, we numerically study the time-development of the behavior of

the gas mixture in the half space from initial equilibrium states, especially

its long-time behavior and the condition of the steady evaporation. We do

1Here and hereinafter, the “sonic” means that the flow component normal to the interface is
sonic. The tangential component is always excluded in this context.
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not expect a qualitative difference from the single species case, but rather

expect to have a straightforward extension, as our previous contributions

in the linear [19, 20] and weakly nonlinear [21, 22] regimes suggested. In

fact, the results of our numerical computations to be presented in this paper

support our expectation. However, we shall point out that the long time

behavior of the mixture from a certain class of initial states is not covered

by the four-fold classification in Ref. [10]. The classification was induced in

this reference from the results of intensive numerical analyses by the use of

the conventional gas-dynamic relations and the condition for steady evapora-

tion. One additional category, which is naturally deduced from the physical

picture of one of the four categories, is needed to complete the classifica-

tion. This is not peculiar to two species systems, but is also true for single

species systems. Although our result does not influence the main conclusions

of Ref. [10], we report it with detail descriptions of the above conventional

gas-dynamic argument.

The paper is organized as follows. After the statement of the problem

in Section 2, we first make a brief summary of the existing results for single

species systems in Section 3. Then, in the same section, we report the results

of our numerical computations by a standard finite-difference method on

the basis of the Garzó–Santos–Brey model Boltzmann equation [23] for gas

mixtures. Next, in Section 4.1. we provide detailed description of the way

of recovery of the long time behavior from a given initial state by the use

of the conventional gas dynamics (the Euler set of equations) and of the

condition for steady evaporation presented in Section 3. It is essentially a

simple application of the procedure in Sone and Sugimoto [10] to the case

of two species systems, but we point out that there is a region of parameter

that is not covered by the four-fold classification induced from the numerical

analyses performed in this reference and in the present work. In Section 4.2,

we present a picture of the long time behavior expected by the continuation

of the above procedure, which results in the appearance of a vacuum region

propagating toward the undisturbed far field. Finally, we conclude the paper

in Section 5.

2. Statement of the Problem

Consider a semi-infinite expanse of a binary mixture of vapors, species

A and B, bounded by a planar interface with its condensed phase, i.e., the

liquid mixture of the same species. The interface does not move in time and
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is located at X1 = 0, where Xi is the Cartesian coordinates of the physical

space. The temperature Tw and chemical composition of the condensed

phase are uniform and constant. At time t = 0, the mixture is in a uniform

equilibrium state with pressure p0, temperature T0, concentration χA
0 of

species A, and flow velocity (u0, 0, 0). For t > 0, because of the interaction

with the condensed phase, the state of the vapor mixture is disturbed from

the initial equilibrium state and the disturbance propagates in the half-space

toward the far field. We will study the time development of the disturbance

on the basis of kinetic theory of gases, especially its long time behavior. We

are interested in the case when evaporation from the condensed phase takes

place.

In the analysis, we assume that the vapor molecules impinging on the

condensed phase are absorbed completely and the vapor molecules leaving

there obey the half-range resting Maxwellian with the pressure pw, concen-

tration χA
w of species A, and temperature Tw, where χA

w and pw denote the

concentration of species A and the pressure in the mixture that is in equilib-

rium with the condensed phase with constant temperature Tw and chemical

composition. We treat respective species as a monatomic gas.

3. Long Time Behavior and Condition for Steady Evaporation:

Numerical Evidence

The corresponding problem for a single species system, or the present

problem in the case of χA
0 = χA

w = 1, has been studied intensively on the basis

of the BKW (or BGK) equation [24, 25] by Sone and Sugimoto [10], where

many details of the time development of disturbance were clarified mainly

numerically by the finite-difference method (see also Chap. 6 of Ref. [5]).

Among those details, we list here two main outcomes of this reference having

a direct relation to the discussions in the present paper:

1. On the long time behavior: Four types of behavior were observed nu-

merically.

(a) Disturbance propagates as a shock wave followed by a contact layer.

The Knudsen layer is established in the vicinity of the interface with

the condensed phase. New uniform (and constant) states appear

both between the shock wave and the contact layer and between the

contact layer and the Knudsen layer. We refer this case as type I.
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(b) Disturbance propagates as an expansion wave followed by a contact

layer. The Knudsen layer is established in the vicinity of the inter-

face. New uniform (and constant) states appear both between the

expansion wave and the contact layer and between the contact layer

and the Knudsen layer. We refer this case as type II.

(c) As type I, disturbance propagates as a shock wave followed by a con-

tact layer. But behind the contact layer, there appears an expansion

wave propagating toward the interface relative to the flow of the mix-

ture. The Knudsen layer whose tail is a sonic state is established in

the vicinity of the interface. The sonic state is also the upstream of

the expansion wave, so that the front of the expansion wave does not

move relative to the interface. New uniform (and constant) states

appear both between the shock wave and the contact layer and be-

tween the contact layer and the expansion wave. We refer this case

as type III.

(d) As type II, disturbance propagates as an expansion wave followed

by a contact layer. But behind the contact layer, as type III, there

appears another expansion wave propagating toward the interface

relative to the flow of the mixture. The Knudsen layer whose tail

is a sonic state is established in the vicinity of the interface. The

sonic state is also the upstream of the latter expansion wave, so that

its front does not move relative to the interface. New uniform (and

constant) states appear both between the former expansion wave

and the contact layer and between the contact layer and the latter

expansion wave. We refer this case as type IV.

Here, the contact layer corresponds to the contact discontinuity in the

conventional gas dynamics. Henceforth, following Ref. [10], we refer the

expansion wave propagating toward the undisturbed far field as “expan-

sion wave R” and that propagating toward the interface relative to the

flow as “expansion wave L.” For instance, the expansion wave R appears

in type II, the expansion wave L in type III, and both the expansion

waves R and L in type IV.

2. On the steady evaporation:

(a) Supersonic evaporating flow does not occur.

(b) Evaporating flow occurs always perpendicularly to the interface with

the condensed phase. This statement requires supplemental results

of Ref. [12].
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(c) Behind the Knudsen layer, a uniform equilibrium state is established.

Denoting by p∗, T∗, and (u∗, 0, 0) the pressure, temperature, and flow

velocity in the state, the ratios of pressure p∗/pw and of temperature

T∗/Tw are determined by the Mach number M∗ of the flow, i.e.,

p∗
pw

= h1(M∗),
T∗

Tw
= h2(M∗), 0 ≤ M∗ ≤ 1, (1)

where M∗ = u∗/
√
γRT∗ with γ = 5/3 and R is the specific gas

constant defined by R = k/m, the Boltzmann constant k divided by

the mass of a molecule m.

Further, from these results, which type of long time behavior occurs from

the given initial state was derived in Ref. [10] by the use of the conventional

gas-dynamic relations [26, 27, 28] on shock wave, simple wave, and contact

discontinuity.

Following the strategy of Ref. [10], the author, with the help of Mr.

Imoto, recently carried out numerical computations for the problem stated

in Section 2 on the basis of the Garzó–Santos–Brey model Boltzmann equa-

tion for gas mixtures [23] (GSB model, for short) [H. Imoto, Master Thesis,

Graduate School of Engineering, Kyoto University, 2006 (in Japanese)]. We

observed that our numerical solutions were covered by the four-fold classifi-

cation into types I–IV. Typical examples are shown in Figurs. 1–4,2 where

M0 is the Mach number of the flow at the initial undisturbed state:

M0 =
u0
a0

with a0 =
√

γR0T0.

Here a0 is the sound speed in the initial undisturbed state, R0 = k/m0, and

m0 = mAχA
0 + mB(1 − χA

0 ). (R0 is the specific gas constant based on the

average molecular mass m0 at the initial undisturbed state.) We also

obtained, as in the single-species case, the steady solution for subsonic evap-

oration. Denoting by p∗, χ
A
∗ , T∗, and (u∗, 0, 0) the pressure, concentration,

2In the case of the GSB model, the collision frequency of a molecule of species α for the
collision with species β of number density nβ is given by Kαβnβ , where α and β denote A or B
and Kαβ is a constant depending on α and β. Numerical results presented in this paper are those
for the case that Kαβ is a common constant C, i.e., KAA = KAB = KBA = KBB = C. The
reference collision frequency νAw in Figures 1–4 is expressed, with this C, as νAw = C (χA

wpw/kTw).
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Figure 1. Time development of the solution of the GSB model in the

case of mB/mA = 2, χA
w = χA

0 = 0.5, T0/Tw = 1, p0/pw = 0.25, and

M0 = 0: type I. From the top, the local concentration χA of species A,

pressure p, temperature T , and Mach number M are shown as a function of

X1/t for ν
A
w t = 100, 200, 500, and 1000, where νAw is the reference collision

frequency of a molecule for the collision with species A of the number density

pwχ
A
w/kTw. Small circle on the vertical axis indicates the value at X1/t = 0.

Dash-dot line indicates the asymptotic profile predicted by the conventional

gas dynamics with the aid of relation (2) [or (3)] (see Section 4.1). Dashed

line indicates the predicted position of the contact discontinuity and the

shock wave in the X1/t coordinate.
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Figure 2. Time development of the solution of the GSB model in the case

of mB/mA = 2, χA
w = χA

0 = 0.5, T0/Tw = 1, p0/pw = 1, and M0 = 0.75:

type II. From the top, the local concentration χA of species A, pressure p,

temperature T , and Mach number M are shown as a function of X1/t for

νAw t = 100, 1000, and 10000. See also the caption of Figure 1. Dashed line

indicates the position of the contact discontinuity and the front and tail of

the expansion wave R in the X1/t coordinate.
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Figure 3. Time development of the solution of the GSB model in the case

of mB/mA = 2, χA
w = χA

0 = 0.5, T0/Tw = 1, p0/pw = 0.1, and M0 = 0.8:

type III. From the top, the local concentration χA of species A, pressure

p, temperature T , and Mach number M are shown as a function of X1/t

for νAw t = 100, 1000, and 10000. See also the caption of Figure 1. Dashed

line indicates the position of the tail of the expansion wave L, the contact

discontinuity, and the shock wave in the X1/t coordinate. Narrow figure on

the right is a close up of the part corresponding to the Knudsen layer and

expansion wave L.
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Figure 4. Time development of the solution of the GSB model in the case

of mB/mA = 2, χA
w = χA

0 = 0.5, T0/Tw = 1, p0/pw = 0.25, and M0 = 1:

type IV. From the top, the local concentration χA of species A, pressure p,

temperature T , and Mach number M are shown as a function of X1/t for

νAw t = 100, 1000, 10000, and 35000. See also the caption of Figure 1. Dashed

line indicates the position of the tail of the expansion wave L, the contact

discontinuity, and the tail and front of the expansion wave R in the X1/t

coordinate. Narrow figure on the right is a close up of the part corresponding

to the Knudsen layer and expansion wave L.
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temperature, and flow velocity at the uniform equilibrium state behind the

Knudsen layer, the ratios of pressure p∗/pw, of concentration χA
∗ /χ

A
w, and

of temperature T∗/Tw are determined by the Mach number M∗ of the flow,

i.e.,

p∗
pw

= hp(M∗;χ
A
w),

T∗

Tw
= hT (M∗;χ

A
w),

χA
∗

χA
w

= hχ(M∗;χ
A
w), (2)

with 0 ≤ M∗ ≤ 1. Here M∗ = u∗/a∗ with a∗ being the sound speed defined

by a∗ =
√
γR∗T∗, where R∗ = k/[mAχA

∗ + mB(1 − χA
∗ )]. The functions

hp, hT , and hχ in the case of the GSB model are shown in Figure 5 (see

Ref. [22] for M∗ ≪ 1 for more general molecular interactions). In the figure,

the DSMC results by Frezzotti [29] for a mixture of hard sphere gases with

a common molecular diameter are also shown. As is seen from the figure, hp
and hT are positive, take the value of unity at M∗ = 0, and monotonically

decrease as M∗ increases. These properties are the same as those of h1 and

h2 in Ref. [10] for single species gases. The function hχ is also positive,

takes the value of unity at M∗ = 0, and is monotonic with respect to M∗.

However, increasing or decreasing depends on the mass ratiomB/mA, i.e., hχ
is increasing if mB/mA > 1 and decreasing if mB/mA < 1. This motivates

us to use another function hu(M∗;χ
A
w), in place of hχ(M∗;χ

A
w), defined by

hu(M∗;χ
A
w) =

u∗
aw

= M∗

a∗
aw

.

Here aw =
√
γRwTw and Rw is the specific gas constant defined by Rw =

k/[mAχA
w +mB(1− χA

w)]. The function hu is related to hχ through a∗ as

hu(M∗;χ
A
w) = M∗

√

[(mA −mB)χA
w +mB]hT (M∗;χA

w)

(mA −mB)χA
whχ(M∗;χA

w) +mB
.

The function hu is shown in the bottom right panel of Figure 5. It takes the

value of zero at M∗ = 0 and increases monotonically with M∗, irrespective

of the value of the mass ratio mB/mA. In the rest of the paper, we mainly

use the set of relations

p∗
pw

= hp(M∗;χ
A
w),

T∗

Tw
= hT (M∗;χ

A
w),

u∗

aw
= hu(M∗;χ

A
w),

}

0 ≤ M∗ ≤ 1, (3)

in place of (2). The numerical data of the functions hp, hT and hu are

tabulated in Tables 1–3.
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Figure 5. Functions hp, hT , hχ, and hu in the case of χA
w = 0.5. Dashed

line (mB/mA = 1), solid line (mB/mA = 2), and dash-dot line (mB/mA = 5)

indicate the present results for the GSB model. Symbols ◦ (mB/mA = 1), �

(mB/mA = 2), ⋄ (mB/mA = 5), and △ (mB/mA = 10) indicate the DSMC

results taken from Figure 5 in Ref. [29] for a mixture of hard sphere gases

with a common molecular diameter.

Table 1. Function hp (GSB model). In the case of mB/mA = 1, hp is

independent of χA
w and is identical to h1 for the BKW (or BGK) model in

Ref. [5]. See the footnote 2.
mB/mA = 1 mB/mA = 2 mB/mA = 5

M∗ \ χA

w
− 0.2 0.5 0.8 0.2 0.5 0.8

0.00 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

0.05 0.9083 0.9090 0.9095 0.9092 0.9110 0.9141 0.9141

0.10 0.8267 0.8279 0.8288 0.8283 0.8315 0.8367 0.8362

0.15 0.7540 0.7555 0.7566 0.7560 0.7603 0.7668 0.7657

0.20 0.6891 0.6908 0.6920 0.6912 0.6964 0.7036 0.7018

0.25 0.6310 0.6328 0.6341 0.6332 0.6389 0.6465 0.6440

0.30 0.5789 0.5807 0.5820 0.5811 0.5872 0.5947 0.5917

0.35 0.5321 0.5339 0.5352 0.5343 0.5405 0.5478 0.5444

0.40 0.4900 0.4918 0.4930 0.4921 0.4983 0.5053 0.5016

0.45 0.4520 0.4538 0.4549 0.4540 0.4602 0.4667 0.4629

0.50 0.4177 0.4194 0.4205 0.4196 0.4256 0.4317 0.4279

0.55 0.3867 0.3883 0.3893 0.3884 0.3943 0.3999 0.3962

0.60 0.3586 0.3601 0.3610 0.3602 0.3658 0.3710 0.3674

0.65 0.3331 0.3345 0.3353 0.3346 0.3399 0.3448 0.3413

0.70 0.3099 0.3112 0.3120 0.3113 0.3163 0.3208 0.3175

0.75 0.2887 0.2900 0.2907 0.2900 0.2948 0.2990 0.2958

0.80 0.2695 0.2706 0.2713 0.2707 0.2752 0.2791 0.2761

0.85 0.2519 0.2529 0.2536 0.2530 0.2573 0.2608 0.2581

0.90 0.2358 0.2368 0.2374 0.2368 0.2408 0.2442 0.2416

0.95 0.2210 0.2220 0.2225 0.2220 0.2258 0.2289 0.2265

1.00 0.2076 0.2084 0.2090 0.2086 0.2120 0.2151 0.2129
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Table 2. Function hT (GSB model). In the case of mB/mA = 1, hT is

independent of χA
w and is identical to h2 for the BKW (or BGK) model in

Ref. [5]. See the footnote 2.
mB/mA = 1 mB/mA = 2 mB/mA = 5

M∗ \ χA

w
− 0.2 0.5 0.8 0.2 0.5 0.8

0.00 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

0.05 0.9798 0.9805 0.9809 0.9805 0.9833 0.9847 0.9833

0.10 0.9600 0.9612 0.9618 0.9612 0.9660 0.9687 0.9660

0.15 0.9404 0.9420 0.9429 0.9420 0.9484 0.9520 0.9484

0.20 0.9212 0.9231 0.9241 0.9230 0.9305 0.9350 0.9304

0.25 0.9022 0.9043 0.9054 0.9043 0.9127 0.9176 0.9122

0.30 0.8835 0.8858 0.8870 0.8857 0.8949 0.9001 0.8940

0.35 0.8651 0.8675 0.8687 0.8674 0.8771 0.8825 0.8759

0.40 0.8470 0.8494 0.8507 0.8493 0.8594 0.8648 0.8578

0.45 0.8290 0.8315 0.8328 0.8313 0.8419 0.8472 0.8399

0.50 0.8113 0.8139 0.8151 0.8136 0.8244 0.8296 0.8221

0.55 0.7938 0.7964 0.7976 0.7961 0.8070 0.8121 0.8045

0.60 0.7765 0.7790 0.7802 0.7788 0.7897 0.7946 0.7871

0.65 0.7594 0.7619 0.7630 0.7616 0.7726 0.7773 0.7698

0.70 0.7424 0.7448 0.7460 0.7446 0.7555 0.7600 0.7526

0.75 0.7255 0.7280 0.7291 0.7277 0.7385 0.7429 0.7356

0.80 0.7088 0.7112 0.7123 0.7109 0.7215 0.7259 0.7187

0.85 0.6923 0.6946 0.6957 0.6943 0.7047 0.7089 0.7019

0.90 0.6758 0.6781 0.6791 0.6778 0.6880 0.6921 0.6853

0.95 0.6595 0.6617 0.6628 0.6615 0.6715 0.6754 0.6688

1.00 0.6435 0.6455 0.6466 0.6455 0.6550 0.6591 0.6528

Table 3. Function hu (GSB model). In the case of mB/mA = 1, hu is

identical to M∗

√
hT and thus is not shown in the table [see the equation just

before (3)].
mB/mA = 2 mB/mA = 5

M∗ \ χA

w
0.2 0.5 0.8 0.2 0.5 0.8

0.00 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

0.05 0.0496 0.0496 0.0496 0.0498 0.0502 0.0503

0.10 0.0983 0.0986 0.0985 0.0991 0.1006 0.1011

0.15 0.1461 0.1467 0.1465 0.1480 0.1512 0.1522

0.20 0.1931 0.1941 0.1937 0.1962 0.2018 0.2033

0.25 0.2391 0.2406 0.2400 0.2439 0.2522 0.2541

0.30 0.2843 0.2863 0.2854 0.2909 0.3024 0.3045

0.35 0.3285 0.3311 0.3299 0.3373 0.3523 0.3542

0.40 0.3718 0.3750 0.3735 0.3830 0.4015 0.4031

0.45 0.4141 0.4179 0.4161 0.4278 0.4501 0.4511

0.50 0.4555 0.4599 0.4577 0.4719 0.4978 0.4980

0.55 0.4960 0.5009 0.4984 0.5151 0.5445 0.5437

0.60 0.5354 0.5409 0.5380 0.5573 0.5901 0.5882

0.65 0.5739 0.5799 0.5766 0.5984 0.6344 0.6315

0.70 0.6113 0.6179 0.6143 0.6385 0.6774 0.6735

0.75 0.6477 0.6548 0.6508 0.6774 0.7191 0.7142

0.80 0.6830 0.6905 0.6863 0.7151 0.7593 0.7537

0.85 0.7173 0.7252 0.7207 0.7515 0.7982 0.7919

0.90 0.7505 0.7588 0.7540 0.7867 0.8356 0.8288

0.95 0.7826 0.7914 0.7863 0.8206 0.8717 0.8644

1.00 0.8137 0.8228 0.8176 0.8533 0.9065 0.8989
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In closing this section, we introduce for later convenience the subscript

s in order to denote the quantities at the state of steady sonic evaporation:

p∗s
pw

= hp(1;χ
A
w),

T∗s

Tw
= hT (1;χ

A
w),

χA
∗s

χA
w
= hχ(1;χ

A
w),

u∗s

aw
= hu(1;χ

A
w),

R∗s =
k

χA
∗sm

A+(1−χA
∗s)m

B .











(4)

Note that u∗s is identical to the sound speed a∗s defined by a∗s =
√
γR∗sT∗s.

4. Recovery of the Long Time Behavior by the Conventional Gas

Dynamics

In the present section, we shall take on faith that the relation (3) for

the steady evaporation and the basic property of hp, hT , and hu are true in

general. In Section 4.1, we derive the region of parameters where the above

four types of long time behavior are observed by using the conventional gas-

dynamic relations on shock wave, simple wave, and contact discontinuity.

We also describe the way to recover the long time behavior by conventional

gas dynamics. Through the analyses in Section 4.1, it will become clear that

the region of parameters for evaporation is not entirely covered with the four

categories: types I–IV. In Section 4.2, we present such a new category of the

long time behavior that covers the remaining region.

4.1. Parameter range of the four categories

In the present subsection, we consider the range of parameters where

each type of long time behavior, type I–IV, should be observed. We also

describe how to recover the long time behavior by the conventional gas dy-

namics.

Among Sections 4.1.1–4.1.4 below, Section 4.1.4 contains the most im-

portant result, because it shows that the four-fold classification of evapo-

ration into types I–IV is not complete even in the case of single species

systems.

We start with making the following conjecture on the property of the

functions hp, hT , and hu:

Conjecture 1. The functions hp(M∗;χ
A
w) and hT (M∗;χ

A
w) are mono-

tonically decreasing functions of M∗ in 0 ≤ M∗ ≤ 1, and they take the
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value of unity at M∗ = 0, i.e., hp(0;χ
A
w) = 1 and hT (0;χ

A
w) = 1. On the

other hand, hu(M∗;χ
A
w) is a monotonically increasing function of M∗ in

0 ≤ M∗ ≤ 1, and it takes the value of zero at M∗ = 0, i.e., hu(0;χ
A
w) = 0.

4.1.1. Parameter range of type I

The behavior of type I is schematically shown in Figure 6, where US is

the abbreviation of the (constant) uniform state. Henceforth, the abbrevia-

tions KL, CL, and SW are also used to denote the Knudsen layer, contact

layer, and shock wave, respectively. The subscripts + and − are added to

US in order to denote the upstream and downstream uniform states of the

contact layer. As shown in the figure, the half space is divided, according to

the local state of the mixture, into six parts as

(KL)+(US−)+(CL)+(US+)+(SW)+(undisturbed US),

where the order of each part corresponds to the position from the interface

with the condensed phase.

Figure 6. Schematic of the behavior of mixture: type I.

Let us denote the pressure, concentration, temperature, and flow ve-

locity in the US± by p±, χ
A
±, T±, and (u±, 0, 0). The shock relation, the

Rankine–Hugoniot relation for non-reacting monotonic ideal gas mixtures,

relates the sets of parameters between the US+ and the undisturbed US as

p+
p0

= 1 +
2γ

γ + 1
(M2 − 1),

T+

T0
= 1 +

2(γ − 1)

(γ + 1)2
γM2 + 1

M2
(M2 − 1), (5a)

χA
+

χA
0

= 1,
ush − u0
ush − u+

=
(γ + 1)M2

(γ − 1)M2 + 2
, M =

ush − u0
a0

, (5b)

where (ush, 0, 0) is the velocity of the shock wave. In addition, across the

contact discontinuity, the pressure and flow velocity are both continuous,
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i.e.,

p+ = p−, u+ = u−. (6)

In the present situation, the inequalities

u+ ≥ max(0, u0), M ≥ 1, (7)

must be satisfied. The former is required because the shock wave moves

toward the far field. The latter is a consequence of the second law of ther-

modynamics, i.e., the entropy condition across the shock wave. Since the

Knudsen layer connects the interface to the US−, the quantities with sub-

script ∗ in (3) are identical to those in US−, i.e.,

p−
pw

= hp(M−;χ
A
w),

T−

Tw
= hT (M−;χ

A
w),

u−

aw
= hu(M−;χ

A
w),

}

0 ≤ M− ≤ 1, (8)

where M− is defined by M− = u−/a− with a− =
√
γR−T− and R− =

k/[mAχA
−+mB(1−χA

−)]. Needless to say, a− is the sound speed in the US−.

Now, we fix the values of T0/Tw and χA
0 and derive the region in the

M0–p0/pw plane where the type I be observed (region I, for short). For this

purpose, we first eliminate ush from the second equation of (5b) by the use

of the third equation of (5b) to have

u0 = u+ − 2(M2 − 1)

(γ + 1)M a0. (9)

It is seen from (9) that the first inequality in (7) is included in the condition

M ≥ 1. With keeping this in mind and taking into account the relation (6)

across the contact layer, we obtain a two-parameter representation of region

I in terms of M and M− from the first equations of (5a) and (8), the last

equation of (8), and (9):

p0
pw

=
hp(M−;χA

w)

1+ 2γ
γ+1

(M2−1)
,

M0 =
aw
a0
hu(M−;χ

A
w)−

2(M2−1)
(γ+1)M ,







M ≥ 1, 0 ≤ M− ≤ 1. (10)

The region I is shown in Figure 7, in which the isolines of M− (or M) are also

drawn. It is seen from (10) that, as M0 increases, p0/pw decreases monoton-

ically along the isoline of M but increases monotonically along the isoline

of M− because of the Conjecture 1. Therefore, the correspondence between
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(M0, p0/pw) and (M,M−) is one-to-one, and region I has the following three

boundary curves expressed as extreme cases of (10):

Curve A

p0
pw

= hp(M−;χ
A
w), M0 =

aw
a0

hu(M−;χ
A
w), 0 ≤ M− ≤ 1, (11)

which is obtained by letting M = 1 in (10). This curve connects the points

X and Y in Figure 7.

Figure 7. Schematic of region I in the M0–p0/pw plane.

Curve B

p0
pw

=
1

1 + 2γ
γ+1(M2 − 1)

, M0 = −2(M2 − 1)

(γ + 1)M , M ≥ 1, (12)

which is obtained by letting M− = 0 in (10). Along this curve, p0/pw

decreases monotonically from unity to zero as M0 decreases from zero to

−∞. Therefore, p0/pw = 0 is the asymptote of curve B.

Curve C

p0
pw

=
p∗s/pw

1 + 2γ
γ+1 (M2 − 1)

, M0 =
u∗s
a0

− 2(M2 − 1)

(γ + 1)M , M ≥ 1, (13)

which is obtained by letting M− = −1 in (10). Along this curve, p0/pw

decreases monotonically from p∗s/pw to zero as M0 decreases from u∗s/a0 to

−∞. Therefore, this curve shares its asymptote p0/pw = 0 with curve B.

It should be noted that curves B and C do not intersect each other, because

they are isolines for a different value of M−.
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There are a few comments on the behavior of the mixture on the bound-

ary curves. On curve A, along which M = 1, the shock wave is infinitesimal,

so that the US+ is identical to the undisturbed US and the US− is directly

connected to the latter. On curve B, along which M− = 0, evaporation stops

because M− = 0 implies u− = 0. On curve C, along which M− = 1, the

US− is a sonic state.

In the discussions above, we did not pay attention to the relations on

the temperature and concentration, i.e., the second equation of (5a), the

first equation of (5b), and the second equation of (8). It is because there is

no relation across the contact layer for those quantities. The relations on

the temperature and concentration will be used when we need to recover

the complete information about the US± from the full set of (5)–(8). The

recovery of the complete information, including the position of the shock

wave in the X1/t-coordinate, is possible because the pair of M and M− is

uniquely determined for any given pair of M0 and p0/pw in region I (T0/Tw

and χA
0 are fixed). The asymptotic profile indicated by dash-dot line in

Figure 1 was thus obtained.

4.1.2. Parameter range of type II

The behavior of type II is schematically shown in Figure 8, where the

abbreviation EWR of the expansion wave R is introduced. The half space

is divided, according to the local state of the mixture, into six parts as

(KL)+(US−)+(CL)+(US+)+(EWR)+(undisturbed US),

where the order of each part corresponds to the position from the interface

with the condensed phase.

Figure 8. Schematic of the behavior of mixture: type II.
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In the present case, there is a relation

p+
p0

=
(T+

T0

)
γ

γ−1
,

T+

T0
=

(

1− γ − 1

2

u0 − u+
a0

)2
,

χA
+

χA
0

= 1, (14)

between the undisturbed US and US+ because of the expansion wave, while

the relations (6) and (8) in Section 4.1.1 remain unchanged. The relations

(14), (6), and (8) are considered under the restriction

0 ≤ u0 − u+
a0

≤ 2

γ − 1
, u− ≥ 0, (15)

where the former is due to the expansion wave and the latter due to the

evaporation.

As in Section 4.1.1, we fix the values of T0/Tw and χA
0 and derive the

region in the M0–p0/pw plane where the type II be observed (region II, for

short). The representation of region II is readily obtained from the first and

second equations of (14), the first and last equations of (8), and (6) as

p0
pw

= hp(M−;χ
A
w)

[

1− γ − 1

2

(

M0 −
aw
a0

hu(M−;χ
A
w)

)]−
2γ
γ−1

, (16a)

where M− is an arbitrary constant satisfying 0 ≤ M− ≤ 1 and M0 is subject

to the restriction

aw
a0

hu(M−, χ
A
w) ≤ M0 ≤

aw
a0

hu(M−, χ
A
w) +

2

γ − 1
. (16b)

The region II expressed by (16) is shown in Figure 9, in which the isoline of

M− is also drawn. As is shown in the figure, it is seen from (16a) that, along

each isoline of M−, p0/pw monotonically increases from hp(M−;χ
A
w) to ∞ as

M0 increases from aw
a0
hu(M−;χ

A
w) to

aw
a0
hu(M−;χ

A
w)+

2
γ−1 . Therefore, M0 =

aw
a0
hu(M−;χ

A
w)+

2
γ−1 is the asymptote of the isoline. It should be noted that

the starting point of the isoline (M0, p0/pw) = (awa0 hu(M−;χ
A
w), hp(M−;χ

A
w))

is on curve A in Section 4.1.1. Since p0/pw is monotonically decreasing with

respect to M− from (16a) by Conjecture 1, region II has three boundary

curves expressed as extreme cases of (16):

Curve A

the same curve as that in Section 4.1.1. This curve is obtained by letting

M0 =
aw
a0
hu(M−;χ

A
w) in (16).
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Figure 9. Schematic of region II in the M0–p0/pw plane.

Curve D

p0
pw

=
(

1− γ − 1

2
M0

)−
2γ
γ−1

, 0 ≤ M0 ≤
2

γ − 1
, (17)

which is obtained by letting M− = 0 in (16). Along this curve, p0/pw takes

the value of unity at point X, increases monotonically with M0, and tends

to ∞ as M0 → 2
γ−1 . Therefore, M0 =

2
γ−1 is the asymptote of this curve.

Curve E

p0
pw

=
p∗s
pw

[

1− γ − 1

2

(

M0 −
u∗s
a0

)]−
2γ
γ−1

, (18a)

u∗s
a0

≤ M0 ≤
u∗s
a0

+
2

γ − 1
, (18b)

which is obtained by letting M− = 1 in (16). Along this curve, p0/pw takes

the value of p∗s/pw at point Y, increases monotonically with M0, and tends

to ∞ as M0 → u∗s

a0
+ 2

γ−1 . Therefore, M0 = u∗s

a0
+ 2

γ−1 is the asymptote of

this curve.

It should be noted that curves D and E do not intersect each other, because

they are isolines for a different value of M−. By the way, curve D meets curve

B at point X, while curve E does curve C at point Y. Their connections are

smooth, and each of the merged curve has a continuous third order derivative

at the connection point.

There are a few comments on the behavior of the mixture on the bound-

ary curves. On curve A, the expansion wave is infinitesimal, because M0 =
aw
a0
hu(M−;χ

A
w) implies u0 = u− = u+. Therefore, the US+ is identical to

the undisturbed US and the US− is directly connected to the latter by the

contact layer. This situation is the same as that in the limit from region
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I to the same curve, which explains the reason for curve A to be located

between regions I and II. On curve D, evaporation stops because M− = 0

(thus u− = 0) along the curve. On curve E, along which M− = 1, the US−
is a sonic state as in the case of curve C in Section 4.1.1.

Since M− is uniquely determined for any given pair of M0 and p0/pw in

region II (T0/Tw and χA
0 are fixed), we can recover the complete informa-

tion about the US±, including the temperature and concentration, from the

full set of relations (6), (8), (14), and (15). Then it is easy to obtain the

asymptotic profile indicated by dash-dot line in Figure 2.

4.1.3. Parameter range of type III

The behavior of type III is schematically shown in Figure 10, where the

abbreviation EWL of the expansion wave L is introduced. The half space is

divided, according to the local state of the mixture, into seven parts as

(KL)+(EWL)+(US−)+(CL)+(US+)+(SW)+(undisturbed US),

where the order of each part corresponds to the position from the inter-

face with the condensed phase. Here, important is the fact that the tail of

KL or equivalently the upstream of EWL is in a sonic (equilibrium) state.

Therefore, the wave front of EWL does not move relative to the interface.

Figure 10. Schematic of the behavior of mixture: type III.

In the present case, the relations in hands are the shock relation (5), the

relation across the contact layer (6), and the relation across the expansion

wave L

p−
p∗s

=
(T−

T∗s

)
γ

γ−1
,

T−

T∗s
=

(γ + 1

2
− γ − 1

2

u−
a∗s

)2
,

χA
−

χA
∗s

= 1, (19)
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where the quantities with subscript ∗s are those in the sonic state at the tail

of KL [see (4)]. Note that a∗s = u∗s. The relations (5), (6), and (19) are

subject to the restriction

u+ ≥ u0, M ≥ 1,
γ + 1

γ − 1
u∗s ≥ u− ≥ u∗s(> 0), (20)

where the first two conditions are due to the shock wave while the last one

for u− due to the expansion wave L.

Again, we fix the values of T0/Tw and χA
0 and derive the region in the

M0–p0/pw plane where the type III be observed (region III, for short). In

the same way as in Section 4.1.1, the second and third equations of (5b)

yield (9), and thus the first condition in (20) is automatically satisfied under

the second condition M ≥ 1. After some manipulations, the representation

of region III is obtained from the first equation of (5a), the first and second

equations of (19), and (6) as

p0
pw

=
p∗s/pw

1 + 2γ
γ+1(M2 − 1)

[γ + 1

2
− γ − 1

2

(

M0 +
2(M2 − 1)

(γ + 1)M

) a0
u∗s

]
2γ
γ−1

, (21a)

where M ≥ 1 and M0 is subject to the restriction

u∗s
a0

≤ M0 +
2(M2 − 1)

(γ + 1)M ≤ γ + 1

γ − 1

u∗s
a0

. (21b)

The region III is shown in Figure 11, in which the isoline of M is also drawn.

As is shown in the figure, it is seen from (21a) that, along the isoline of M,

p0/pw monotonically decreases from p∗s/pw
1+ 2γ

γ+1
(M2−1)

to zero as M0 increases

from u∗s

a0
− 2(M2−1)

(γ+1)M to γ+1
γ−1

u∗s

a0
− 2(M2−1)

(γ+1)M . The isoline meets the M0-axis

tangentially, which is readily seen by taking the derivative of (21a), and its

starting point is on curve C in Section 4.1.1. Since p0/pw is monotonically

decreasing with respect to M from (21a), region III has three boundary

curves expressed as extreme cases of (21):

Curve C

the same curve as that in Section 4.1.1. This curve is obtained by letting

M0 +
2(M2−1)
(γ+1)M = u∗s

a0
in (21).

Half line F

p0/pw = 0, M0 ≤
γ + 1

γ − 1

u∗s
a0

. (22)
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Figure 11. Schematic of region III in the M0–p0/pw plane.

This half line is obtained by letting M0 +
2(M2−1)
(γ+1)M = γ+1

γ−1
u∗s

a0
in (21) and by

taking into account M ≥ 1.

Curve G

p0
pw

=
p∗s
pw

(γ + 1

2
− γ − 1

2

a0
u∗s

M0

)
2γ
γ−1

, (23a)

with
u∗s
a0

≤ M0 ≤
γ + 1

γ − 1

u∗s
a0

, (23b)

which is obtained by letting M = 1 in (21).

It should be noted that curve G meets the M0-axis tangentially at point Z

in the figure, because it is the isoline M = 1.

There are a few comments on the behavior of the mixture on the bound-

ary curves. On curve C, the expansion wave L is infinitesimal, because

M0 +
2(M2−1)
(γ+1)M = u∗s

a0
implies u∗s = u−. Therefore, the US− is no other than

the sonic state at the tail of KL. This is the same situation as that in the

limit M− → 1 from region I, explaining the reason for curve C to be located

between regions I and III. On curve G, along which M = 1, the shock wave

is infinitesimal and the US+ is identical to the undisturbed US. On the half

line F, the undisturbed US is the vacuum.

Since M is uniquely determined for any given pair of M0 and p0/pw in

region III (T0/Tw and χA
0 are fixed), we can obtain the complete informa-

tion about the US±, including the temperature and concentration, from the

full set of relations (5), (6), (19), and (20). Then it is easy to obtain the

asymptotic profile indicated by dash-dot line in Figure 3.
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4.1.4. Parameter range of type IV

The behavior of type IV is schematically shown in Figure 12. The half

space is divided, according to the local state of the mixture, into seven parts

as

(KL)+(EWL)+(US−)+(CL)+(US+)+(EWR)+(undisturbed US),

where the order of each parts corresponds to the position from the interface

with the condensed phase. Here, as in Section 4.1.3, important is the fact

that the tail of KL or equivalently the upstream of EWL is a sonic (equi-

librium) state. Therefore, the wave front of EWL does not move relative to

the interface.

Figure 12. Schematic of the behavior of mixture: type IV.

In the present situation, the relations in hands are the relation across

the expansion wave R (14), the relation across the contact layer (6), and

the relation across the expansion wave L (19), where the quantities with

subscript ∗s are again those at the sonic state at the tail of KL [see (4)].

The relations (14), (6), and (19) are subject to the restriction

0 ≤ u0 − u+
a0

≤ 2

γ − 1
,

γ + 1

γ − 1
u∗s ≥ u− ≥ u∗s, (24)

where the former is due to the expansion wave R while the latter due to the

expansion wave L.

As in the previous subsections, we fix the values of T0/Tw and χA
0 and

derive the region in the M0–p0/pw plane where the type IV be observed

(region IV, for short). The procedure of deriving the representation itself

is essentially just a repetition of those in the previous subsections, but the
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result is the most important in the classification of evaporation to be dis-

cussed in Sections 4.1.5 and 4.2. The resulting expression of region IV is the

following:

p0
pw

=
p∗s
pw





γ+1
2 − γ−1

2
u+

u∗s

1− γ−1
2

(

M0 − u+

a0

)





2γ
γ−1

, (25a)

where M0 and u+ are subject to the restriction

u+
a0

≤ M0 ≤
2

γ − 1
+

u+
a0

, u∗s ≤ u+ ≤ γ + 1

γ − 1
u∗s. (25b)

The region IV is shown in Figure 13, in which the isoline of u+ is also

drawn. As is shown in the figure, it is seen from (25) that, as far as u+ <
γ+1
γ−1u∗s, along the isoline of u+, p0/pw monotonically increases from (γ+1

2 −
γ−1
2

u+

u∗s
)

2γ
γ−1 to ∞ as M0 increases from u+

a0
to u+

a0
+ 2

γ−1 . Therefore, M0 =
u+

a0
+ 2

γ−1 is the asymptote of the isoline. The starting point of the isoline

(M0, p0/pw) = (u+

a0
, p∗spw

(γ+1
2 − γ−1

2
u+

u∗s
)

2γ
γ−1 ) is on the curve G in Section 4.1.3.

Since p0/pw is monotonically decreasing with respect to u+ from (25), the

value of u+ is uniquely determined by the pair of (M0, p0/pw), and region

IV has four boundary curves that are expressed as extreme cases of (25):

Figure 13. Schematic of region IV in the M0–p0/pw plane.

Curve E

the same curve as that in Section 4.1.2. This curve is obtained by letting

u+ = u∗s in (25).

Curve G
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the same curve as that in Section 4.1.3. This curve is obtained by letting

M0 =
u+

a0
in (25).

Segment ZW

p0
pw

= 0,
γ + 1

γ − 1

u∗s
a0

≤ M0 <
γ + 1

γ − 1

u∗s
a0

+
2

γ − 1
. (26)

This segment is obtained by letting u+ = γ+1
γ−1u∗s in (25).

Half line H

p0
pw

≥ 0, M0 =
γ + 1

γ − 1

u∗s
a0

+
2

γ − 1
. (27)

This half line is obtained by letting M0 → 2
γ−1 + u+

a0
and u+ → γ+1

γ−1u∗s
simultaneously in (25). The arbitrariness of the value of p0/pw comes from

that of the rate of the two limiting processes.3

There are a few comments on the behavior of the mixture on the bound-

ary curves. On curve E, the expansion wave L is infinitesimal, since u+ = u∗s
implies u− = u∗s from (6). Therefore, the US− is no other than the sonic

state at the tail of KL. This is the same situation as that obtained in the

limit M− → 1 from region II, explaining the reason for curve E to be located

between regions II and IV. On curve G, the expansion wave R is infinites-

imal, because M0 = u+

a0
implies u0 = u+. Therefore, the US+ is identical

to the undisturbed US. This is the same situation as that obtained in the

limit M → 1 from region III, explaining the reason for curve G to be lo-

cated between regions III and IV. On segment ZW, the initial undisturbed

US is the vacuum. On half line H, both expansion waves L and R have fully

developed to make the US− and US+ vacuum. This is seen from (14) and

(19), because M0 =
γ+1
γ−1

u∗s

a0
+ 2

γ−1 implies M0 =
2

γ−1 +
u+

a0
and u+ = γ+1

γ−1u∗s
[see (25b)]. It is important to notice that the relation (6) across the contact

layer is retained on the half line H.

Since u+ is uniquely determined for any given pair of M0 and p0/pw in

region IV (T0/Tw and χA
0 are fixed), we can obtain the complete information

about the US±, including the temperature and concentration, from the full

3The expression (25) shows the following two facts: (i) for every fixed M0 in the interval of

[ γ+1

γ−1

u∗s

a0
, γ+1

γ−1

u∗s

a0
+ 2

γ−1
], p0/pw decreases to zero as u+ increases to γ−1

γ+1
u∗s, (ii) for every fixed

p0/pw > 0, M0 increases to 2
γ−1

+ u∗s

a0
as u+ increases to γ−1

γ+1
u∗s. Therefore, as u+ increases to

γ+1

γ−1
u∗s, the isoline of u+ approaches the polygonal line composed of segment ZW and half line

H.
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set of relations (14), (6), (19), and (24). Then, it is straightforward to obtain

the asymptotic profile indicated by dash-dot line in Figure 4.

4.1.5. Summary

In Section 4.1, by the use of the conventional gas-dynamic relations and

the relation across the Knudsen layer for steady evaporation, we derived the

expressions of regions I–IV [the equations (10), (16), (21), and (25)] in M0-

p0/pw plane for fixed values of T0/Tw and χA
0 and showed them separately

in Figures. 7, 9, 11 and 13. As shown in Figure 14, these regions are merged

into one unified region, which is bounded by a single curve composed of

curves B and D (curve B+D, for short) from the left, by half line H from the

right, and by the M0-axis from the bottom. The relevant consequence of the

discussions so far is that the unified region extends only up to the half line

H; it never extends to infinity to the right. This result remains true even in

the case of single species systems.

Figure 14. Schematic of regions I–IV and the remaining regions.

In order to see what happens in the region left to curve B+D, suppose

that we approach this curve from the inside of the unified region. As we

approach the curve, evaporation becomes weaker and weaker and finally

stops on the curve because M− = 0 there (see the paragraph second to the

last in Sections 4.1.1 and 4.1.2); beyond the curve, the direction of flow would

be reversed and condensation would occur. This situation has already been

discussed and clarified in the literature with a convincing numerical evidence

in the case of single species systems. Our new computations support the

same conclusion for vapor mixtures (see three �’s immediately left to curve
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B+D in Figure 15). Therefore, in Figure 14, we label the region left to curve

B+D as “region of condensation.” The only thing that should be newly

remarked is that the boundary curve B+D, which separates the evaporation

and condensation cases, is universal. That is, the curve B+D is common to

any mixture of monatomic perfect gases. It is easily seen from (12) and (17).

Figure 15. Classification in the M0–p0/pw plane in the case of the GSB

model for mB/mA = 2, χA
w = χA

0 = 0.5, T0/Tw = 1. The finite-difference

analysis in Section 3 was performed at the points indicated by the open

symbols ◦, △, ▽, ⋄, and �. The former four indicate the solutions of type I,

II, III, and IV, whereas the latter the solution of condensation. Three pairs

of neighboring points, one from the left and the other from the right to the

curve B+D, are chosen to observe the behavior near the curve B+D. See

also Figure 14.

On the other hand, it was not discussed in the literature about the right

boundary H of the unified region. If one approaches the half line H from the

left (i.e., from the region IV), the expansion waves L and R both develop to

reach a critical situation where the two waves are connected by a vacuum

state, as mentioned in the paragraph second to the last in Section 4.1.4.

Since the critical situation is reached with retaining the relation across the

contact layer, the flow velocity at the tail of expansion wave is common to

L and R. As a consequence, the propagation speed of the tail of expansion



2008] ON THE LONG TIME BEHAVIOR OF GAS FLOWS 143

wave is common to L and R, and the vacuum region (probably a vacuum

“point”) does not spread out as time goes on. Since the sonic evaporation

occurs in region IV, evaporation is expected also in the region right to half

line H, the “region R” in Figure 14.

The long time behavior of type I–IV described in Section 4.1 bears a

resemblance to that in the piston problem in the conventional gas dynamics.

In Section 4.2, we discuss the long time behavior of the mixture in region

R by continuing the approach in Section 4.1. The resemblance would be

helpful to understand the situation described in Section 4.2.

Incidentally, we show the classification map in the case of the GSB

model in Figure 15, where the cases for which numerical computations were

performed are indicated by symbols. Now, it is clear from the figure why

our numerical solutions were covered by only the four-fold classification: the

initial Mach number of our numerical computations were too small to go

out of the right boundary of region IV. There is no contradiction between

the results of numerical computations and the conventional gas-dynamic

prediction.

4.2. Long time behavior in the remaining region

We now consider the long time behavior in the remaining region, right

to region IV, the region R in Figure 14. The clue is the fact that a vacuum

emerges between the two expansion waves L and R on the half line H. In

other words, once one reaches the half line H from the left, the contact layer

between two expansion waves turns into a vacuum and the two waves begin

to be free from the constraint of the contact layer. The freedom from this

constraint make it possible to go out of the right side boundary H.

The new type of behavior, which we induce from the behavior on half

line H and call type V, is schematically shown in Figure 16. The half space

is divided, according to the local state of the mixture, into five parts as,

(KL)+(EWL)+(Vacuum)+(EWR)+(undisturbed US),

where the order of each part corresponds to the position from the interface

with the condensed phase. Note that, as in the case of types III and IV, the

tail of KL or equivalently the upstream of EWL is in a sonic (equilibrium)

state, and thus the wave front of EWL does not move relative to the interface.
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Figure 16. Schematic of the behavior of mixture: type V.

In the present case, the relations in hands are (19) with p−/p∗s = 0

and (14) with p+/p0 = 0, because both EWL and EWR have been fully

developed. These relations lead to the vanishing temperatures T− = T+ = 0

and flow velocities

u− =
γ + 1

γ − 1
u∗s, u+ = (M0 −

2

γ − 1
)a0, (28)

at the tails of EWL and EWR, where subscript − denotes the quantities at

the tail of EWL and + those at the tail of EWR. It is easy to see that u−
and u+ in (28) are also the propagation velocity of the tail of EWL and that

of EWR, respectively. Therefore, the situation considered here is possible

only when the condition

u∗s ≤ u− ≤ u+ ≤ u0, (29)

is fulfilled. Combining (28) and (29) yields the expression of the region where

the new behavior of type V be observed:

M0 ≥
2

γ − 1
+

γ + 1

γ − 1

u∗s
a0

. (30)

It is important to observe that the region (30), where the the behavior of

type V be observed, entirely covers the remaining region, region R in Figure

14. That is, by adding type V, we can complete the classification of the long

time behavior of the evaporation flow.

5. Conclusions

In the present paper, we studied the evaporation from a plane condensed

phase in the case of a binary mixture of vapors on the basis of the kinetic
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theory of gases, especially the long time behavior of the mixture from initial

equilibrium states.

First, in Section 3, we made a summary of the existing results, especially

the four-fold classification of the long time behavior, in the case of single

species systems, which was induced in Ref. [10] by the conventional gas

dynamics with the aid of the condition for steady evaporation (1). In the

same section, we reported the results of our numerical computations for the

GSB model and that they were covered by the same four-fold classification.

Next, in Section 4.1, we studied the parameter range of respective cat-

egories in the four-fold classification and describe the way of predicting the

long time behavior from a give initial state by conventional gas dynamics

supplemented with condition (3). The result shows that there is a region of

parameters that is not covered by the four-fold classification, even in the case

of single species systems. By taking as a guide the resemblance to the piston

problem, we obtained a category that compensates the classification. The

main feature of the category, the type V in Section 4.2, is the appearance of

a vacuum between two expansion waves.

Providing a numerical evidence of type V would be desired, but we have

to leave it as a future work because of the difficulty of capturing the vac-

uum region by the straightforward numerical computation performed in the

present work. We conclude that the long time behavior of the evaporation

flow is entirely covered by the five-fold classification into types I–V.
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