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THE CLASSICAL LIMIT FOR

THE UEHLING–UHLENBECK OPERATOR

BY

D. BENEDETTO AND M. PULVIRENTI

Abstract

We show that the Uehling–Uhlenbeck operator, the one

arising in the Boltzmann equations for Fermions and Bosons, con-

verges, when the Planck constant goes to zero, to the diffusion

operator appearing in the Fokker–Planck–Landau equation.

1. Introduction

Consider a classical system of N identical particles. We are interested in

a situation where the number of particles N is very large and the interaction

strength quite moderate. In addition we look for a reduced or macroscopic

description of the system. According to the general prescription of the ki-

netic theory, we introduce r > 0, a small parameter expressing the ratio

between the macro and the micro scales. The weakness of the interaction is

expressed by assuming that the potential is O(
√
r). Since many of the phys-

ical quantities of interest are varying on a macroscopic scale and are almost

constant on the microscopic scale, we rescale the equation of motion. Then

the behavior of the one-particle distribution function f(x, v) (being x the po-

sition and v the velocity of a test particle) in the limit r → 0, N = O(r−3),

is expected to solve the Fokker–Plank–Landau nonlinear diffusion equation:

(∂t + v · ∇x)f = Q
FP

(f), (1.1)

where the operator Q
FP

(f) is defined by

Q
FP

(f)(v) = B

∫

dv1 divv [A(v − v1) (∇v −∇v1)f(v)f(v1)] . (1.2)
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Here A is the matrix

A(w) =
|w|2Id− w ⊗ w

|w|3 (1.3)

and

B =
1

8π

∫ +∞

0
dµµ3φ̂(µ)2 (1.4)

being

φ̂(k) =

∫

e−ik·xφ(x) dx

the Fourier transform of the interaction potential φ. Note that the details

of the interaction enter in the definition of B only.

As regards the mathematical side, a derivation of the Fokker–Planck–

Landau equation (in the previous scaling usually called weak–coupling limit)

is a challenging and interesting still open problem. However there are results

for the linear case, namely the convergence to a diffusion of a test particle

in a random distribution of scatterers (see [7], [8] and [10]). We address the

reader to Ref.s [2] and [15] for a formal derivation in the present nonlinear

case.

A kinetic equation of the same type has been introduced by Landau in

1936 (see for instance [13] [18] [9]) for describing a plasma on the basis of

the Boltzmann equation, whenever the grazing collisions become dominant.

It comes out from the asymptotics (for a large ratio between the Debye

and Landau lengths) of the Boltzmann collision operator in case of screened

Coulomb potential, for the study of a dilute plasma. More generally, for a

reasonable power law potential, the matrix A takes the form

A
L
(w) = a(|w|)(|w|2Id− w ⊗ w). (1.5)

where the function a ≈ 1
|w|ν for small |w|, with ν < 1, depends on the specific

form of the cross-section appearing in the Boltzmann collision operator. For

these reasons the behavior a ≈ 1
|w| is usually associated to the Coulomb

potential, although it arises also in the weak-coupling limit context, even for

a smooth and short-range potential!

Let us now analyze the case of a quantum system under the previous

scaling. This time, due to a macroscopic tunnel effect, we expect a kinetic
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equation of Boltzmann type. Formal arguments (see [2], [15] and [3]) yields:

(∂t + v · ∇x)f = Q
UU

(f) (1.6)

where

Q
UU

(f)(v) =
1

8π2~2

∫

dv1

∫

dk
[

φ̂(k)± φ̂
(

k + w
~

) ]2
δ(~k2 + w · k)

{

(1± (2π~)3f)(1± (2π~)3f1)f
′f ′

1 − (1± (2π~)3f ′)(1 ± (2π~)3f ′
1)ff1

}

.
(1.7)

Here ~ = h/(2π) = 1.0546 · 10−34 Js, h is the Planck constant, the sign ±
stands for Bosons and Fermions respectively, w = v−v1 denotes the relative

velocity,

v′ = v + ~k, v′1 = v1 − ~k

denote the postcollisional velocities and, finally, we used the usual notation

f = f(v), f1 = f(v1), f ′ = f(v′), f ′
1 = f(v′1).

Note that the momentum is automatically conserved in the collision, while

the energy is also conserved due to the presence of the δ function since:

~k2 + w · k =
1

2
(v + ~k)2 +

1

2
(v1 − ~k)2 − 1

2
v2 − 1

2
v21.

Equation (1.6) has been derived on the basis of purely phenomenological

arguments by Nordheim in 1928 [14] and by Uehling–Uhlenbeck in 1933

[17]. We call the collision operator Q
UU

because in [17] we find the precise

form we make use in the present paper. Again as regards the mathematical

analysis of the derivation of this equation starting from the Schrödinger

evolution, very little is known. In [3] we try a perturbative approach and

find an agreement up to the second order (in the potential) of the expansion.

In [4] and [5] we consider a quantum particle system with the classical

statistics and show that the agreement holds at any order of the expansion

(under suitable assumptions on the interaction potential) without being able

to sum the series. The limiting kinetic equation in this case is:

(∂t + v · ∇x)f = Q
MB

(f) (1.8)
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where

Q
MB

(f)(v) =
1

4π2~2

∫

dv1

∫

dk φ̂(k)2δ(~k2 + w · k)
{

f ′f ′
1 − ff1

}

. (1.9)

Here the index MB stands to indicate the Maxwell–Boltzmann statistics.

The situations is much better for the linear case, namely a quantum particle

under the action of a random potential. Now a linear Boltzmann equation

can indeed be rigorously derived ([16], [11], [12]).

Since ~ is small it is natural to look at the classical limit ~ → 0 for the

solutions to equations (1.6) and (1.8), at least in the homogeneous case. Of

course we expect convergence to the solutions of the Fokker–Planck–Landau

equation (1.1). Indeed looking at the structure of Q
MB

we realize that the

collisions become grazing when ~ → 0, and the grazing collision limit of

the homogeneous Boltzmann equation has been investigated in [1], [6], [19].

Unfortunately in such papers the hypotheses are not suitable for the case we

are dealing with here: indeed the case a ≈ 1
|w| is excluded by the mentioned

literature, so that we cannot hope to extend those results to the operator

Q
UU

. After the proof of Proposition 3.2 below we shall discuss further the

problem.

In the present paper we approach the more modest problem of recovering

the asymptotic of the operators Q
MB

and Q
UU

as preliminary step.

2. Organizing the Terms

In this section we set ~ = ε. The collision operator is

Qε
UU

(f)(v) =
1

8π2ε2

∫

dv1

∫

dk
[

φ̂(k)± φ̂
(

k + w
ε

) ]2
δ(εk2 + w · k)

(2.1)
{

(1± (2πε)3f)(1± (2πε)3f1)f
′f ′

1 − (1± (2πε)3f ′)(1± (2πε)3f ′
1)ff1

}

.

The interaction potential is assumed real, spherically symmetric and suit-

ably smooth. As a consequence φ̂ is real and spherically symmetric as well.

Expanding
[

φ̂(k)± φ̂
(

k + w
ε

) ]2
, we consider the term

1

2ε2

∫

dv1

∫

dk φ̂
(

k + w
ε

)2
δ(. . . )

{

. . .
}

. (2.2)

Setting

k′ = −
(

k + w
ε

)

, (2.3)
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then

v + εk = v1 − εk′, v1 − εk = v + εk′ (2.4)

and δ(. . . )
{

. . .
}

remains invariant. Using that φ̂(k) = φ̂(−k) we can rewrite

Qε
UU

= Qε
1 +Qε

2 (2.5)

with

Qε
1 =

1

4π2ε2

∫

dv1

∫

dk φ̂(k)2 δ(. . . )
{

. . .
}

(2.6)

and

Qε
2 = ± 1

4π2ε2

∫

dv1

∫

dk φ̂(k)φ̂
(

k + w
ε

)

δ(. . . )
{

. . .
}

. (2.7)

Obviously the δ function appearing in the collision operator can be solved

so that we arrive to the more conventional form:

Qε
1 =

1

4π2ε4

∫

dv1

∫

S2

−

dk̂ |k̂ · w|φ̂
(

|k̂·w|
ε k̂

)2

{

(1± (2πε)3f)(1± (2πε)3f1)f
′f ′

1 − (1± (2πε)3f ′)(1± (2πε)3f ′
1)ff1

}

, (2.8)

Qε
2 = ± 1

4π2ε4

∫

dv1

∫

S2

−

dk̂ |k̂ · w|φ̂
(

|k̂·w|
ε k̂

)

φ̂
(

w−(k̂·w) k̂
ε

)

{

(1± (2πε)3f)(1± (2πε)3f1)f
′f ′

1 − (1± (2πε)3f ′)(1± (2πε)3f ′
1)ff1

}

, (2.9)

where

S2
− = {k̂| |k̂| = 1, w · k̂ ≤ 0}

and

v′ = v − (k̂ · w) k̂, v′1 = v1 + (k̂ · w) k̂. (2.10)

Equations (2.8) and (2.9) follow from the formula

∫

dkδ(εk2 +w · k) g(k) = 1

ε2

∫

S2

−

dk̂ |k̂ · w| g
(

− k̂·w
ε k̂
)

(2.11)

which is valid for any test function g as follows by using polar coordinates.

The quadratic part in f of Qε
1 is exactly the collision operator (1.9) for the

case of Maxwell–Boltzmann statistics:

Qε
MB

=
1

4π2ε4

∫

dv1

∫

S2

−

dk̂ |k̂ · w|φ̂
(

|k̂·w|
ε

)2
(f ′f ′

1 − ff1). (2.12)
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Here we used the standard notational abuse φ̂(|x|) = φ̂(x). Separating the

contributions of order two and three in f in Qε
1 and Qε

2 we can write

Qε
UU

= Qε
1 +Qε

2 = Qε
MB

+Rε
1 +Rε

2 +Rε
3.

where

Rε
1 = ± 1

4π2ε4

∫

dv1

∫

S2

−

dk̂ |k̂ · w|φ̂
(

|k̂·w|
ε

)

φ̂

(

|w|
ε

√

1−(k̂ · ŵ)2
)

(f ′f ′
1−ff1),

(2.13)

Rε
2 = ±2π

ε

∫

dv1

∫

S2

−

dk̂ |k̂ · w|φ̂
(

|k̂·w|
ε

)2
(

f ′f ′
1(f + f1)− ff1(f

′ + f ′
1)
)

,

(2.14)

Rε
3 =

2π

ε

∫

dv1

∫

S2

−

dk̂ |k̂ · w|φ̂
(

|k̂·w|
ε

)

φ̂

(

|w|
ε

√

1− (k̂ · ŵ)2
)

×
(

f ′f ′
1(f + f1)− ff1(f

′ + f ′
1)
)

, (2.15)

Qε
MB

is the leading part in the asymptotics of Qε
UU

. We analyze it in the

next section, then we will prove that Rε
i , i = 1, 2, vanish as ε → 0.

3. The Main Term

In this section we prove that

lim
ε→0

Qε
MB

(f) = Q
FP

(f), in S ′.

A standard computation show that, for any u ∈ S:
∫

dv u(v)Q
FP

(f)(v) =

∫

dv dv1 Lu(v, v1) ff1 (3.1)

where

Lu = −2
B

|w|2 ŵ · (∇vu(v)−∇v1u(v1)) +B Tr (AD2u(v)) (3.2)

and where ŵ = w
|w| and Tr (AD2u(v)) =

∑

i,j Aij∂
2
vivju(v). Note that the

right hand side of (3.2) is O(1/|w|), for |w| small, then (3.1) makes sense if

∫

dv dv1 ff1
|v − v1|

< +∞.
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This is assured for a probability distribution f ∈ L1(R3) ∩ Lp(R3), with

p > 3/2. Moreover this condition give the extra summability

∫

dv dv1 ff1
|v − v1|1+η

< +∞ (3.3)

for η < 2 − 3/p, which will be needed in performing the limit, as we shall

see in the sequel.

We start by analyzing the properties of the cross–section. We introduce

the notation for a ≥ 0

ba(µ) = |µ|aφ̂(|µ|)2, na =

∫ +∞

0
(1 + µa)φ̂(µ)2. (3.4)

Lemma 3.1.

∫

S2

−

dk̂ b2

(

k̂·w
ε

)

k̂ = −2πε2

|w|2 ŵ
∫ |w|/ε

0
dµµ3 φ̂(µ)2 (3.5)

∫

S2

−

dk̂ b3

(

k̂·w
ε

)

k̂ ⊗ k̂ =
πε

|w| (Id− ŵ ⊗ ŵ)

∫ |w|/ε

0
dµµ3 φ̂(µ)2 + r (3.6)

with |r| ≤ c n3+η

(

ε

|w|

)1+η

, η ∈ [0, 2], (3.7)

∫

S2

−

dk̂ ba

(

k̂·w
ε

)

≤ c na−(1−η)

(

ε

|w|

)η

, a ≥ 1, η ∈ [0, 1]. (3.8)

Proof. We set:

k̂ = −λŵ +
√

1− λ2ξ, (3.9)

where λ ∈ [0, 1] and the unitary vector ξ varies in the circle S1(w) lying in

the plane orthogonal to ŵ. Then:

∫

S2

−

dk̂ b2

(

k̂·w
ε

)

k̂ =

∫

S1(w)
dξ

∫ 1

0
dλ b2

(

λ|w|
ε

)

(
√

1− λ2ξ − λŵ).

Using that
∫

S1(w) ξdξ = 0, and setting µ = λ|w|
ε , we obtain (3.5). With the

same change of variable:
∫

S2

−

dk̂ b3

(

k̂·w
ε

)

k̂ ⊗ k̂
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=

∫

S1(w)
dξ

∫ 1

0
dλ b3

(

λ|w|
ε

)

(
√

1− λ2ξ − λŵ)⊗ (
√

1− λ2ξ − λŵ).

Now we can use that
∫

S1(w) dξ ξ ⊗ ξ = π(Id− ŵ⊗ ŵ), i.e. 2π · 1/2 times the

identity matrix on the plane orthogonal to ŵ. We obtain (3.6) with

r = −π(Id− 3ŵ ⊗ ŵ)

∫ 1

0
dλλ2 b3

(

λ|w|
ε

)

.

Moreover:

|r| ≤ c
ε

|w|

∫ |w|/ε

0
dµ

(

µε

|w|

)2

µ3φ̂(µ)2 ≤ c

(

ε

|w|

)1+η ∫ +∞

0
dµµ3+ηφ̂(µ)2,

for any η ∈ [0, 2]. Finally:

∫

S2

−

dk̂ ba

(

k̂·w
ε

)

=

∫

S1(w)
dξ

∫ 1

0
dλ ba

(

λ|w|
ε

)

=
2πε

|w|

∫ |w|/ε

0
dµµa φ̂(µ)2

≤ c

(

ε

|w|

)1−q ∫ +∞

0
dµµa−q φ̂(µ)2,

for any q ∈ [0, a]. Choosing q = 1− η we obtain (3.8). �

Proposition 3.2. Let f be a probability distribution such that f ∈
L1(R3) ∩ Lp(R3), p > 3/2. Suppose also that:

∫ ∞

0
dµ (1 + µα)φ̂(µ)2 < +∞ (3.10)

for some α > 3. Then

lim
ε→0

Qε
MB

(f) = Q
FP

(f) in S ′ (3.11)

where Q
FP

(f) is given by equations (1.2), (1.3), (1.4).

Proof. For u ∈ S, we have:
∫

dv u(v)Qε
MB

(f)(v) =
1

4π2ε4

∫

dv dv1 ff1

∫

S2

−

dk̂ |k̂·w| φ̂
(

|k̂·w|
ε

)2
[u(v′)−u(v)],

(3.12)

where v′ = v − (k̂ · w) k̂. Expanding

u(v′)− u(v) = |k̂ · w| k̂ · ∇vu+
1

2
|k̂ · w|2Tr(k̂ ⊗ k̂ D2u(v)) + r3 |k̂ · w|3,
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we can write
∫

dv u(v)Qε
MB

(f)(v) =

∫

dv dv1 ff1 (T1 + T2 + T3) ,

where

T1 =
1

8π2ε2

∫

S2

−

dk̂ b2

(

k̂·w
ε

)

k̂ · (∇vu(v)−∇v1u(v1)), (3.13)

T2 =
1

8π2ε

∫

S2

−

dk̂ b3

(

k̂·w
ε

)

Tr(k̂ ⊗ k̂ D2u(v)), (3.14)

T3 =
1

4π

∫

S2

−

dk̂ b4

(

k̂·w
ε

)

r3, (3.15)

For (3.13) we have symmetrized the term using the changes of variables

v ↔ v1, k → −k. Now we can apply Lemma 3.1 to obtain (3.11). �

We note that Qε
BQ

(f) is a collision operator for a classical Boltzmann

equation, with a quantum cross–section φ̂(k̂ ·w/ε)2. This expression implies

that, when ε → 0, w · k̂ = O(ε) so that the collision operator concentrates

on grazing collisions. The behavior of the solutions of the homogeneous

Boltzmann equation in the grazing collision limit is well known. In [1] the

authors show that, under suitable assumptions on the cross-section, a diffu-

sion Fokker–Planck–Landau equation, with a matrix AL given by equation

(1.5) and a smooth function a, can indeed be derived. Next in [6] and [19]

steps forward were performed to arrive to cover the case a ≈ 1
|w|ν , with

ν < 1, so that this analysis cannot be implemented in our context. Actually

we would need a control on the quantity (3.3) uniform in ε and this does not

follow by the usual estimates available up to now.

4. The Remainders

For Rε
1, we have:

∫

dv u(v)Rε
1(f)(v)

=
±1

4π2ε4

∫

dvdv1ff1

∫

S2

−

dk̂|k̂ · w|φ̂
(

|k̂·w|
ε

)

φ̂

(

|w|
ε

√

1−(k̂ · ŵ)2
)

×[u(v′)−u(v)]. (4.1)
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The term φ̂
(

|k̂·w|
ε

)

concentrates the collisions on k̂ · w = O(ε), while

φ̂

(

|w|
ε

√

1− (k̂ · ŵ)2
)

concentrates on (Id − k̂ ⊗ k̂)w = O(ε). We will take

advantage from this two simultaneous concentrations, as stated in the fol-

lowing lemma.

Lemma 4.1. For any η ≥ 0
∣

∣

∣

∣

∣

∫

S2

−

dk̂ |k̂·w|2
ε2

φ̂
(

|k̂·w|
ε

)

φ̂
(

|w|
ε

√

1− λ2
)

k̂

∣

∣

∣

∣

∣

≤ c n5+2η

(

ε

|w|

)2+η

, (4.2)

∣

∣

∣

∣

∣

∫

S2

−

dk̂ |k̂·w|3
ε3

φ̂
(

|k̂·w|
ε

)

φ̂
(

|w|
ε

√

1− λ2
)

∣

∣

∣

∣

∣

≤ n5+2η

(

ε

|w|

)1+η

, (4.3)

Proof. We proceed as in Lemma 3.1. Integrating in dξ as for (3.5), we

easily bound the first term in terms of

c
ε2

|w|2
∫ γ

0
dµµ3

∣

∣

∣
φ̂ (µ) φ̂

(

√

γ2 − µ2
)∣

∣

∣
(4.4)

where γ = |w|/ε. Using the change of variable µ ↔
√

γ2 − µ2, for which

µdµ is invariant, we obtain

∫ γ/
√
2

0
dµµ3

∣

∣

∣
φ̂ (µ) φ̂

(

√

γ2 − µ2
)
∣

∣

∣
+

∫ γ

γ/
√
2
dµµ3

∣

∣

∣
φ̂ (µ) φ̂

(

√

γ2 − µ2
)
∣

∣

∣

=

∫ γ

γ/
√
2
dµ (µ3 + µ (γ2 − µ2))

∣

∣

∣
φ̂ (µ) φ̂

(

√

γ2 − µ2
)
∣

∣

∣

= γ2
∫ γ

γ/
√
2
dµµ

∣

∣

∣
φ̂ (µ) φ̂

(

√

γ2 − µ2
)∣

∣

∣

Finally

γ2
∫ γ

γ/
√
2
dµµ

∣

∣

∣
φ̂ (µ) φ̂

(

√

γ2 − µ2
)
∣

∣

∣

≤ γ2
(
∫ +∞

0
dµµ φ̂(µ)2

)1/2
(

∫ +∞

γ/
√
2
dµµ φ̂(µ)2

)1/2

≤ c
εη

|w|η
(
∫ +∞

0
dµµ φ̂(µ)2

)1/2(∫ +∞

0
dµµ5+2η φ̂(µ)2

)1/2

,

which inserted in (4.4) gives (4.2).
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For (4.3), with the same change of variables, we obtain the same estimate

(4.4) replacing the exponent 2 for ε/|w| by 1. �

Proposition 4.2. Under the hypotheses of Proposition 3.2 with α > 5,

lim
ε→0

Rε
1 = 0 in S ′. (4.5)

Proof. We expand u in (4.1) up to the second order:

u(v′)− u(v) = |k̂ · w| k̂ · ∇vu(u) + |k̂ · w|2r2,

obtaining
∫

dv u(v)Rε
1(f)(v) =

∫

dv dv1 ff1(T̃1 + T̃2)

where

T̃1 =
1

8π2ε2

∫

S2

−

dk̂ |k̂·w|2
ε2

φ̂
(

|k̂·w|
ε

)

φ̂
(

|w|
ε

√

1− λ2
)

k̂ · (∇vu(v)−∇v1u(v1)),

(4.6)

T̃2 =
1

4π2ε

∫

S2

−

dk̂ |k̂·w|3
ε3

φ̂
(

|k̂·w|
ε

)

φ̂
(

|w|
ε

√

1− λ2
)

r2. (4.7)

Now we can apply Lemma 4.1 to conclude. Let us note that the symmetrized

expression for T̃1 is needed in order to compensate 1/|w|2+η with ∇vu(v) −
∇v1u(v1). �

It remains to prove that also the terms Rε
2 and Rε

3 are vanishing. For

them we have an extra ε3 which, in principle, give makes easier the con-

vergence to 0. Hoverer such terms are cubic in f , so that we need more

summability. For u ∈ S:
∫

dv u(v)Rε
2 =

2π

ε

∫

dv dv1

∫

S2

−

dk̂ |k̂·w| φ̂
(

|k̂·w|
ε

)2
ff1(f

′+f ′
1)[u(v

′)−u(v)].

Using |u(v′)− u(v)| ≤ ‖∇u‖∞|k̂ · w|, we obtain

∣

∣

∣

∣

∫

dv u(v)Rε
2

∣

∣

∣

∣

≤ cε

∫

dv dv1

∫

S2

−

dk̂ b2

(

k̂·w
ε

)

ff1(f
′ + f ′

1) ≤ cε(I1 I2)
1/2,



918 D. BENEDETTO AND M. PULVIRENTI [December

where

I1 =

∫

dv dv1

∫

S2

−

dk̂ b2

(

k̂·w
ε

)

(1 + |w|)βf2f2
1

I2 =

∫

dv dv1

∫

S2

−

dk̂ b2

(

k̂·w
ε

) (f ′ + f ′
1)

2

(1 + |w|)β

We estimate I1 by c
∫

dv (1 + |v|β) f2 using (3.8) with a = 2, η = 0. We

can estimate I2 after the change of variable (v, v1) ↔ (v′, v′1), using that
∫

dv/(1 + |v|β) < +∞ if β > 3:

∫

dv dv1

∫

S2

−

dk̂ b2

(

k̂·w
ε

)

(f+f1)2

1+|w|β ≤ c

∫

dv f2.

Collecting these two estimate we obtain
∣

∣

∣

∣

∫

dv u(v)Rε
2 u(v)

∣

∣

∣

∣

≤ cε ‖(1 + |v|β)f(v)‖3L2(R3).

For Rε
3 we use the Cauchy–Schwartz inequality:

∣

∣

∣

∣

∫

dv u(v)Rε
3

∣

∣

∣

∣

≤ cε(I1 I2)
1/2, where

I1 =

∫

dv dv1

∫

S2

−

dk̂ |k̂·w|
ε

∣

∣

∣
φ̂
(

|w|
ε

√

1− λ2
)
∣

∣

∣
(1 + |w|)βf2f2

1

I2 =

∫

dv dv1

∫

S2

−

dk̂ b3

(

k̂·w
ε

) (f ′ + f ′
1)

2

(1 + |w|)β

Using that
∫ γ
0 dµµ φ̂

(

√

γ2 − λ2
)

=
∫ γ
0 dµµ φ̂(µ) we obtain the same esti-

mate as for Rε
2.

The estimates of this section show that the effects of the quantum statis-

tics become negligible in the limit ε → 0. We summarize all the propositions

in the following theorem.

Theorem 4.3. If f ∈ L1(R3),
∫

(1 + |v|β)f2 < +∞ with β > 3, and
∫ +∞
0 (1 + µα)φ̂(µ)2 with α > 5, then

lim
ε→0

Qε
UU

= Q
FP

, in S ′
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