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Abstract

We present novel algorithms for compressible flows that

are efficient for all Mach numbers. The approach is based on sev-

eral ingredients: semi-implicit schemes, the gauge decomposition

of the velocity field and a second order formulation of the density

equation (in the isentropic case) and of the energy equation (in

the full Navier-Stokes case). Additionally, we show that our ap-

proach corresponds to a micro-macro decomposition of the model,

where the macro field corresponds to the incompressible compo-

nent satisfying a perturbed low Mach number limit equation and

the micro field is the potential component of the velocity. Finally,

we also use the conservative variables in order to obtain a proper

conservative formulation of the equations when the Mach number

is order unity. We successively consider the isentropic case, the

full Navier-Stokes case, and the isentropic Navier-Stokes-Poisson

case. In this work, we only concentrate on the question of the

time discretization and show that the proposed method leads to

Asymptotic Preserving schemes for compressible flows in the low

Mach number limit.
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1. Introduction

Simulation of Low-Mach number flows has been the subject of a con-

siderable amount of literature. Low Mach number flows occur in numerous

situations in geophysics (such as atmospheric modeling), industrial processes

(e.g., in CVD or Chemical Vapor Deposition), nuclear reactor engineering

(in the water-vapor circuitry) or in every day applications (such as the air

flow around a vehicle), and combustion [45]. However, the search for nu-

merical algorithms which are efficient uniformly in the Mach number is still

highly desirable since no completely satisfactory solution has been achieved

yet.

In this paper, we present novel algorithms for compressible flows that

are valid for all Mach numbers. The approach is based on several ingredients:

semi-implicit schemes, the gauge decomposition of the velocity field and a

second order formulation of the density equation (in the isentropic case) and

of the energy equation (in the full Navier-Stokes case). Additionally, we

show that our approach corresponds to a micro-macro decomposition of the

model, where the macro field corresponds to the incompressible component

satisfying a perturbed Low-Mach number limit equations and the micro field

is the potential component of the velocity. Finally, we also use the conser-

vative variables in order to obtain a proper conservative formulation of the

equations for shock capturing when the Mach number is of order unity. We

successively consider the isentropic case, the full Navier-Stokes case, and the

isentropic Navier-Stokes-Poisson case.

In the literature, many papers are concerned with the low Mach number

limit. Only recently, new approaches have considered algorithms that are

expected to be efficient for all range of Mach numbers. Additionally, most

of the early literature on the subject deals with steady-state computations

and are based on preconditioning techniques that are not consistent with the

model in the time-dependent case. The prototype of this approach can be

found in the seminal paper of Chorin [9], where an artificial compressibility

approach was proposed. It was first recognized by Turkel [55] that this

approach could be viewed as a preconditioning technique. These pioneering

works have been followed by an abundant literature, see e.g., [2, 8, 13, 40,

56, 34, 51]. Further studies provided the accurate asymptotic expansions of

the numerical fluxes in terms of the Mach number [26, 25].
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Then, it was recognized that consistency of the time difference scheme

required the use of implicit schemes and that preconditioning techniques

could often be viewed as a predictor-corrector version of these schemes. Full

backward Euler time integration schemes have been investigated in [46] and

[58]. However, it was soon realized that taking all fluxes implicit is probably

too numerically demanding for a uniform stability with respect to the Mach

number and that only those fluxes which correspond to the propagation of

acoustic waves need to be taken implicitly. For instance, this was achieved

in [1, 27, 38] through splitting methods.

In [21], only the pressure flux in the momentum equation is taken im-

plicitly. In a number of references, [47, 48, 57, 35, 42, 59, 49], both the mass

flux and the pressure contribution to the momentum fluxes are taken implic-

itly. In doing so, the convection flux and pressure flux are treated separately,

in the spirit of the earlier Advection Upstream Splitting Method (AUSM)

[43, 41]. In most of the cases, the pressure (or more often, the perturba-

tion to the hydrostatic pressure) solves an elliptic or Helmholtz equation,

which corresponds to acoustic wave propagation at high speeds. In the low

Mach number limit, the momentum is updated using the perturbation pres-

sure to avoid an ill-conditioning of the pressure term. In these works, the

pressure equation is solved instead of the full energy one but the use of non-

conservative variables may lead to incorrect shock speeds for finite Mach

numbers.

In the present work, we use a similar semi-implicit methodology and

a wave-equation formulation of either the density or the energy equation,

which, after time discretization leads to an elliptic problem for the pressure.

However, the rationale is fairly different. Indeed, we do work in the total

pressure (or total energy) variable rather than in the perturbation pressure

variable. The reason for that is that we bypass the ill-conditioned pres-

sure term by using a gauge (or Hodge) decomposition of the velocity field

(actually, of the momentum variable in order to preserve the conservativity

of the scheme). The solenoidal (divergence-free) component of the velocity

is updated using the momentum conservation equation, in which the total

pressure combines with the potential associated with the irrotational part

of the velocity field. In this way, the ill-conditioning of the pressure term

disappears as it becomes only the Lagrange multiplier of the divergence-free

constraint of the solenoidal part of the velocity.
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The use of the Hodge decomposition as a projection method in the con-

text of incompressible fluids has been proposed in [3, 4, 39] and later used

in e.g., [49, 10]. It is based on an earlier theoretical work of Roberts [53]

and Oseledets [50] who introduced a Velocity-Impulse-Density Formulation

for Navier-Stokes equation. Roberts’s primary motivation was to write the

incompressible Euler equations in a Hamiltonian form. Buttke and Chorin

[6] used the impulse density variable as a numerical tool in the computation

of incompressible flows. E and Liu [18] showed that the original velocity-

impulse density formulation of Oseledets is marginally ill-posed for the invis-

cid flow, and this has the consequence that some ordinarily stable numerical

methods in other formulations become unstable in the velocity-impulse den-

sity formulation. To remove this marginal ill-posedness, they [18] then in-

troduced a class of numerical method based on a simplified velocity-impulse

density formulation. This class of numerical method was later renamed as

the gauge method [36, 19, 20]. Unconditional stability of the gauge method

was shown by Wang and Liu [60]. Maddocks and Pego [44] also introduced

an unconstrained Velocity-Impulse-Density/Hamiltonian formulation for in-

compressible fluid which has better stability properties. A systematic com-

parison of different gauge choices in this content was studied by Russo and

Smereka [54].

In the present work, we only concentrate on the question of the time

discretization. Our goal is to show that the combination of a semi-implicit

scheme with a second order formulation of the density or energy equation

and, more importantly, with a gauge (Hodge-like) decomposition of the mo-

mentum field, can lead to an Asymptotic Preserving scheme for compressible

flows in the Low-Mach number limit. An Asymptotic Preserving scheme for

a model (Mε) depending on a parameter ε and converging to the limit model

(M) as ε → 0 is a scheme that preserves the discrete analogy of the asymp-

totic passage from model (Mε) to model (M). Specifically, the method is

a consistent and stable discretization of (Mε) when the time step ∆t (and

possibly the mesh size ∆x) resolve the scales associated with ε and which

is consistent and stable discretization of the limit model (M) when ∆t (and

possibly ∆x) is fixed and ε→ 0. The latter situation is called ’underresolved’

in the sense that ∆t (and ∆x) are unable to resolve the scales associated

with ε. Additionally, if the scheme is stable uniformly with respect to ε,

the scheme is said Asymptotically Stable. Of course, the two concepts are

linked, but it may happen that a scheme enjoys one of the properties without

the other one.
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If an Asymptotically Stable and Asymptotic Preserving scheme is used,

a uniform accuracy for all range of ε is expected. A rigorous proof of this

claim, in the context of linear transport equation in the diffusive regime,

was given in [22]. For transitional values of ε (i.e., when ε is small without

being very small), the uniform stability guarantees that the discrepancy re-

mains bounded with time. An Asymptotic Preserving scheme enjoys many

advantages compared with a model coupling strategy (i.e., solving model

(Mε) where ε is finite and model (M) where ε is very small). Indeed, a do-

main decomposition strategy requires the design of appropriate transmission

conditions between the models, together with a geometric approximation of

the interfacial region (which, in many situation, is moving with time) and

a specific adaptive meshing strategy. With an Asymptotically Stable and

Asymptotic Preserving scheme, the scheme itself switches from one model

to the other one when it is needed, without any intervention of the user.

Asymptotic Preserving schemes have been proposed in a variety of con-

texts, such as hydrodynamic or diffusion limits of kinetic model [7, 32, 33, 29,

52, 5, 23], relaxation limits of hyperbolic models [30, 31, 24], quasi-neutral

limits of Euler-Poisson or Vlasov-Poisson systems [11, 12, 17, 14], Dirac-

Maxwell systems in the non-relativistic regime [28], fluid limit of Complex-

Ginzburg-Landau equations [15], . . . .

The paper is organized as follows. In Section 2, we propose an Asymp-

totic Preserving time discretization of the isentropic Navier-Stokes equations,

based on a gauge formulation of the model. In passing, we show that the

gauge formulation provides the proper macro-micro decomposition of the

model. Indeed, the set of macro variables evolve according to a system

which corresponds to the limit model, perturbed by small terms which de-

pend on the micro variables. Here the macro variables are the constant

density and the solenoidal component of the velocity, while the micro vari-

ables correspond to the perturbation density and the potential component of

the velocity. In Section 3, a similar methodology is applied to the full Navier-

Stokes equations. Finally, the case of the isentropic Navier-Stokes-Poisson

problem is investigated in Section 4. A conclusion is drawn in Section 5.

Again, we stress the fact that this paper is devoted to the time-discreti-

zation only and the investigation of its Asymptotic-Preserving property. We



856 P. DEGOND, S. JIN AND J.-G. LIU [December

defer the investigation of the space discretization and numerical simulations

to future works.

2. Isentropic Navier-Stokes Equation

2.1. The model and the Low-Mach number limit

Consider the isentropic Navier-Stokes equations:

∂tρ
ε +∇ · qε = 0 , (2.1)

∂tq
ε +∇(

qε ⊗ qε

ρε
) +

1

ε2
∇p(ρε) = ∇(µσ(uε)) , (2.2)

where ρε(x, t) is the volumic mass density, qε = ρεuε(x, t) the volumic mo-

mentum density depending on the position x ∈ R
d (d being the dimension)

and the time t > 0, p(ρ) is the isentropic pressure-density relationship, µ is

the viscosity and σ(u) is the rate of strain tensor:

σ(u) = ∇u+ (∇u)T −
2

d
(∇ · u) I.

For scalar, vector and tensor fields ϕ, a and S, we denote by ∇ϕ, ∇ · a and

∇S the gradient of ϕ, divergence of a and gradient of S respectively. The

exponent T denotes the transpose of a tensor, I, the unit tensor and for two

vectors a and b, a⊗ b denotes the tensor product of a and b.

Here, the equations have already been put in the scaled form, with ε

being the Mach number. In order to understand the significance of ε, we

come back to the system in dimensional physical quantities

∂t̄ρ̄+∇x̄ · q̄ = 0 , (2.3)

∂t̄q̄ +∇x̄(
q̄ ⊗ q̄

ρ̄
) +∇x̄p̄(ρ̄) = ∇x̄(µ̄σ̄(ū)) , (2.4)

where the barred quantities denote quantities expressed in physical units.

Now, let x0, t0, ρ0, q0, p0, µ0, u0 be a set of scaling units for the position,

time, mass density, momentum density, pressure, viscosity and velocity re-

spectively. We link these units by the natural relations u0 = x0/t0, q0 = ρ0u0

and note that σ̄(ū) = σ(u)/t0. Then, the dimensionless variables are defined

by the relations x̄ = x0x, t̄ = t0t, ρ̄ = ρ0ρ, . . . . Using these changes of
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variables and unknowns, we find:

∂tρ+∇ · q = 0 , (2.5)

ρ0u
2
0

p0

(

∂tq +∇(
q ⊗ q

ρ
)

)

+∇p(ρ) =
µ0
p0t0

∇(µσ(u)) . (2.6)

The first dimensionless parameter ρ0u
2
0/p0 appears as the ratio of the the

drift energy of the fluid to its internal energy (up to a numerical factor).

Writing that p0 is up to a numerical factor equal to the product of the

density ρ0 and the square of the speed of sound c2s, we can also identify this

dimensionless parameter as the square of the Mach number M = u0/cs.

Therefore, we denote this dimensionless parameter by ε2. For the second

dimensionless parameter, we write

µ0
p0t0

=
µ0

ρ0u0x0

ρ0u
2
0

p0
=

µ0
ρ0u0x0

ε2..

The dimensionless quantity µ0

ρ0u0x0
measures the ratio of the strenth of the

viscosity term to that of the transport term. We suppose that this ratio

is of order unity i.e., that the time and space gradients of momentum are

balanced by viscosity terms of similar order of magnitude. Therefore, we

take a viscosity scale such that

µ0
ρ0u0x0

= 1.

Now, inserting these values of the parameters into (2.6), we recover the

dimensionless system (2.1), (2.2).

The low-Mach number limit is the regime where ε → 0 [37]. Letting

ε→ 0, in the momentum conservation equation (2.2), we get:

∇p(ρ) = 0 . (2.7)

Therefore, the solution of (2.19) is given by:

ρ = ρ0, p(ρ) = p(ρ0) := p0 (2.8)

where ρ0 is a constant (with respect to both space and time) given by the

boundary conditions. That ρ0 is uniform in space is a necessary condition

for the existence of a low Mach number limit. That it is a constant in time

is an assumption that we make for the sake of simplicity, but which can be

easily relaxed.
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Then, letting ε→ 0 in the momentum equation (2.2) again leads to

∂tq +∇(
q ⊗ q

ρ0
) +∇P = ∇(µσ(u)) , (2.9)

where P = limε→0 ε
−2(p(ρε)− p0) is the hydrostatic pressure. We assume µ

is constant. Then,

∇(µσ(u)) = µ(∆u+
d− 2

d
∇(∇ · u)) (2.10)

In the low-mach number model, P is the Lagrange multiplier of the diver-

gence free constraint

∇ · u = 0. (2.11)

which follows from the limit of the mass conservation eq. (2.1) together

with (2.8). Eq. (2.9) is the incompressible Navier-Stokes equation. Using

the incompressibility constraint (2.11), it can be recast in the more familiar

form:

ρ0(∂tu+ (u · ∇)u) +∇P = µ∆u .

Using this form and the fact that ρ0 is uniform, it is easy to see that P

satisfies the following elliptic equation:

−∆P = ∇2 : (ρ0u⊗ u) . (2.12)

To construct an Asymptotic-Preserving scheme for the density, it suffices

to use (2.2) in conjunction with a backwards Euler scheme. The difficulty

with the low mach number limit is rather the determination of the velocity.

To obtain an AP method, we must derive a scheme for the original model

in which, to some extent, the limit eq. (2.9) is built in the scheme. For

that purpose, we use the gauge methodology, which is developed in the next

section.

2.2. Gauge decomposition of the momentum field

We introduce the decomposition of qε into a solenoidal field aε and an

irrotational one ∇ϕε:

qε = aε −∇ϕε , ∇ · aε = 0, (2.13)
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Introducing (2.13) into (2.2), we get

∂ta
ε +∇(

qε ⊗ qε

ρε
) +∇P ε = ∇(µσ(uε)) , (2.14)

where P ε is a ’quasi-hydrostatic pressure’ defined by

P ε =
1

ε2
(p(ρε)− p0)− ∂tϕ

ε . (2.15)

The gauge potential can be determined from the mass conservation equation

(2.1): using that ∇ · qε = −∆ϕε where ∆ denotes the Laplacian operator,

we get:

∆ϕε = ∂tρ
ε . (2.16)

On the other hand, the quasi-hydrostatic pressure P ε is obtained by taking

the divergence of (2.14), which gives

−∆P ε = ∇2 : (
qε ⊗ qε

ρε
)−∇2 : (µσ(uε)) . (2.17)

where, for a tensor S we denote by ∇2 : S =
∑

k,l ∂xkxl
Tkl. We assume that

∂nϕ
ε = 0 at the boundary. This implies that ∂nP

ε = n · ∇(µσ(uε)) at the

boundary.

Before inserting the gauge decomposition into the Navier-Stokes equa-

tion, we also transform the mass conservation equation (2.1) into a wave

equation; Indeed, we first take the time derivative of the mass conservation

equation and the divergence of the momentum conservation equation, and

obtain:

∂2t ρ
ε −∇2 : (

qε ⊗ qε

ρε
)−

1

ε2
∆p(ρε) = −∇2 : (µσ(uε)) , (2.18)

This wave equation formulation will be useful for the design of the numerical

scheme, because, in the limit ε→ 0, it reduces to an elliptic equation

∆p(ρ) = 0 , (2.19)

which, with the condition ρ = ρ0 at the boundary, leads to (2.8). Also,

taking the Laplacian term in (2.18) implicit will be easy because ρε will be

computed by solving an elliptic problem.
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Then, we transform the compressible isentropic Navier-Stokes equations

into the following equivalent system:

∂2t ρ
ε −∇2 : (

qε ⊗ qε

ρε
)−

1

ε2
∆p(ρε) = −∇2 : (µσ(uε)) , (2.20)

∆ϕε = ∂tρ
ε , (2.21)

∆P ε = −∇2 : (
qε ⊗ qε

ρε
) +∇2 : (µσ(uε)) , (2.22)

∂ta
ε +∇(

qε ⊗ qε

ρε
) +∇P ε = ∇(µσ(uε)) , (2.23)

qε = aε −∇ϕε . (2.24)

Eqs (2.20) to (2.24) have been put in chronological order in an one time-

step computation cycle: we first update ρε using (2.20). Then we compute

ϕε and P ε by solving the elliptic equations (2.21) and (2.22). From P ε, we

can update aε with (2.23). Then, we reconstruct a new momentum qε thanks

to (2.24).

We first check that formulation (2.20)-(2.24) is equivalent to the initial

one (2.1), (2.2), provided that ∇ · aε|t=0 = 0. First, taking the divergence

of (2.23) and using (2.22), we obtain that ∂t(∇ · aε) = 0, which, with the

assumption that the divergence is zero initially, implies that ∇ · aε = 0 for

all times. Then, taking the divergence of (2.24) and using (2.21) leads to the

mass conservation equation (2.1). Next, combining (2.20) and (2.22) with

the time derivative of (2.21) leads to

∆

(

∂tϕ
ε −

1

ε2
(p(ρε)− p0) + P ε

)

= 0.

Note that the addition of p0 is possible since it is a constant. By the choice

of the boundary conditions on ϕε and P ε, the quantity inside the Laplacian

is zero on the boundary. We deduce that it is identically zero, and we recover

(2.15). Then, (2.15) inserted into (2.23) with (2.24) leads to the momentum

conservation equation (2.2).

Now, we check that the low-Mach number limit problem is imbedded

into formulation (2.20)-(2.24). More precisely, this formulation corresponds

to a micro-macro decomposition of the problem, where ’microscopic’ refers

to the compressible Navier-Stokes equations while ’macroscopic’ refers to
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the incompressible one. We develop the micro-macro formalism in the next

section.

2.3. The gauge method viewed as a ’macro-micro’ decomposition

We define ρε1 and ϕε
1 by

ρε = ρ0 + ε2ρε1 , ϕε = ε2ϕε
1 . (2.25)

Then

qε = aε − ε2∇ϕε
1 . (2.26)

The pair (ρ0, a
ε) corresponds to the macro-field (or, in the dynamical systems

terminology, the ’slow variables’), whereas (ρε1,−∇ϕε
1) corresponds to the

micro-field or fast variables. The state of the system i.e., the pair (density,

momentum) is constructed as the sum of the macro and macro field. The

micro field is of order ε2 if the macro field is of order 1.

We introduce the scalar pε1, the tensor Πε
1 and the vectors uε0 and uε1

according to

p(ρε) = p0 + ε2pε1,
qε ⊗ qε

ρε
=
aε ⊗ aε

ρ0
+ ε2Πε

1, (2.27)

uε = uε0 + ε2uε1, uε0 =
aε

ρ0
. (2.28)

All quantities with index ’1’ are O(1) and, due to the prefactor ε2, the

corresponding terms in the expansions are O(ε2). In (2.27), (2.28), the

leading order terms only depend on the macro variables, while the O(ε2)

terms depend on both the macro and the micro variables:

pε1 = pε1(ρ0; ρ
ε
1), Πε

1 = Πε
1(ρ0, a

ε; ρε1, ϕ
ε
1), uε1 = uε1(ρ0, a

ε; ρε1, ϕ
ε
1).

We insist on the fact that eqs. (2.27), (2.28) are exact and not approxima-

tions. They are the relations defining the index ’1’ quantities .

Now, eq. (2.23) can be written as

∂ta
ε +∇(

aε ⊗ aε

ρ0
) +∇P ε −∇(µσ(uε0)) = ε2[−∇Πε

1 +∇(µσ(uε1))] , (2.29)

∇ · aε = 0 . (2.30)
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If the order O(ε2) terms at the right-hand side of (2.26) and (2.29) are

omitted, we find the low Mach number equations (2.9), (2.11). Now, the

right-hand side of (2.29) depends on the micro variables (ρε1, ϕ
ε
1) via eqs.

(2.20), (2.21). More precisely, (ρε1, ϕ
ε
1) are solutions of

−∆pε1 −∇2 : (
aε ⊗ aε

ρ0
) +∇2 : (µσ(uε0))

= ε2[−∂2t ρ
ε
1 +Πε

1 −∇2 : (µσ(uε1))] , (2.31)

−∆ϕε
1 = −∂tρ

ε
1 . (2.32)

We note from (2.32) that ϕε
1 is actually an O(1) quantity, which was not

completely obvious from the scaling (2.25).

This remark a posteriori justifies all previous considerations about the

magnitude of the various terms. Now, when ε → 0 in (2.26), (2.31), we

deduce that

∆(pε1 − P ε) → 0.

Since both pε1 and P ε vanish at the boundary, we deduce that

pε1 − P ε → 0

and that pε1 → P , the hydrostatic pressure. This is a known fact about

the low-Mach number limit, that the first-order perturbation of the pressure

to the constant pressure converges to the hydrostatic pressure as the Mach

number goes to zero. As a by-product of (2.27), we obtain that p(ρε) → p0,

which implies that ρε → ρ0.

To summarize, the pair (ρ0, a
ε) is the macro-field and eqs. (2.22), (2.23)

provide the evolution of this macro-field. When ε is finite, this evolution

depends (at the order O(ε2)) on the micro variables (ρε1, ϕ
ε
1) which are de-

termined by eqs. (2.20), (2.21). Therefore, system (2.20)-(2.24) provides a

micro-macro decomposition, which will be the starting point of our numeri-

cal methodology. Again, we point out that these equations are exact and not

approximations of the original problem. In particular, they are equivalent

to the original problem whatever the value of ε, be it small or not.

Now, we propose an Asymptotic-Preserving time-discretization of sys-

tem (2.20)-(2.24). Indeed, in designing AP-schemes, the crucial issue is that

of the time-discretization. Once a proper time-discretization is defined, the
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question of the space-discretization is a technical one. In particular, for hy-

perbolic systems, it can be any standard shock capturing method [30]. The

issue of spatial discretization is outside the scope of the present work.

2.4. Asymptotic-Preserving time-discretization of the gauge for-

mulation

The key point is an implicit time-discretization of eq. (2.20) which, in

the limit ε → 0, leads to an approximation of the Lapace equation (2.19).

Let ∆t be the time-step. For any time dependent quantity f(t), an approxi-

mation at time tm = m∆t is defined by fm. Then, we propose the following

time-discretization of system (2.20)-(2.24):

1

∆t2
(ρε,m+1 − 2ρε,m + ρε,m−1)−∇2 : (

qε,m ⊗ qε,m

ρε,m
)−

1

ε2
∆p(ρε,m+1)

= −∇2 : (µσ(uε,m)) , (2.33)

∆ϕε,m+1 =
1

∆t
(ρε,m+1 − ρε,m) , (2.34)

∆P ε,m+1 = −∇2 : (
qε,m ⊗ qε,m

ρε,m
) +∇2 : (µσ(uε,m)) , (2.35)

1

∆t
(aε,m+1 − aε,m) +∇(

qε,m ⊗ qε,m

ρε,m
) +∇P ε,m+1 = ∇(µσ(uε,m)) , (2.36)

qε,m+1 = aε,m+1 −∇ϕε,m+1 . (2.37)

We make a few comments about this discretization procedure. First,

we notice that (2.33) can be obtained from the following semi-implicit dis-

cretization of the original formulation (2.1), (2.2):

1

∆t
(ρε,m+1 − ρε,m) +∇ · qε,m+1 = 0 , (2.38)

1

∆t
(qε,m+1 − qε,m) +∇(

qε,m ⊗ qε,m

ρε,m
) +

1

ε2
∇p(ρε,m+1) = ∇(µσ(uε,m)) .(2.39)

Indeed, taking the time difference of eq. (2.38) at steps m + 1 and m and

combining it with the divergence of (2.39) leads to (2.33). Then, (2.35) for

P ε,m+1 follows from the application of the constraint ∇·aε,m+1 = 0 to (2.36).

Similarly, (2.34) follows from the insertion of the decomposition (2.37) into

(2.38). Therefore, we find that the scheme (2.33)-(2.37) is a mere application

of the gauge decomposition to the conservative semi-implicit scheme (2.38),

(2.39).
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We now show that, in the limit ε → 0, this scheme gives a consistent

approximation of the Low-Mach number equations (2.8), (2.9), (2.11). We

drop the exponent ε to indicate that we have taken the limit. We proceed

by induction and suppose that at time step m, we already have proven that

ρm = ρ0 and ϕm = 0. The latter implies that qm = am and consequently

that ∇ · am = ∇ · qm = 0. First, the limit ε→ 0 in (2.33) gives

∆p(ρm+1) = 0, (2.40)

which, with the condition ρ = ρ0 at the boundary gives ρm+1 = ρ0. Then,

the limit ε→ 0 in (2.34) leads to

−∆ϕm+1 = 0 . (2.41)

Again, with the condition ∂nϕ
m+1 = 0 at the boundary, we get ϕm+1 = 0.

Then, we deduce from (2.37) that qm+1 = am+1. Eqs. (2.35) and (2.36) are

formally unchanged in the limit ε → 0 but eq. (2.35) inserted into (2.36)

ensures that ∇ · am+1 = ∇ · am = 0. Eq. (2.36) then appears as a time

discretization of the Low-Mach number eq. (2.9).

Compared to a straightforward explicit discretization of (2.1), (2.2),

the computation of one time step using (2.33), (2.37) involves considerably

more computational work. Indeed, it requires the inversion of three elliptic

equations: eq. (2.33) for finding ρε,m+1, eq. (2.34) for ϕε,m+1 and eq.

(2.35) for P ε,m+1. Additionally, eq. (2.33) is nonlinear and requires inner

iterations. This is the price to pay for a scheme whose time step does not

collapse to zero as ε → 0. One way to make it more efficient is to use the

upscaling technique which was designed in [16] for the coupling of Boltzmann

and Euler models. This technique allows to switch from a standard scheme

when the Mach number is of order unity or large to this AP scheme when

the Mach number has values significantly below unity. The development of

such a strategy will be the subject of future work.

An important remark is about the conservativity of the scheme when ε

is finite. Indeed, when ε is finite, discontinuous solutions in the form of shock

waves can appear. The use of non-conservative variables, i.e., variables other

than the mass and momentum densities, may lead to incorrect shock speeds.

Here, the scheme uses the conservative variables and is not subject to this

problem. However, a question remains about whether the various transfor-

mations used to pass from the classical formulation (2.1), (2.2) to the gauge

formulation (2.20)-(2.24) will not alter this property. In fact, the best way
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of having the final scheme (with time and space both discrete) satisfy the

conservation property is to derive it from a usual shock capturing methodol-

ogy (such as a Godunov or a Roe scheme). To this aim, one must start from

the semi-implicit discretization (2.38), (2.39) of the original fomulation (2.1),

(2.2) and reproduce the same computations as those used in the derivation

of the gauge formulation of the continuous model. Indeed, we have seen that

in the time-semi discrete case, the scheme (2.33)-(2.37) is a mere application

of the gauge decomposition to the conservative semi-implicit scheme (2.38),

(2.39). Using the same methodology for a fully discrete scheme will produce

a gauge decomposed version of a fully conservative scheme. The resulting

scheme will therefore produce the correct shock speeds. We shall not pursue

this direction however and refer to future works for the details. Instead, we

would like to show how the methodology can be extended to more complex

models. In the Section 3, we will discuss the case of the full Navier-Stokes

equations.

Finally, we note that a variant to the second order (in time) formulation

(2.33) can be found, within the framework of a first order (in time) formu-

lation. Indeed, we can merely eliminate qε,m+1 from (2.38) using (2.39) and

get

1

∆t
(ρε,m+1 − ρε,m) +∇ · qε,m

+∆t

{

∇2 : (
qε,m ⊗ qε,m

ρε,m
) +

1

ε2
∆p(ρε,m+1)−∇2 : (µσ(uε,m))

}

= 0. (2.42)

This also leads to an elliptic equation for ρε,m+1.

Also,another observation is that the nonlinearity in the elliptic operator

can be linearized by using the approximation:

∆p(ρε,m+1) ≈ ∇ · (p′(ρε,m)∇ρε,m+1),

without altering the AP character of the scheme.

3. Full Compressible Navier-Stokes Equations

3.1. The model and the low Mach number limit

In this section, we consider the full compressible Navier-Stokes equations

∂tρ
ε +∇ · qε = 0 , (3.1)
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∂tq
ε +∇(

qε ⊗ qε

ρε
) +

1

ε2
∇pε = ∇(µεσ(uε)) , (3.2)

∂tW
ε +∇ · ((W ε + pε)uε) = ε2∇ · (µεσ(uε)uε) + ε2∇ · (κε∇T ε) , (3.3)

W ε =
1

2
ε2ρε|uε|2 + eε, eε =

1

γ − 1
pε, pε = ρεT ε. (3.4)

The functions ρε, qε, pε and uε, having the same meaning as in the previous

section, are respectively the mass density, momentum density, pressure and

velocity. In addition, we also have the total energy density W ε, the internal

energy density eε and the temperature T ε. The viscosity µε and the heat

conductivity κε are generally functions of ρε and T ε, and are indexed by

ε. γ is the ratio of specific heats and is a given constant, equal to 5/3 for

a perfect gas. Again, ε is a measure of the Mach number, the ratio of the

typical velocity of the fluid to the typical velocity of sound.

We justify this scaling by going back to the physical variables. In addi-

tion to eqs (2.3), (2.4) (where p̄ is now a function of ρ̄ and T̄ ), we have

∂t̄W̄ +∇x̄ · ((W̄ + p̄)ū) = ∇x̄ · (µ̄σ̄(ū)ū) +∇x̄ · (κ̄∇x̄T̄ ) , (3.5)

W̄ =
1

2
ρ̄|ū|2 + ē, ē =

1

γ − 1
p̄, p̄ = ρ̄

kBT̄

m
, (3.6)

where kB is the Boltzmann constant and m is the particle mass. We in-

troduce an additional set of scaling units W0, e0 and T0 for the total and

internal energies and the temperature respectively and link them by the

natural relations W0 = e0 = p0 = ρ0kBT0/m. Then, after passage to the

dimensionless variables, (3.5), (3.6) lead to (3.4) and to

∂tW +∇ · ((W + p)u) = ε2∇ · (µσ(u)u) +
κ0T0
p0x0u0

∇ · (κ∇T ) . (3.7)

The dimensionless parameter κ0T0

p0x0u0
measures the ratio of the heat diffusion

term compared to the energy transport term. We suppose that this ratio is

of order ε2, i.e., that in the limit ε → 0, we obtain pure transport of the

energy. We note that the term corresponding to the work of the viscosity

force (the first term at the right-hand side) is of order ε2 with the chosen

scaling of the momentum equation.

To find the low Mach number limit, we expand pε = p + ε2P + o(ε2).

At leading order in ε, eq. (3.2) leads to

∇p = 0 , (3.8)
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which implies that

p = ρT = p0 , (3.9)

where p0 is a constant which is independent of space and which we also

take independent of time for simplicity. Therefore, ρ and T are now linked

together. At the next order in ε, eq. (3.2) leads to

∂tq +∇(
q ⊗ q

ρ
) +∇P = ∇(µσ(u)) , (3.10)

and P is the hydrostatic pressure.

Next, we need to find the constraint which allows to compute P . For

that purpose, we use a classical procedure to rewrite the energy equation

(3.3) into an equation for the pressure pε. Of course, this manipulation is

only valid for smooth solutions but in the limit ε → 0, we do not expect

shocks to appear. This equation is written as follows:

1

γ − 1
(∂tp

ε + uε · ∇pε) +
γ

γ − 1
pε(∇ · uε)

= ε2
µε

2
|σ(uε)|2 + ε2∇ · (κε∇T ε) , (3.11)

where for a tensor A, we denote by |A|2 = A : A, the contracted product

of A with itself. Letting ε → 0 and using that p0 is a constant in time and

space, we find

∇ · u = 0 , (3.12)

Finally, because of (3.12), the mass conservation eq. (3.1) can be written as

a transport equation at the limit:

∂tρ+ u · ∇ρ = 0 . (3.13)

The incompressible model consists of eqs. (3.9), (3.10), (3.12) and (3.13).

The momentum equation (3.10) is equivalent to

ρ(∂tu+ (u · ∇)u) +∇P = ∇(µσ(u)) . (3.14)

But, because ρ is no more constant in space, the equation for the hydrostatic
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pressure P is more complicated than in the isentropic case and is given by:

−∇ ·

(

1

ρ
∇P

)

= ∇ ·

(

1

ρ
(u · ∇)u

)

−∇ ·

(

1

ρ
∇(µσ(u))

)

. (3.15)

Finally, the energy has the following expansion

W ε =
p0

γ − 1
+ ε2(

1

2
ρ|u|2 + P ) + o(ε2) . (3.16)

3.2. Gauge decomposition of the momentum field

The gauge decomposition of qε is modified as compared with the isen-

tropic case, to take into account the fact that now the leading order density

is no more a constant. We introduce a pseudo-solenoidal field aε and an

irrotational one ∇ϕε according to

qε = aε −∇ϕε , ∇ ·

(

aε

ρε

)

= 0, (3.17)

Introducing (3.17) into (3.2), we get

∂ta
ε +∇(

qε ⊗ qε

ρε
) +∇P ε = ∇(µεσ(uε)) , (3.18)

where P ε is a ’quasi-hydrostatic pressure’ defined by

P ε =
1

ε2
(pε − p0)− ∂tϕ

ε . (3.19)

The mass conservation equation (3.1) is no longer useful to compute ϕε

and will actually determine ρε. We shall see below how to determine ϕε. In

doing so, we need to transform ∇· ( 1
ρε
∂ta

ε). First, using the second equation

of (3.17) and the mass conservation equation (3.1) in the following way:

∇ ·

(

1

ρε
∂ta

ε

)

= −∇ ·

(

aε∂t

(

1

ρε

))

. (3.20)

We do not develop the time derivative of 1/ρε using the mass conservation

equation (3.1) because 1/ρε is not a conservative variable and the result-

ing equation would not be valid for discontinuous solutions. The quasi-

hydrostatic pressure P ε is obtained by multiplying 1/ρε to the momentum
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equation (2.14), and then taking the divergence by using 3.20 to get

−∇ ·

(

1

ρε
∇P ε

)

= −∇ ·

(

aε∂t

(

1

ρε

))

+∇ ·

(

1

ρε
∇(

qε ⊗ qε

ρε
)

)

−∇ ·

(

1

ρε
∇(µεσ(uε))

)

. (3.21)

We still assume that ∂nϕ
ε = 0 at the boundary and with (3.19), this implies

that P ε = µn ·∆uε + µ
3∂n(∇ · uε) at the boundary.

Like in the case of the isentropic model, we need to find a second or-

der formulation which reduces the low Mach number limit problem to an

elliptic problem. But, by contrast to the isentropic case, this second order

formulation involves the energy and not the mass density.

Taking the time derivative of the energy equation (3.3), we obtain

∂2ttW
ε +∇ · (hε ∂tq

ε) +∇ · (∂th
εqε)

= ε2∇ · (∂t(µ
εσ(uε)uε)) + ε2∇ · (∂t(κ

ε∇T ε)) , (3.22)

where we have defined the enthalpy

hε =
W ε + pε

ρε
. (3.23)

On the other hand, using the momentum equation (3.2) to eliminate the

time derivative of qε in (3.22) and using (3.4) to express the pressure in

terms of the total energy, we get:

∂2ttW
ε −

γ − 1

ε2
∇ · (hε∇W ε) +

γ − 1

2
∇ ·

(

hε∇(ρε|uε|2)
)

−∇ ·

(

hε ∇(
qε ⊗ qε

ρε
)

)

+∇ · (∂th
ε qε) +∇ · (hε∇(µεσ(uε)))

= ε2 [∇ · (∂t(µ
εσ(uε)uε)) +∇ · (∂t(κ

ε∇T ε))] . (3.24)

Incidentally, we check that the limit of (3.24) when ε → 0 leads to a

constant pressure, as it should in the Low-Mach number limit. Indeed, in

the limit ε → 0, we formally find that W = p/(γ − 1) from (3.4), and

h = γp
(γ−1)ρ satisfy:

−(γ − 1)∇ · (h∇W ) = −γ∇ ·

(

p

ρ
∇p

)

= 0 . (3.25)
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Assuming that p = p0 at the boundary where p0 is uniform in space along

the boundary and constant in time (for convenience), the solution of this

equation is

p = p0 . (3.26)

Indeed, since p0 is a constant, it is a solution (even if ρ is not a constant)

and since the elliptic problem is well-posed, it is the unique one. Therefore,

(3.24) gives the right Low-Mach number limit for the energy.

Now, to find ϕε, we use the original, first-order formulation of the energy

eq. (3.3), which we rewrite:

∂tW
ε +∇ · (hε(aε −∇ϕε)) = ε2∇ · (µεσ(uε)uε) + ε2∇ · (κε∇T ε). (3.27)

Knowing W ε, this equation can be recast into an equation for ϕε:

−∇·(hε∇ϕε)=−∂tW
ε−∇·(hεaε)+ε2∇·(µεσ(uε)uε)+ε2∇·(κε∇T ε). (3.28)

To summarize, the full-Navier-Stokes problem is formally equivalent to

the following gauge formulation:

∂2tW
ε −

γ − 1

ε2
∇ · (hε∇W ε) +

γ − 1

2
∇ ·

(

hε ∇(ρε|uε|2)
)

−∇ ·

(

hε ∇(
qε ⊗ qε

ρε
)

)

+∇ · (∂th
ε qε) +∇ · (hε∇(µεσ(uε)))

= ε2 [∇ · (∂t(µ
εσ(uε)uε)) +∇ · (∂t(κ

ε∇T ε))] , (3.29)

∂tρ
ε +∇ · qε = 0 , (3.30)

−∇ ·

(

1

ρε
∇P ε

)

= −∇ ·

(

aε∂t

(

1

ρε

))

+∇ ·

(

1

ρε
∇(

qε ⊗ qε

ρε
)

)

−∇ ·

(

1

ρε
∇(µεσ(uε))

)

, (3.31)

∂ta
ε +∇(

qε ⊗ qε

ρε
) +∇P ε = ∇(µεσ(uε)) , (3.32)

−∇ · (hε∇ϕε) = −∂tW
ε−∇ · (hεaε)+ε2∇ · (µεσ(uε)uε)

+ε2∇ · (κε∇T ε), (3.33)

qε = aε −∇ϕε . (3.34)

Again, we have listed these equations in the natural order of a time-step
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loop, as we will see later on.

3.3. The gauge method viewed as a ‘macro-micro’ decomposition

Again, we introduce the following definitions: we define the macro-scale

density ρε0 as the solution of

∂tρ
ε
0 +∇ · aε = 0 . (3.35)

The quantitiy W0 = p0/(γ − 1) is the macro-scale energy, and is a constant.

The macro-scale velocity uε0 and temperature T ε
0 are defined by uε0 = aε/ρε0,

T ε
0 = p0/ρ

ε
0.

We now define a set of micro-scale quantities. First, let

ϕε = ε2ϕε
1 . (3.36)

We shall see below why ϕε is actually an O(ε2) quantity, which justifies

defining ϕε
1 this way. Then, of course, the relation

qε = aε − ε2∇ϕε
1 (3.37)

defines a macro-micro decomposition of qε.

Similarly, we define the micro-components of the pressure pε1, density

ρε1, energy W
ε
1 , temperature T ε

1 , velocity u
ε
1, according to

pε = pε0 + ε2∇pε1, ρε = ρε0 + ε2∇ρε1, etc. . (3.38)

Here

W ε
1 =

1

2
ρε|uε|2 +

1

γ − 1
pε1 . (3.39)

We also introduce the decompositions of the enthalpy hε and of the specific

volume τ ε = 1/ρε:

hε = hε0 + ε2hε1, hε0 =
W0 + p0
ρε0

=
γ

γ − 1

p0
ρε0
, (3.40)

τ ε = τ ε0 + ε2τ ε1 , τ ε0 =
1

ρε0
. (3.41)

Finally, we introduce auxiliary expansion terms, such as the tensors Πε
1 and
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(µσ(u))ε1 defined by:

qε ⊗ qε

ρε
=
aε ⊗ aε

ρε0
+ ε2Πε

1,

µεσ(uε) = µε0σ(u
ε
0) + ε2(µσ(u))ε1, (3.42)

µε0 = µ(ρε0, T
ε
0 ) .

The independent (conservative) variable being the mass, momentum

and energy densities written as a single vector U ε = (ρε, qε,W ε), the macro-

scopic field is given by U ε
0 = (ρε0, a

ε,W0) and the microscopic one is U ε
1 =

(ρε1,−∇ϕε
1,W

ε
1 ). Obviously, U ε = U ε

0 + ε2U ε
1 and this relation is exact and

not an approximation.

Now, we show that formulation (3.29)-(3.30) can be put in a form such

that the dependence of the macroscopic variables on the microscopic ones

only appear in O(ε2). Indeed, one can easily write the momentum conser-

vation equations together with the definition (3.35) as

∂ta
ε +∇(

aε ⊗ aε

ρε0
) +∇P ε −∇(µε0σ(u

ε
0)) = ε2 [−∇Πε

1 −∇(µσ(u))ε1] , (3.43)

∇ ·

(

aε

ρε0

)

= −ε2∇ · (aετ ε1 ) , (3.44)

∂tρ
ε
0 +∇ · aε = 0 . (3.45)

Eq. (3.44) is nothing but the constraint (3.17) in which the decomposition

of (3.41) has been used. We recall that the constraint (3.17) is easily de-

duced from (3.31) as soon as the constraint is satisfied initially. Now, we see

that the macroscopic variables evolve according to equations in which the

microscopic variables only enter the O(ε2) terms.

Now, we turn to the microscopic variables equations and begin with ϕε
1.

Noting that

∇ · (hε aε) =
γp0
γ − 1

∇ ·

(

aε

ρε0

)

+ ε2∇ · (hε1 a
ε)

= −ε2
γp0
γ − 1

∇ · (τ ε1a
ε) + ε2∇ · (hε1 a

ε) , (3.46)

by using (3.44). Inserting the definitions of the macro and micro variables
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into eq. (3.33) yields

−∇ · (hε∇ϕε
1) = −∂tW

ε
1 −

γp0
γ − 1

∇ · (τ ε1a
ε)−∇ · (hε1 a

ε)

+∇ · (µεσ(uε)uε) +∇ · (κε∇T ε) . (3.47)

The equation for ρε1 is deduced from (3.30), (3.45) and the decompositions

(3.37), (3.38) and is given by

∂tρ
ε
1 −∆ϕε

1 = 0 . (3.48)

Then, the equation for W ε
1 follows from (3.29), which can be written equiv-

alently as

∂2tW
ε −

1

ε2
∇ · (hε∇pε)−∇ ·

(

hε∇(
qε ⊗ qε

ρε
)

)

+∇ · (∂th
εqε)

+∇ · (hε∇(µεσ(uε)))

= ε2 [∇ · (∂t(µ
εσ(uε)uε)) +∇ · (∂t(κ

ε∇T ε))] , (3.49)

Inserting the decomposition (3.38) as well as (3.40), (3.43), we find that eq.

(3.49) is equivalent to:

−∇ · (hε∇pε1)−∇ ·

(

hε∇(
qε ⊗ qε

ρε
)

)

+∇ · (∂th
ε qε) +∇ · (hε∇(µεσ(uε)))

= ε2
[

−∂2tW
ε
1 +∇ · (∂t(µ

εσ(uε)uε)) +∇ · (∂t(κ
ε∇T ε))

]

, (3.50)

and gives an equation for pε1. Then, W
ε
1 is deduced through (3.39).

To summarize, the macroscopic equations (equations for the macroscopic

variables U ε
0 = (ρε0, a

ε,W0)) are (3.43), (3.44) and (3.45) (remember, W0 is

a constant and is given by the boundary conditions), while the microscopic

equations (equations for the microscopic variables U ε
1 = (ρε1,−∇ϕε

1,W
ε
1 )) are

(3.47), (3.48) and (3.50). From these considerations, the low Mach number

limit is obvious. First we see that the equations for the microscopic variables

involve terms of order 1 or order ε2 but no term of order ε−2. Consequently,

the microscopic variables stay bounded as ε → 0. Consequently, in the

limit ε → 0, it is legitimate to merely drop the order O(ε2) terms in the

macroscopic equations (3.43), (3.44) and (3.45), which leads to the Low-

Mach number limit system.
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It is interesting to investigate the limit of pε1 when ε → 0. To this aim,

we further transform eq. (3.50) by using (3.40) and (3.37) and we find

−∇ ·

(

1

ρε
∇pε1

)

−∇ ·

(

1

ρε
∇(

qε ⊗ qε

ρε
)

)

+∇ ·

(

∂t

(

1

ρε

)

aε
)

+∇ ·

(

1

ρε
∇(µεσ(uε))

)

= O(ε2), (3.51)

Comparing with (3.31), we find that:

−∇ ·

(

1

ρε
∇(pε1 − P ε)

)

= O(ε2), (3.52)

which shows that

P ε = pε1 +O(ε2). (3.53)

Therefore, the quasi-hydrostatic pressure is, with an error of order O(ε2),

equal to the first order corrector of the fluid pressure. But where no simple

elliptic equation for the pressure corrector is found, a nice elliptic equation

for the quasi-hydrostatic pressure exists. An additional remark is that, since

P ε → P as ε → 0, we similarly have pε1 → P . This is again a known fact

that the pressure corrector converges to the hydrostatic pressure in the low

Mach number limit.

For practical applications and in particular, for numerical discretiza-

tions, it is preferable to use the set of equations (3.29)-(3.30) which is more

compact. In the next section, we propose an Asymptotic-Preserving time-

discretization of system (3.29)-(3.30). Again, we will only focus on the time-

discretization.

3.4. Asymptotic-Preserving time-discretization of the gauge for-

mulation

Following the same ideas as in Section 2.4, we propose the following

scheme:

1

∆t2
(W ε,m+1 − 2W ε,m +W ε,m−1)−

γ − 1

ε2
∇ ·

(

hε,m∇W ε,m+1
)

+
γ − 1

2
∇ ·

(

hε,m∇(ρε,m|uε,m|2)
)

−∇ ·

(

hε,m∇(
qε,m ⊗ qε,m

ρε,m
)

)
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+∇ ·

(

1

∆t
(hε,m − hε,m−1) qε,m

)

+∇ · (hε,m∇(µε,mσ(uε,m)))

= ε2
[

∇ · (
1

∆t
(µε,mσ(uε,m)uε,m − µε,m−1σ(uε,m−1)uε,m−1))

+∇ · (
1

∆t
(κε,m∇T ε,m − κε,m−1∇T ε,m−1))

]

, (3.54)

1

∆t
(ρε,m+1 − ρε,m) +∇ · qε,m = 0 , (3.55)

−∇ ·

(

1

ρε,m+1
∇P ε,m+1

)

= −∇ ·

(

aε,m
1

∆t

(

1

ρε,m+1
−

1

ρε,m

))

+∇ ·

(

1

ρε,m+1
∇(

qε,m ⊗ qε,m

ρε,m
)

)

−∇ ·

(

1

ρε,m+1
∇(µε,mσ(uε,m))

)

, (3.56)

1

∆t
(aε,m+1 − aε,m) +∇(

qε,m ⊗ qε,m

ρε,m
)+∇P ε,m+1 = ∇(µε,mσ(uε,m)), (3.57)

−∇ ·
(

hε,m∇ϕε,m+1
)

= −
1

∆t
(W ε,m+1 −W ε,m)−∇ ·

(

hε,m aε,m+1
)

+ε2∇ · (µε,mσ(uε,m)uε,m) + ε2∇ · (κε,m∇T ε,m), (3.58)

qε,m+1 = aε,m+1 −∇ϕε,m+1 . (3.59)

We have note hε,m = (W ε,m + pε,m)/ρε,m.

Now, we make some comments about this scheme. First, (3.54) can

be deduced from the following scheme for the first order formulation of the

momentum and energy equations (the mass equation scheme (3.55) is already

of the time discretization of the first order equation (3.1)):

1

∆t
(qε,m+1 − qε,m) +∇(

qε,m ⊗ qε,m

ρε,m
) +

γ − 1

ε2
∇W ε,m+1

−
γ − 1

2
∇(ρε,m|uε,m|2) = ∇(µε,mσ(uε,m)) , (3.60)

1

∆t
(W ε,m+1 −W ε,m) +∇ · (hε,mqε,m+1)

= ε2∇ · (µε,mσ(uε,m)uε,m) + ε2∇ · (κε,m∇T ε,m) . (3.61)

Indeed, taking the difference of (3.61) at time m + 1 and at time m and

combining with the divergence of (3.60) leads to (3.54). We see that this

scheme is based on taking the energy flux implicit by taking the momentum

implicit and the enthalpy explicit, on the one hand, and implicit the part

of the momentum flux which corresponds to the gradient of the energy on

the other hand. As in the isentropic case, this scheme is based on taking an
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appropriate selection of flux terms implicitly. By contrast to the isentropic

case, the mass flux term is taken explicitly in (3.1).

Next, we easily see that (3.56) follows from applying the constraint

∇ · aε,m+1/ρε,m+1 = 0 to (3.57). Finally, (3.58) is obtained by inserting the

decomposition (3.59) into the first order formulation (3.61). Therefore, the

whole scheme is based on a gauge decomposition of the semi-implicit scheme

(3.55), (3.60), (3.61).

Now, we show that, in the limit ε → 0, this scheme gives a consistent

approximation of the low Mach number equations (3.9), (3.10), (3.12), (3.13).

We drop the exponent ε to indicate that we have taken the limit. We proceed

by induction and suppose that at time step m, we already have proven that

Wm = p0/(γ − 1) and ϕm = 0. The latter implies that qm = am and

consequently that ∇ · (am/ρm) = ∇ · (qm/ρm) = 0.

First, let ε→ 0 in (3.54) and find

γp0∇ ·

(

1

ρ
∇Wm+1

)

= 0 . (3.62)

Since Wm+1 = p0/(γ − 1) at the boundary and that p0 is uniform along

the boundary and constant in time, we deduce that Wm+1 = p0/(γ − 1)

everywhere. Indeed, beeing a constant, this function satisfies both eq. (3.62)

inside the domain and the boundary condition. Similarly, the limit ε→ 0 in

(3.58) leads to:

−
γp0
γ − 1

∇ ·

(

1

ρ
∇ϕm+1

)

= 0 . (3.63)

Since ∂nϕ
m+1 = 0 along the boundary, we have ϕm+1 = 0 everywhere.

Then, qm+1 = am+1 and eq. (3.56) is just equivalent to saying that ∇ ·

(am+1/ρm+1) = 0, as soon as ∇· (am/ρm) = 0 which is the case by induction

hypothesis. Therefore, the scheme (3.54)-(3.59) reduces to the only equa-

tions (3.55), (3.56) and (3.57) with qε,m ≡ aε,m for all m, and is obviouslyl

consistent with the Low-Mach number model when ε→ 0.

About the numerical cost of this scheme, the same remarks as in the

isentropic case can be made. The computational cost involves the inversion

of three elliptic operators: one in (3.54) for finding W ε,m+1, one in (3.56)

for finding P ε,m+1 and one in (3.58) for finding ϕε,m+1. By contrast to the

isentropic case, the diffusion coefficients of these elliptic operators change

in the course of time. However, two of the three operators have the same
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diffusion coefficient hε,m and the third diffusion coefficient is ρε,m, which,

when ε ≪ 1, is nearly proportional to hε,m. Beside the inversion of these

three elliptic operators, this scheme leads to explicit computations, since

the various unknowns can be computed recursively, following the order of

exposition of the equations in (3.54)-(3.59). This is a big advantage over

other implicit approaches leading to more complex nonlinear iterations.

Finally, we remark that, like in the isentropic case, the conservativity of

the scheme is enforced by the use of the conservative variables (ρε, qε,W ε)

and the use of the conservative scheme (3.60), (3.61). To be more specific

about this point, one needs to use a shock capturing based discretization.

The investigation of the space discretization will be the subject to future

work.

Also, like in the isentropic case, the second order (in time) formulation

(3.54) can be replaced by a first order formulation by eliminating qε,m+1

from (3.61) using (3.60). We leave this computation to the reader.

In the next section, we investigate another example of this methodology,

the isentropic Navier-Stokes-Poisson system.

4. Isentropic Navier-Stokes-Poisson System

4.1. The model and the small Mach number / Debye length limits

The isentropic Navier-Stokes-Poisson system is written:

∂tρ
ε,λ +∇ · qε,λ = 0 , (4.1)

∂tq
ε,λ +∇(

qε,λ ⊗ qε,λ

ρε,λ
) +

1

ε2
∇p(ρε,λ) = −

1

ε2
ρε,λ∇φε,λ +∇(µσ(uε,λ)) , (4.2)

−λ2∆φε,λ = ρε,λ − ρB , (4.3)

where φε,λ(x, t) is the potential energy, ρB(x, t) ≥ 0 is a given non-negative

neutralizing background density and λ2 is a dimensionless parameter rep-

resenting the square of the ratio of the Debye length to the characteristic

length. For instance, the considered species are electrons, the dimensionless

electric potential is −φε,λ and the neutralizing species are positive ions.

The scaling of this system repeats many of the considerations of Section

2.1 and we refer to that section for the notations. The equations in physical
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variables are written

∂t̄ρ̄+∇x̄ · q̄ = 0 , (4.4)

∂t̄q̄ +∇x̄(
q̄ ⊗ q̄

ρ̄
) +∇x̄p̄(ρ̄) = −

ρ̄

m
∇x̄φ̄+∇x̄(µ̄σ̄(ū)) , (4.5)

−∆x̄φ̄ =
q

ǫ0
(
qρ̄

m
−
qbρ̄B
mB

) . (4.6)

where q is the charge of the considered particle species and m is its mass,

while qB and mB are the charge and mass of the neutralizing background

species.

In Section 2.1, we supposed that the scales are related by the relations:

u0 =
x0
t0
, q0 = ρ0u0, ρ0u

2
0/p0 = ε2,

µ0
ρ0u0x0

= 1. (4.7)

Now, we introduce a potential scale φ0. Using Section 2.1, the scaling of

(4.4), (4.5), (4.6) leads to

∂tρ+∇ · q = 0 , (4.8)

∂tq +∇(
q ⊗ q

ρ
) +

1

ε2
∇p(ρ) = −

(

φ0
mu20

)

ρ∇φ+∇(µσ(u)) , (4.9)

−

(

ǫ0φ0m

ρ0q2x20

)

∆φ = ρ− ρB , (4.10)

where ρB = qmB

qBm
ρ̄B. In doing so, we assume that q/qB and mρ̄B/(mBρ0) are

order unity. That q/qB is of order unity is not restrictive in general, because

the charge levels of the ions are generally just a few unities above the electron

charge. Similarly, the ratio mρ̄B/(mBρ0) is close to one in all cases close to

quasineutrality, which encompasses a large number of situations in plasma

physics.

Now, we discuss the values of the two other dimensionless parameters.

We assume that the electric potential energy scale is equal to the thermal

energy scale: φ0 = mp0/ρ0. This implies that

φ0
mu20

=
φ0ρ0
mp0

p0
ρ0u20

=
1

ε2
. (4.11)

The second parameter can be written

ǫ0φ0m

ρ0q2x20
=
ǫ0φ0
n0q2

1

x20
=
λ2D
x20

, (4.12)
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where we have introduced the density scale n0 = ρ0/m and recognized the

definition of the Debye length λD = ǫ0φ0

n0q2
. Setting λ2 =

λ2

D

x2

0

, we find system

(4.1)-(4.3).

In all what follows, we want to derive an Asymptotic Preserving scheme

with respect to both limits ε → 0 and λ → 0. The limit ε → 0 alone was

investigated in a series of papers [11], [12], [17]. These papers deal with the

Euler case but they can be straightforwardly extended to the Navier-Stokes

case.

We now investigate the successive limits ε→ 0 (low Mach number limit)

and λ→ 0 (Quasineutral limit) in both orders.

First case: λ → 0 then ε → 0: When λ → 0 first, we get the following

system:

∂tρB +∇ · qε = 0 , (4.13)

∂tq
ε +∇(

qε ⊗ qε

ρB
) +

1

ε2
∇p(ρB) = −

1

ε2
ρB∇φ

ε +∇(µσ(uε)) , (4.14)

ρε = ρB , (4.15)

In this limit, we find that the particle density ρε is everywhere equal to

the background density ρB. Then, the mass equation (4.13) becomes a

divergence constraint for the momentum qε while φε appears as the Lagrange

multiplier of this constraint.

We note that in the simple case where ρB is a constant, independent of

position and time (say ρB = 1 to make it easier) the model simplifies into

∇ · qε = 0 , (4.16)

∂tq
ε +∇(qε ⊗ qε) = −

1

ε2
∇φε +∇(µσ(uε)) , (4.17)

and we recognize the incompressible Navier-Stokes equation with hydrostatic

pressure P = 1
ε2
φε. It is interesting to note that the rescaling φ̃ε = 1

ε2
φε

makes the model independent of ε and thus it coincides with its limit ε→ 0.

A similar feature holds in the case of a non-constant ρB. To see this,

we introduce the enthalpy function h(ρ) such that h′(ρ) = p′(ρ)/ρ and we

define ψε = 1
ε2
(φε + h(ρB)) Then, the model can be written:

∂tρB +∇ · qε = 0 , (4.18)
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∂tq
ε +∇(

qε ⊗ qε

ρB
) = −ρB∇ψ

ε +∇(µσ(uε)) . (4.19)

This is actually not the incompressible Navier-Stokes equation (with non-

constant density ρB) because of the pressure term replaced by ρB∇ψ
ε. In

some sense, the projection of the momentum equation onto the divergence

free fields is not the same as in the true Navier-Stokes equation but nonethe-

less bears a strong similarity. Like in the constant ρB case, the model does

not depend on ε and coincides with its limit ε→ 0.

The pseudo-pressure term ψε can be computed by taking the divergence

of (4.19) and using (4.18) to eliminate ∇ · qε, which leads to

∇ · (ρB∇ψ
ε) = −∂2t ρB +∇2 : (

qε ⊗ qε

ρB
)−∇(µσ(uε)) , (4.20)

Second case: ε → 0 then λ → 0: To derive the ε → 0 limit, we rewrite

the momentum equation (4.2) using the enthalpy function and get

∂tq
ε,λ +∇(

qε,λ ⊗ qε,λ

ρε,λ
) +

1

ε2
ρε,λ∇(h(ρε,λ) + φε,λ) = ∇(µσ(uε,λ)) , (4.21)

Therefore, when ε→ 0, we get at leading order that

h(ρλ) + φλ = 0 , (4.22)

We assume that ρ → h(ρ) is an increasing function from R+ into R+ and

denote by h−1 its inverse function. Then, ρλ = h−1(−φλ) and the Poisson

equation becomes:

−λ2∆φλ − h−1(−φλ) = −ρB , (4.23)

This is a nonlinear elliptic equation. The nonlinearity −h−1(−φλ) being an

increasing function of φλ, this problem is well-posed, provided appropriate

boundary conditions are given, which we shall leave unspecified here. In the

limit ε → 0, the mass equation (4.1) remains unchanged, but becomes a

constraint for qλ since ρλ is specified by (4.22). To find an equation for qλ,

we look at the next order in ε of the momentum equation (4.2) and we find:

∂tq
λ +∇(

qλ ⊗ qλ

ρλ
) + ρλ∇ψλ = ∇(µσ(uλ)) , (4.24)

where ψλ = limε→0
1
ε2
(h(ρε,λ) + φε,λ).
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To summarize, the low Mach number limit ε→ 0 of the Navier-Stokes-

Poisson system (4.1)-(4.3) is the following system:

∂tρ
λ +∇ · qλ = 0 , (4.25)

∂tq
λ +∇(

qλ ⊗ qλ

ρλ
) + ρλ∇ψλ = ∇(µσ(uλ)) , (4.26)

−λ2∆φλ − h−1(−φλ) = −ρB , (4.27)

ρλ = h−1(−φλ) . (4.28)

Again, we find a kind of incompressible Navier-Stokes system but with an

unusual projection ρλ∇ψλ to the divergence constraint. The divergence con-

straint involves a non-zero right-hand side which is found via the resolution

of a nonlinear elliptic problem.

In the limit λ → 0 of this system, we find the same modified incom-

pressible Navier-Stokes problem (4.18)

∂tρB +∇ · q = 0 , (4.29)

∂tq +∇(
q ⊗ q

ρB
) = −ρB∇ψ +∇(µσ(u)) , (4.30)

ρ = ρB, φ = −h(ρB) . (4.31)

4.2. Gauge methodology

Here, the momentum field already satisfies the right gauge. Indeed, in

either limits λ → 0 or ε → 0 or both, the momentum field satisfies the

constraint given by the mass conservation equation (4.1). Therefore, there

is no need to decompose the momentum field in a gauge satisfying field and a

small remainder, which in the previous cases was a gradient field. However,

we will borrow from the gauge methodology that we shall interpret the mass

equation as a gauge constraint for the momentum equation. More precisely,

we shall write them

∂tρ
ε,λ +∇ · qε,λ = 0 , (4.32)

∂tq
ε,λ +∇(

qε,λ ⊗ qε,λ

ρε,λ
) + ρε,λ∇ψε,λ = ∇(µσ(uε,λ)) (4.33)
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with the gauge pressure defined as

ψε,λ =
1

ε2
(h(ρε,λ) + φε,λ) . (4.34)

Then, if the mass conservation equation is used as a gauge, we need

another equation to find ρε,λ. For this purpose, we derive a wave-equation

formulation of the system by taking the time derivative of (4.1) and the

divergence of (4.2) and subtracting them, and using the following identity,

which follows from Poisson’s equation (4.3):

∇ · (ρε,λ∇φε,λ) = ∇ρε,λ · ∇φε,λ −
1

λ2
ρε,λ(ρε,λ − ρB) , (4.35)

we find

λ2
[

ε2
(

∂2t ρ
ε,λ −∇2 : (

qε,λ ⊗ qε,λ

ρε,λ
) +∇(µσ(uε,λ))

)

−∇ · (ρε,λh′(ρε,λ)∇ρε,λ)−∇ρε,λ · ∇φε,λ
]

+ ρε,λ(ρε,λ − ρB) = 0 ,(4.36)

Then, of course, knowing ψε,λ and ρε,λ, we recover φε,λ thanks to (4.34), i.e.,

φε,λ = −h(ρε,λ) + ε2ψε,λ , (4.37)

To summarize, our gauge method is based on the following formulation:

λ2
[

ε2
(

∂2t ρ
ε,λ −∇2 : (

qε,λ ⊗ qε,λ

ρε,λ
) +∇(µσ(uε,λ))

)

−∇ · (ρε,λh′(ρε,λ)∇ρε,λ)

−∇ρε,λ · ∇φε,λ
]

+ ρε,λ(ρε,λ − ρB) = 0 , (4.38)

∂tρ
ε,λ +∇ · qε,λ = 0 , (4.39)

∂tq
ε,λ +∇(

qε,λ ⊗ qε,λ

ρε,λ
) + ρε,λ∇ψε,λ = ∇(µσ(uε,λ)) . (4.40)

φε,λ = −h(ρε,λ) + ε2ψε,λ , (4.41)

We will not develop the viewpoint of the macro-micro decomposition.

Indeed, there are two parameters, and we should develop such an approach

for each parameter separately, which would be cumbersome. But this is not

very difficult and this point is left to the reader. In the next section, we

propose an Asymptotic Preserving discretization with respect to both limits
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ε→ 0 and λ→ 0.

4.3. Asymptotic-Preserving time-discretization of the gauge for-

mulation

We propose the following time-discretization scheme of the formulation

(4.38)-(4.41):

λ2
[

ε2
( 1

∆t2
(ρε,λ,m+1 − 2ρε,λ,m + ρε,λ,m−1)−∇2 : (

qε,λ,m ⊗ qε,λ,m

ρε,λ,m
)

+∇(µσ(uε,λ,m))
)

−∇ · (ρε,λ,mh′(ρε,λ,m)∇ρε,λ,m+1)−∇ρε,λ,m · ∇φε,λ,m
]

+ρε,λ,m(ρε,λ,m+1 − ρm+1
B ) = 0 , (4.42)

1

∆t
(ρε,λ,m+1 − ρε,λ,m) +∇ · qε,λ,m+1 = 0 , (4.43)

1

∆t
(qε,λ,m+1 − qε,λ,m) +∇(

qε,λ,m ⊗ qε,λ,m

ρε,λ,m
) + ρε,λ,m∇ψε,λ,m+1

= ∇(µσ(uε,λ,m)) . (4.44)

φε,λ,m+1 = −h(ρε,λ,m+1) + ε2ψε,λ,m+1 , (4.45)

In fact, we show that this scheme is derived from the following scheme

for the standard formulation:

1

∆t
(ρε,λ,m+1 − ρε,λ,m) +∇ · qε,λ,m+1 = 0 , (4.46)

1

∆t
(qε,λ,m+1 − qε,λ,m) +∇(

qε,λ,m ⊗ qε,λ,m

ρε,λ,m
) + ρε,λ,m∇ψε,λ,m+1

= ∇(µσ(uε,λ,m)) . (4.47)

−λ2∆φε,λ,m+1 = ρε,λ,m+1 − ρm+1
B , (4.48)

φε,λ,m+1 = −h(ρε,λ,m+1) + ε2ψε,λ,m+1 , (4.49)

Indeed, by taking the time difference of the mass equation (4.46) at times

m+ 1 and m and combining with the divergence of (4.47), using (4.49) and

the identity (4.35), we find

λ2
[

ε2
( 1

∆t2
(ρε,λ,m+1 − 2ρε,λ,m + ρε,λ,m−1)−∇2 : (

qε,λ,m ⊗ qε,λ,m

ρε,λ,m
)

+∇(µσ(uε,λ,m))
)

−∇ · (ρε,λ,mh′(ρε,λ,m+1)∇ρε,λ,m+1)

−∇ρε,λ,m · ∇φε,λ,m+1
]

+ ρε,λ,m(ρε,λ,m+1 − ρm+1
B ) = 0 , (4.50)
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The difference between (4.50) and (4.42) is a time shift by one time step in

two terms, the second one on the second line (inside the function h) and the

third one of the second line (inside the ∇φ).

Going backwards, we easily deduce that the scheme (4.42)-(4.45) is con-

sistent with the Poisson equation up to terms of order O(λ2∆t). More pre-

cisely, from (4.42) and the combination of (4.43), (4.44), we get

λ2
[

ε2∇ · (ρε,λ,m∇ψε,λ,m+1)−∇ · (ρε,λ,mh′(ρε,λ,m)∇ρε,λ,m+1)

−∇ρε,λ,m · ∇φε,λ,m
]

+ ρε,λ,m(ρε,λ,m+1 − ρm+1
B ) = 0 , (4.51)

which we can equivalently write:

λ2
[

ε2∇ · (ρε,λ,m∇ψε,λ,m+1)−∇ · (ρε,λ,m∇h(ρε,λ,m+1))−∇ρε,λ,m · ∇φε,λ,m+1
]

+ρε,λ,m(ρε,λ,m+1 − ρm+1
B ) + λ2

[

−∇ · (ρε,λ,m(h′(ρε,λ,m)

−h′(ρε,λ,m+1))∇ρε,λ,m+1)−∇ρε,λ,m · (∇φε,λ,m −∇φε,λ,m+1)
]

= 0 . (4.52)

Then, using (4.45), we find

λ2
[

−∇ · (ρε,λ,m∇φε,λ,m+1)−∇ρε,λ,m · ∇φε,λ,m+1
]

+ρε,λ,m(ρε,λ,m+1−ρm+1
B )

+λ2
[

−∇ · (ρε,λ,m(h′(ρε,λ,m)− h′(ρε,λ,m+1))∇ρε,λ,m+1)

−∇ρε,λ,m · (∇φε,λ,m −∇φε,λ,m+1)
]

= 0 , (4.53)

or

ρε,λ,m(λ2∆φε,λ,m+1 + ρε,λ,m+1 − ρm+1
B )

+λ2
[

−∇ · (ρε,λ,m(h′(ρε,λ,m)− h′(ρε,λ,m+1))∇ρε,λ,m+1)

−∇ρε,λ,m · (∇φε,λ,m −∇φε,λ,m+1)
]

= 0 . (4.54)

Now, the last two lines are of orderO(λ2∆t). Therefore, we find that φε,λ,m+1

satisfies a Laplace equation of the form

ρε,λ,m(λ2∆φε,λ,m+1 + ρε,λ,m+1 − ρm+1
B ) = O(λ2∆t) . (4.55)

We see that the potential is all the more close to a solution of the Poisson

equation than λ is small, i.e., that we are close to the quasineutral regime.

We also see that the potential equation is independent of ε and that it

remains true in the limit ε→ 0.

Now, we investigate the limits λ→ 0 and ε→ 0 of this scheme.
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First case: λ→ 0 then ε→ 0: When λ→ 0 first, (4.56) leads to

ρε,m(ρε,m+1 − ρm+1
B ) = 0 , (4.56)

while the other equations remain unchanged. Clearly, this means that

ρε,m+1 = ρm+1
B , (4.57)

unless ρε,m = 0, a situation in which all equations degenerate anyhow, and

which we shall disregard. Then, we clearly get a scheme consistent with

(4.18), (4.19). We also keep relation (4.45) which we gives us the value

of the electric potential. However, since the electric potential is no longer

coupled with the other variables, and that the equations (4.43), (4.44) for

the momentum and the gauge potential ψ are independent of ε, the scheme

is also obviously AP in the limit ε→ 0.

Second case: ε→ 0 then λ→ 0: When ε→ 0, we get

λ2
[

−∇ · (ρλ,mh′(ρλ,m)∇ρλ,m+1)−∇ρλ,m · ∇φλ,m
]

+ρλ,m(ρλ,m+1 − ρm+1
B ) = 0 , (4.58)

φλ,m+1 = −h(ρλ,m+1) , (4.59)

while equations (4.43), (4.44) stay unchanged. To see that this scheme is

consistent with system (4.25)-(4.28), it remains to show that (4.58) is consis-

tent with Poisson’s equation (4.27). But the approximate Poisson equation

(4.54) which was derived previously from the scheme with finite ε does not

depend on ε and is therefore also true for its limit ε → 0. This shows that

Asymptotic Preserving character of the scheme in the limit ε→ 0.

Then, the limit λ→ 0 is obvious and leads to (4.57) (provided ρε,m 6= 0),

which shows that the resulting scheme is also consistent with the limit λ→ 0

performed after the limit ε→ 0.

The computational complexity of this scheme involves the inversion of

two elliptic operators. The first one is needed for the computation of ρε,λ,m+1

by means of (4.42). The elliptic operator to be inverted is

Aρε,λ,m+1 := −∇ · (p′(ρε,λ,m)∇ρε,λ,m+1) +

(

λ2ε2

∆t2
+ ρε,λ,m

)

ρε,λ,m+1 , (4.60)

and is well-posed, provided boundary conditions for ρε,λ,m+1 are provided.

The second one concerns the computation of ψε,λ,m+1. The equation for
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ψε,λ,m+1 is obtained by taking the divergence of (4.44) and eliminating ∇ ·

qε,λ,m+1 by using the mass equation (4.43). It leads to:

−∇ · (ρε,λ,m∇ψε,λ,m+1) = −
1

∆t2
(ρε,λ,m+1 − 2ρε,λ,m + ρε,λ,m−1)

+∇2 : (
qε,λ,m ⊗ qε,λ,m

ρε,λ,m
)−∇(µσ(uε,λ,m)) ,(4.61)

Again, this elliptic equation is well-posed. The boundary conditions in the

low mach number limit should be such that ψε,λ,m+1 stays of order O(1)

otherwise the Low-Mach number limit is not valid.

The fact that the scheme does not satisfy exactly the Poisson equation

can be viewed as a drawback in the cases where accuracy in the computation

of the electrostatic interaction is important. In the next section, we propose

a variant of this scheme with exact enforcement of the Poisson equation.

4.4. A variant with exact enforcement of the Poisson equation

This variant is based on a reformulation (in a gauge like framework) of

the scheme (4.46), (4.49) in which we slightly modify the gauge equation

(4.49) into

∇φε,λ,m+1 = −h′(ρε,λ,m)∇ρε,λ,m+1 + ε2∇ψε,λ,m+1 . (4.62)

Indeed, only the gradients of these quantities are needed and this gauge

equation is an order ∆t approximation of (4.49). In this scheme, we are not

going to compute the density first, like in the first one, but the electrostatic

potential. Since the direct use (4.48) does not lead to an AP scheme when

λ → 0, we need to reformulate the Poisson equation. We perform it in the

spirit of what has already been proposed in [11], [12], [17].

For that purpose, we take the time difference of the mass equations

(4.46) at time m+1 and m, take the divergence of the momentum equation

(4.47) and subtract the resulting equations but, instead of using (4.35) to

transform the term ∇ · (ρε,λ,m∇φε,λ,m+1) like we did in the derivation of

(4.50), we just directly use Poisson’s equation (4.48) to eliminate ρε,λ,m+1 in

favor of φε,λ,m+1. This leads to the following scheme:

λ2∇ · (p′(ρε,λ,m)∇∆φε,λ,m+1)−
λ2ε2

∆t2
∆φε,λ,m+1 −∇ · (ρε,λ,m∇φε,λ,m+1)
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+ε2
( 1

∆t2
(ρm+1

B − 2ρε,λ,m + ρε,λ,m−1)−∇2 : (
qε,λ,m ⊗ qε,λ,m

ρε,λ,m
)

+∇(µσ(uε,λ,m))
)

−∇ · (p′(ρε,λ,m)∇ρm+1
B ) = 0 , (4.63)

This equation is a fourth order elliptic equation which allows us to find

φε,λ,m+1 as a function of known data. It is completely equivalent to the

scheme (4.46), (4.48) with modified gauge equation (4.62). Once φε,λ,m+1

is known, ρε,λ,m+1 can be computed by using the Poisson equation (4.48)

directly. However, this operation might be unstable because of the laplacian

of φε,λ,m+1 in the source term. Also, it is not possible to extend the method

to the multispecies case. We prefer to use the wave-like reformulation (4.50),

which, because of the gauge change, takes the form

λ2
[

ε2
( 1

∆t2
(ρε,λ,m+1 − 2ρε,λ,m + ρε,λ,m−1)−∇2 : (

qε,λ,m ⊗ qε,λ,m

ρε,λ,m
)

+∇(µσ(uε,λ,m))
)

−∇ · (p′(ρε,λ,m)∇ρε,λ,m+1)−∇ρε,λ,m · ∇φε,λ,m+1
]

+ρε,λ,m(ρε,λ,m+1 − ρm+1
B ) = 0 , (4.64)

The only change with (4.42) is that last term of the second line involves

φε,λ,m+1, which is known from the previous step, and not φε,λ,m. Again, this

equation for ρε,λ,m+1 is completely equivalent to the scheme (4.46), (4.48)

with modified gauge equation (4.62). Once ρε,λ,m+1 is known, we can solve

for qε,λ,m+1 and ψε,λ,m+1 like previously.

This scheme enforces the Poisson exactly. It is AP when ε → 0 and/or

λ→ 0 in either order, as can be easily seen (this point is left to the reader).

However, this scheme is more complicated because it involves the resolution

of three elliptic problems instead of two: problem (4.63) for φε,λ,m+1, prob-

lem (4.64) for ρε,λ,m+1 and problem (4.61) for ψε,λ,m+1. It also involves the

resolution of a fourth order elliptic problem (problem (4.63) for φε,λ,m+1).

Finally, it bears a slight inconsistency in the gauge equation, because it is

impossible to satisfy the gauge condition (4.62) unless ρε,λ,m is a function

of ρε,λ,m+1, which is obviously not true. However, we note that we never

use this gauge condition explicitly. Also, it is an approximation to the true

gauge condition (4.49) (of order O(∆t)). We note that the use of the true

gauge condition (4.49) is possible but transforms both problems (4.63) and

(4.64) into nonlinear elliptic problems (the first one being fourth order).
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5. Conclusion

In this paper, we have proposed new semi-implicit time discretizations

for the compressible Navier-Stokes equations. These schemes are Asymptotic-

Preserving in the low Mach number limit, i.e., they are consistent with

the compressible Navier-Stokes equations when the Mach number is finite

and are consistent with the incompressible equations (or Low-Mach number

limit of the compressible Navier-Stokes equations) when the Mach number

is small. To achieve Asymptotic-Preservation, we use a gauge decomposition

of the momentum field which can be interpreted as a macro-micro decom-

position of the problem. Additionally, a second order formulation in time is

used for the density or the energy, giving rise to an easy numerical resolu-

tion of the implicitness, through the inversion of elliptic operators. A similar

approach has been applied to the isentropic Navier-Stokes-Poisson system.

In future work, we will investigate the effect of the space discretization and

search for solvers which have good properties respective to the chosen time-

stepping strategies. For this purpose, intensive numerical simulations will

be carried out.
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