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Abstract

The mixture property of the general multivariate Pareto

MP(k) distributions has been studied by Yeh (2004a). Arnold

(1996) mentioned that any mixing distribution with support

(0,∞) is a candidate for a frailty model. This fact drives Yeh

to study the frailty structure of the MP(k) distributions. It is

discerned that the MP(k) distributions is in the one-parameter k-

variate Clayton family with k-variate Archimedean survival cop-

ulas and thus the MP(k) can be treated as a marginally speci-

fied multivariate distribution. Several properties of the k-variate

survival copulas and the limiting special cases of the MP(k)

Archimedean survival copulas are studied in this paper.

1. Introduction and Motivation

The importance of the four general multivariate Pareto distributions

(denoted as MP(k)(I), MP(k)(II), MP(k)(III), and MP(k)(IV)) proposed by

Arnold (1983) are discussed in many literatures such as Kotz et al. (2000,

Chapter 52 and the references therein) and Yeh (1994, 2000, 2004a, b).

These four general multivariate Pareto distributions are candidate models

for the multivariate continuous income data and some other socio-economic

multivariate variables. Yeh (2004a) has also studied several distributional
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properties and characterizations of them. It is found that the four gen-

eral MP(k)(I), (II), (III), and (IV) distributions have many mixture proper-

ties, they are mixed either by geometric, Weibull, or exponential variables.

Arnold (1996) mentioned that any mixing distributions with support (0,∞)

may be used to construct a frailty model and this result can be extended

to k-variate (k ≥ 2) case by assuming the exis-tence of a common stress on

conditionally independent components. This fact drives Yeh to study the

frailty structure of the four MP(k) distributions. Owing to the hierarchy of

the four MP(k) distributions, it suffices to study the MP(k)(IV) distribution.

The original reference of frailty model is Oakes (1989), Oakes claimed

that any bivariate distributions generated by frailty models are subclasses of

the Archimedean distributions studied by Genest and Mackay (1986). Most

frailty models and copulas developed in the literature such as Genest and

Mackay (1986), Genest and Rivest (1993), and the two books by Nelson

(1998) and Joe (1997) are emphasized on the bivariate case. Moreover,

their results deal mostly with the joint distribution function instead of the

joint survival function and the k-variate survival copulas are only briefly

mentioned in their papers.

As we know the recent research has focused on the subclass of the

Archimedean copula (AC) class. It is fortunate that the general multivari-

ate Pareto, MP(k)(IV) is in the one-parameter k-variate Clayton family with

Archimedean k-variate survival copulas {Ĉα(·)|α ∈ R
+}.

In this article, the frailty structure and the Archimedean distributional

property of the general MP(k)(IV) distribution are studied in Section 2. Sev-

eral properties between the MP(k)(IV) and its corresponding survival copulas

are proved in Section 3. It will be discerned that the Archimedean generator

of the MP(k)(IV) distribution is the Laplace transform of a Gamma (α, 1)

variable, therefore, the corresponding k-variate Archimedean survival copu-

las can be used to generate one-parameter family of the general MP(k) dis-

tributions with specified univariate Pareto P (IV) (not necessarily identically

distributed) as marginals. This one-parameter is just the shape parameter

α in the MP(k)(IV)(µ, σ, γ, α) distribution which plays an important role in

the pairwise association measure, such as Kendall’s τ between any pairs of

the random vector of MP(k) distribution. Finally, the limiting and special

cases of {Ĉα(·)|α ∈ R
+} and their corresponding generators are studied in

Section 4.
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2. The Frailty Structure of the MP(k) Distributions

Let X = (X1,X2, . . . ,Xk) denote k-dimensional general multivariate

Pareto distributionsMP(k)(I),MP(k)(II),MP(k)(III), andMP(k)(IV). Some of

their properties are studied by Yeh (1994), (2000), (2004a,b). As mentioned

in Property 2.3 of Yeh (2004a), it is stated again in the following.

Property 2.1. Suppose that Z ∼ Gamma (α, 1) and given Z = z in

X = (X1,X2, . . . ,Xk), each Xi|Z=z
independent

∼ Weibull variable with condi-

tional survival function P (Xi > xi |Z=z) = e
−z(

xi−µi
σi

)1/γi
, ∀ Xi > µi, then

X ∼MP(k)(IV)(µ, σ, γ, α).

According to the definition of Oakes (1989), the MP(k)(IV) distribution

is a multivariate survival model induced by frailties. The k coordinates

of X , {Xi}
k
1 , can be viewed as k observed survival times depending via a

proportional hazard model on the same variable, this common dependence

induces an association between the observed times.

In general, a k-variate frailty model is defined as follows:

Definition 2.1. Let µ = (µ1, µ2, . . . , µk) ∈ R
k, a frailty representation

of the distribution of a random vector X = (X1,X2, . . . ,Xk) with support
∏k
i=1(µi,∞) is of the form

P (X > x) =

∫ ∞

0

[

k
∏

i=1

F 0(xi)
]z
dM(z), (2.1)

where F 0(·) is a univariate survival function with support (µi,∞) and M(·)

is a mixing distribution reflecting environmental stress. The k-variate frailty

model (eq. (2.1)) assumes the existence of a common stress on the condi-

tionally independent components.

Using the terminology of Hougaard(1984) and Vaupel et al. (1979), the

function F 0(·) is a continuous baseline survival function, it is the survival

function of each Xi given Z = z, i.e.,

P (Xi > xi) | Z = z) = {F 0(xi)}
z,

and the common stress random variable Z is called a frailty.
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Let ψZ(·) be the Laplace transform of Z, i.e.,

ψZ(t) = E(e−tz) =

∫ ∞

0
e−tzdM(z).

Oakes (1989)’s result can be extended to the multivariate k ≥ 3 case and

the resulting frailty-based multivariate model assumes the form

p(X > x)=

∫ ∞

0
e−z{−

∑k
i=1 ln(F 0(xi))}dM(z)=ψZ

(

−
k

∑

i=1

ln
(

F 0(xi)
))

.

(2.2)

Arnold (1996) remarked that any mixing distribution M(·) can be used

in such a frailty model. This fact motivates Yeh to study the frailty property

of the general multivariate Pareto distributions.

Property 2.2. Let X = (X1,X2, . . . ,Xk) ∼ MP(k)(IV)(µ, σ, γ, α), the

frailty variable Z follows a Gamma (α, 1) variable. Suppose the survival

function of each Xi in X, given Z = z is conditionally independently dis-

tributed as a Weibull variable with the conditional survival function

P (Xi > xi | Z = z) = {F 0(xi)}
z =

{

e
−(

xi−µi
σi

)1/γiz
, ∀ xi > µi.

1, o.w.

Then the joint survival function of X can be calculated by the following two

representations:

P (X > x) = ψZ

(

−

k
∑

i=1

ln
(

F 0(xi)
))

= ψZ

(

k
∑

i=1

ψ−1
Z

(

FXi(xi)
))

, (2.3)

where ψZ(·) is the Laplace transform of Z, ψ−1
Z (·) is its inverse function,

F 0(xi) =

{

e
−(

xi−µi
σi

)1/γi
, ∀ xi > µi

1, o.w.

and FXi(xi) is the marginal survival function of each Xi∼ P(IV)(µi, σi, γi, α)

variable with

FXi(xi) =

{ (

1 + (xi−µiσi
)1/γi

)−α
, ∀ xi > µi.

1, o.w.
(2.4)
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Proof. The Laplace transform of Z ∼ Gamma (α, 1) is

ψZ(t) = E(e−tz) = (1 + t)−α, ∀ t > 0,

its inverse function is ψ−1
Z (u) = u−1/α − 1, ∀ 0 ≤ u ≤ 1, then the first

representation is

ψZ

(

−
k

∑

i=1

ln
(

F 0(xi)
))

= ψZ

(

k
∑

i=1

(xi − µi
σi

)1/γi)

=
(

1 +

k
∑

i=1

(xi − µi
σi

)1/γi)−α
= P (X > x).

The second representation is

ψZ

(

k
∑

i=1

ψ−1
Z

(

FXi(xi)
))

= ψZ

(

k
∑

i=1

{(

FXi(xi)
)−1/α

− 1
})

= ψZ

(

k
∑

i=1

{[(

1 +
(xi − µi

σi

)1/γi)−α]−1/α
− 1

})

= ψZ

(

k
∑

i=1

{[

1 +
(xi − µi

σi

)1/γi]

− 1
})

= ψZ

(

k
∑

i=1

(xi − µi
σi

)1/γi)

=
(

1 +

k
∑

i=1

(xi − µi
σi

)1/γi)−α
= P (X > x). �

Oakes (1989) mentioned that bivariate distributions generated by frailty

models are a subclass of the Archimedean distributions studied by Genest

and Mackay(1986). The definition of the general Archimedean distribution

is given below

Definition 2.2. Let FX(·) be the joint survival of X with support
k
∏

i=1

(µi,∞) and there exists a nonnegative decreasing function ϕ(·) with
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ϕ(0) = 1, ϕ′(·) < 0, ϕ′′(·) ≥ 0 such that FX(·) can be written as

FX(x) = P (X > x) = ϕ
(

k
∑

i=1

ϕ−1
(

FXi(xi)
))

(2.5)

for all x > µ, where ϕ−1(·) is the inverse function of ϕ(·) and FXi(·), 1 ≤

i ≤ k, are the marginal survival functions of Xi, respectively. Then X is

said to have the Archimedean distribution.

Note that the definition of Archimedean distribution is more general

than Genest and Mackay (1986), because the support of X is allowed to be

any k-variate real vector µ = (µ1, µ2, . . . , µk) ∈ R
k.

3. Survival Copulas of the MP
(k) Distributions

Some more general bivariate and multivariate Pareto distributions than

Hutchinson and Lai (1990) are given by Arnold (1983) and Yeh (2004a, b).

The k-variate (k ≥ 2) of the survival copulas can be defined as

Ĉα(u) = FX

(

F
−1
X1

(u1), F
−1
X2

(u2), . . . , F
−1
Xk

(uk)
)

, (3.1)

where X=(X1,X2, . . . ,Xk) ∼MP(k)(IV)(µ, σ, γ, α) and F
−1
Xi

(·) is the quasi-

inverse of FXi(·), the marginal survival function of each Xi, for 1 ≤ i ≤ k.

Note that each Xi is marginally distributed as a univariate P (IV)(µi, σi, γi,

α) with µi ∈ R, σi > 0, γi > 0, and α > 0 thus Xi’s are not identically

distributed and each Xi is allowed to have different support sets (µi,∞)

for all i = 1, 2, . . . , k. Hence the definition of the survival copula given by

eq.(3.1) is more general than what Nelson (1998) defined.

Schweizer and Sklar (1983) proved a theorem that elucidates the role

of copulas played in the relationship between multivariate distribution func-

tions and their univariate margins. Their result can be analogously extended

to the k-variate survival copulas version and is stated in the following theo-

rem.

Theorem 3.1. Let X = (X1,X2, . . . ,Xk) be any k-variate random vec-

tor and let FX(·) be its k-variate survival function with k marginal survival
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functions FX1(·), FX2(·), . . . , FXk
(·). Then there exists a k-variate survival

copula Ĉ(·) such that for all x = (x1, x2, . . . , xk) ∈
∏k
i=1(µi,∞),

FX(x) = Ĉ
(

FX1(x1), FX2(x2), . . . , FXk
(xk)

)

. (3.2)

If FXi(·), 1 ≤ i ≤ k, are all continuous, then the copula Ĉ(·) is unique; other-

wise, Ĉ(·) is uniquely determined on
∏k
i=1 Ran(FXi(·)), where Ran(FXi(·))

is the range of FXi(·). Conversely, if Ĉ(·) is a k-survival copula and FXi(·)

are k’s univariate survival functions, then the function defined by eq.(3.2)

is a k-variate survival function with marginal survival functions FXi(·),

1 ≤ i ≤ k.

Corollary 3.1.1. Let FX(·), Ĉ(·), FXi(·), 1 ≤ i ≤ k, be as in Theorem

3.1, and let F
−1
Xi

(·) be quasi-inverses of FXi(·), respectively. Then for any

Ĉ(u) = FX

(

F
−1
X1

(u1), F
−1
X2

(u2), . . . , F
−1
Xk

(uk)
)

. (3.3)

The proofs of Theorem 3.1 and Corollary 3.1.1 are analogous to that of

Nelson (1998) and hence is omitted.

Referring back to the general multivariate Pareto distributions, each

Xi in X = (X1,X2, . . . ,Xk) is marginally distributed as the univariate

P (IV)(µi, σi, γi, α) variable, so FXi(xi) = {1 + (xi−µiσi
)1/γi}−α with support

xi ∈ (µi,∞), the quasi-inverse of each FXi(·) is derived from the relation

that for any ui ∈ [0, 1], ui = FXi(F
−1
Xi

(ui)) = {1 + (
F

−1
Xi

(ui)−µi
σi

)1/γi}−α, and

thus F
−1
Xi

(ui) is solved as F
−1
Xi

(ui) = µi+σi(u
−1/α
i − 1)γi , for each 1 ≤ i ≤ k.

According to Corollary 3.1.1, the survival copula of the MP(k)(IV)(µ, σ,

γ, α) is

Ĉ(u) = FX

(

µ1 + σ1(u
−1/α
1 − 1)γ1 , . . . , µk + σk(u

−1/α
k − 1)γk

)

=
{

1 +
k

∑

i=1

(u
−1/α
i − 1)

}−α
=

{

k
∑

i=1

u
−1/α
i − (k − 1)

}−α
, (3.4)

for all u = (u1, u2, . . . , uk) ∈ [0, 1]k , i.e., all 0 ≤ ui ≤ 1, i = 1, . . . , k.

From eq.(3.4), it is discerned that the survival copula of the MP(k)(IV)

(µ, σ, γ, α) is dependent only on the parameter α and is independent of the
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other three parameter vectors µ, σ, γ. This is a fact of k-copula proposed by

Schweizer and Sklar (1983). For any k-survival copula, it has the following

analogous theorem.

Theorem 3.2. For k ≥ 2, let X1,X2, . . . ,Xk be random variables with

continuous survival functions F 1(·), F 2(·), . . . , F k(·), and the joint survival

function of X = (X1,X2, . . . ,Xk) is FX(·), and its survival k-copula is

Ĉ(·). Let g1(·), g2(·), . . . , gk(·) be k’s strictly increasing functions from real

numbers R into R. Then g1(X1), g2(X2), . . . , gk(Xk) are random variables

(on the same probability space as X1,X2, . . . ,Xk) with continuous survival

function and survival k-copula Ĉ(·). Thus Ĉ(·) is invariant under strictly

increasing transformations of X1,X2, . . . ,Xk.

In the MP(k)(IV)(µ, σ, γ, α) case, for each random variableXi, 1 ≤ i ≤ k,

the strictly increasing function gi(·) is chosen as gi(Xi) = (Xi−µi
σi

)1/γi
△
=Zi

with the location parameter µi ∈ R, the scale parameter σi > 0, and the

inequality parameter γi > 0.

If Theorem 3.2 is applied to the random vector Z = (Z1, Z2, . . . , Zk),

then the survival k-copula of Z is the same as eq.(3.4). It is stated as the

following corollary.

Corollary 3.2.1. Let Z ∼MP(k)(IV )(0, 1, 1, α) and X ∼MP(k)(IV )

(µ, σ, γ, α), then the survival k-copulas of Z and X are the same, which is

eq.(3.4), i.e., Ĉ(u) = {
∑k

i=1 u
−1/α
i −(k−1)}−α, for all u = (u1, u2, . . . , uk) ∈

[0, 1]k.

Proof. It is straightforward to check that the relation between Z and X

is coordinatewisely Zi
d
=(Xi−µi

σi
)1/γi 1 ≤ i ≤ k, so each Zi is just a strictly

increasing function of Xi, thus, this corollary follows. �

From eq.(2.3) and eq.(3.4), it is discerned that there is another expres-

sion for the survival copula of the MP(k)(IV)(µ, σ, γ, α) distribution with the

following property.

Property 3.1. Let X = (X1,X2, . . . ,Xk) ∼MP(k)(IV )(µ, σ, γ, α), then

the survival copula of X given in eq.(3.4) is an Archimedean copula, i.e.,
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there exists a nonnegative decreasing function with ϕ(0) = 1 and ϕ′(·) < 0,

ϕ′′(·) ≥ 0, such that

Ĉ(u) = ϕ
(

k
∑

i=1

ϕ−1(ui)
)

, (3.5)

for any u = (u1, u2, . . . , uk) ∈ [0, 1]k.

Proof. According to eq.(3.4), if the function ϕ(·) is chosen to be the

Laplace transform of a Gamma(α, 1) variable Z, i.e., ϕ(t)
△
=ψZ(t) = (1+t)−α,

∀ t > 0, then its inverse ϕ−1(t) = t−1/α − 1, ∀ 0 ≤ t ≤ 1. From eq.(3.4), the

survival copula of X is

Ĉ(u) = FX

(

µ1+σ1(u
−1/α
1 −1)γ1 , . . . , µk+σk(u

−1/α
k −1)γk

)

, by eq.(2.5)

= ψZ

(

k
∑

i=1

ψ−1
Z

(

FXi(µi + σi(u
−1/α
i − 1)γi)

))

= ψZ

(

k
∑

i=1

ψ−1
Z {1 + (µ

−1/α
i − 1)}−α

)

= ψZ

(

k
∑

i=1

ψ−1
Z (ui)

)

= ψZ

(

k
∑

i=1

(u
−1/α
i − 1)

)

=
(

1 +

k
∑

i=1

(u
−1/α
i − 1)

)−α
,

for any u ∈ [0, 1]k , where FXi(·) is the marginal survival function of X with

eq.(2.4) as its survival function. Thus, Ĉ(u) can be expressed as

Ĉ(u) = ψZ

(

k
∑

i=1

ψ−1
Z (ui)

)

, (3.6)

according to the definition of Nelson (1998), Ĉ(u) is an Archimedean copula,

hence this property follows. �

From eq.(3.6), we know that the general MP(k)(IV)(µ, σ, γ, α) distribu-

tion is in the one-parameter Clayton (1978) family and its survival copula is

an Archimedean copula which is parameterized by the new notation Ĉα(u)

for the shape parameter α ∈ (0,∞).
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The function ψZ(·) is called the Archimedean generator of the general

MP(k)(IV)(µ, σ, γ, α) distribution. It is straightforward to check that ψZ(·)

has derivatives of all orders which alternate in sign, i.e., (−1)ℓ d
ℓ

dtℓ
ψZ(t) ≥ 0,

∀ t > 0 and ℓ = 0, 1, 2, . . ., hence according to the definition of Widder (1941),

the function ψZ(t) is completely monotonic on R
+ and since ψZ(0) = 1, and

limt→∞ ψZ(t) = 0, so the generator ψZ(·) is strict.

Remark

(1) From eq.(2.3) and eq.(3.6), we know that the general MP(k)(IV)(µ, σ, γ,

α) distribution is a marginally specified multivariate survival model and

its survival copula has the desirable feature that the dependence struc-

ture is modeled separately from the marginal distributions. The shape

parameter α(> 0) measures pairwise association and is related to

Kendall’s τ by

τ = 4

∫ 1

0

∫ 1

0
Ĉα(ui, uj)duiduj − 1 = 4

∫ 1

0

ψ−1
α (t)

(ψ−1
α (t))′

dt+ 1 =
1

1 + 2α
, (3.7)

for any pair ui, uj in u = (u1, . . . , uk), i 6= j, where ψ−1
α (t) = t−1/α − 1,

0 < t < 1, and eq.(3.7) is the result from Theorem 2 of Genest and

Mackay (1986).

(2) From eq.(3.7), it is clear that as α→ 0+, τ → 1 and as α→ ∞, τ → 0. In

general, 0 < τ < 1, i.e., the general MP(k)(IV) distribution has pairwise

positive association.

(3) The general MP(k)(IV)(µ, σ, γ, α) has an Archimedean copula, some trac-

table analytical properties of the AC class have been studied heavily since

Genest and Mackay (1986) and Oakes (1989).

(4) The inference about α had been studied in Yeh (2000).

4. Limiting and Speical Cases of Ĉα(u)

The Frechet-Hoeffding bounds of the general multivariate Pareto dis-

tributions are derived in Yeh (2002) as for any X = (X1,X2, . . . ,Xk) with

univariate Pareto P (IV)(µi, σi, γi, α) marginals, denoted by FXi(·), then the
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joint survival function of X , FX(x), is within the following two bounds

max
{

0,

k
∑

i=1

FXi(xi)− (k − 1)
}

≤ FX(x) ≤ min
1≤i≤k

{

FXi(xi)
}

, (4.1)

for any x > µ. These bounds are satisfied analogously for the survival copula

of X. Before this section is studied, there are some notations needed to be

introduced.

Notations. Let u = (u1, u2, . . . , uk) ∈ [0, 1]k, define Lk(u) = max{0,
∑k

i=1 ui − (k − 1)}, Uk(u) = min
1≤i≤k

{ui}, πk(u) = u1, u2, . . . , uk.

Property 4.1. For all k ≥ 2

(i) Uk(u) and πk(u) are survival k-copulas.

(ii) L2(u) is a survival 2-copula only, and Lk(u) fails to be a survival k-

copula whenever k > 2.

Proof. Let a = (a1, . . . , ak) ∈ [0, 1]k, b = (b1, . . . , bk) ∈ [0, 1]k such that

[a, b] be any k-box in Ik, it can be shown that the Uk-volumn of [a, b] is

VUk
([a, b]) = max{ min

1≤i≤k
{bi} − min

1≤i≤k
{ai}, 0} ≥ 0, and the πk-volumn of [a, b]

is Vπk([a, b]) =
∏k
i=1(bi − ai) ≥ 0, hence we conclude that Uk(·) and πk(·)

are survival k-copulas for all k ≥ 2. However, for Lk(·), if choose the k-

variate box as [1/2, 1]k , then the Lk-volumn of [1/2, 1]k can be shown to be

VLk
([1/2, 1]k) = 1 − k/2 < 0, whenever k > 2. Thus Lk(·) is not a survival

k-copula for k > 2. For k = 2, L2(·) is indeed a survival 2-copula.

The k-variate (k ≥ 2) survival copulas Uk(·) and πk(·) have characteri-

zations similar to the k-copulas M and π given in Nelson (1998).

Theorem 4.1. Let X1,X2, . . . ,Xk be continuous random variables,

k ≥ 2. Then

(a) X1,X2, . . . ,Xk are independent if and only if the survival k-copula of

X1,X2, . . . ,Xk is πk(·).

(b) each of the random variables X1,X2, . . . ,Xk is almost surely a strictly

increasing function of any of the others if and only if the survival n-

copula of X1,X2, . . . ,Xk is Uk(·).
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Proof. Let X = (X1,X2, . . . ,Xk), be the k-variate continuous random

vector composed by the Xi’s, 1 ≤ i ≤ k and let FX(·) be the joint survival

function of X , and F i(·) be the survival function of Xi, 1 ≤ i ≤ k,

(a) ⇒ : By independence ofXi’s, we have for ∀ x > µ, FX(x) =
∏k
i=1 F i(xi),

also, by eq.(3.3), the survival k-copula of X is

Ĉ(u) = FX

(

F
−1
1 (u1), F

−1
2 (u2), . . . , F

−1
k (uk)

)

, by independence

=

k
∏

i=1

F i

(

F
−1
i (ui)

)

=

k
∏

i=1

ui = πk(u), for all u ∈ [0, 1]k

(a) ⇐ : If the survival k-coupula of X = (X1,X2, . . . ,Xk) is πk(·), i.e.,

Ĉ(u) =
∏k
i=1 ui for all u ∈ [0, 1]k, on the other hand, by eq.(3.2), the relation

between the joint survival function and the survival copula of X is

FX(x) = Ĉ(F 1(x1), F 2(x2), . . . , F k(xk)) =
∏k
i=1 F i(xi) for all x > µ,

hence the independence of X1,X2, . . . ,Xk follows.

To prove:

(b) ⇒ : Let S = {x | x > µ} ∈ R
k denote the support of FX(·) and let

x ∈ S.

As in (a), let F i(·) denote the marginal survival function of FX(·). Then for

all xi in x = (x1, x2, . . . , xk), xi > µi,

F i(xi) = P (Xi > xi) = P (X1 > x1, . . . ,Xi−1 > xi−1,Xi > xi, . . . ,Xk > xk)

+
∑

j 6=i

P
(

Xi>xi ∩
[

at least one Xj ∈ {X1, . . . ,Xi−1,Xi+1, . . . ,Xk},

Xj ≤ xj

])

= FX(x)+P (Xi>xi, the other coordinates of X are disconcordant

with Xi). (4.2)

Since each of the random variables X1,X2, . . . ,Xk is almost surely a strictly

increasing function of any of the others, hence min
1≤i≤k

{P (Xi > xi, the other co-

ordinates ofX are disconcordant withXi}=0, then in this case min
1≤i≤k

{F i(x)}
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= FX(x), and the survival copula of X is Ĉ(u)=FX(F
−1
1 (u1), . . . , F

−1
k (uk))

= min
1≤i≤k

{F i(F
−1
i (ui))} = min

1≤i≤k
{ui} = Uk(u) for any u ∈ [0, 1]k .

(b) ⇐ : If the survival k-copula of X is Uk(·), i.e., Ĉ(u) = min
1≤i≤k

{ui}, for all

u ∈ [0, 1]k, then the corresponding joint survival function of X is

FX(x) = Ĉ
(

F 1(x1), . . . , F k(xk)
)

= min
1≤i≤k

{

F i(xi)
}

,

by eq.(4.2), we obtain that min
1≤i≤k

{P (Xi > xi, and the other Xj in X, j 6= i,

are disconcordant with Xi} = 0, hence the necessity part of (b) follows. �

Note: Since the definition for the Archimedean generator of the general

multivariate MP(k)(IV) distribution is different from that given in Alsina,

Frank and Schweizer (1998) and their results are mainly focused on bivariate

case, hence there are some new properties about the k-variate Clayton family

developed as follows.

Theorem 4.2. Let {Ĉ
(k)
α (·) | α ∈ R

+} be a family of Archimedean

survival copulas with Ĉα(u) = (
∑k

i=1 u
−1/α
i − (k − 1))α and let Ω = {ϕα(·) |

α ∈ R
+} be the set of corresponding generators for the Archimedean survival

copulas, then the k-variate Clayton subfamily is

(a) negatively ordered.

(b) the family {Ĉα(·) | α ∈ R
+} contains only survival copulas which are

larger than πk(·) and its limiting cases are respectively

(i) lim
α→0+

Ĉ(u) = Uk(u) = min
1≤i≤k

{ui}.

(ii) lim
α→∞

Ĉ(k)
α (u) = πk(u) = u1u2 · · · uk for all u ∈ [0, 1]k.

Proof.

(a) For any 0 < α1 < α2, Ĉ
(k)
α1 (·), Ĉ

(k)
α2 (·) both are in the k-variate Clayton

family, and let ϕα1(·), ϕα2(·) ∈ Ω and ϕα1(t) = (1 + t)−α1 , ϕα2(t) =

(1 + t)−α2 , for t ≥ 0, then ϕ−1
α1

(t) = t−1/α1 − 1, ϕ−1
α2

(t) = t−1/α2 − 1, for

0 < t ≤ 1,

let f(t) =
(ϕ−1

α1
(t))′

(ϕ−1
α2

(t))′
=

(− 1
α1
t)−1/α1−1

(− 1
α2

)t−1/α2−1 = α2
α1
t1/α2−1/α1 , to check the function
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f(t) is non-increasing by computing

f ′(t) =
α2

α1

( 1

α2
−

1

α1

)

t1/α2−1/α1−1 < 0 for 0 < t ≤ 1,

by Corollary 4.4.6 of Nelson (1998), then Ĉ
(k)
α1 (u) > Ĉ

(k)
α2 (u), i.e., this

family {Ĉ
(k)
α (·) | α ∈ R

+} is negatively ordered.

(b) For ∀ 0 < α < ∞, by the result of (a), the survival copulas with

Ĉ
(k)
α (u) = (

∑k
i=1 u

−1/α
i − (k − 1))−α have two limiting special cases

Ĉ(k)
∞ (u) < Ĉ(k)

α (u) < Ĉ
(k)
0 (u) (4.3)

for all u ∈ [0, 1]k.

(b)(i): If α → 0+, by eq.(3.7), Kendall’ τ = 1
1+2α → 1, and also, by the

representation τ = 4
∫ 1
0

ψ−1
α (t)

(ψ−1
α (t))′

dt + 1 → 1 as α → 0+, and hence

lim
α→0+

ψ−1
α (t)

(ψ−1
α (t))′

= 0 for 0 < t ≤ 1, by Theorem 4.4.8 of Nelson

(1998), we get the limiting Fréchet’s upper bound lim
α→0+

Ĉα(ui, uj) =

min{ui, uj}
△
=U2(ui, uj) for any pair ui, uj in u, i 6= j.

Since min(·) is a binary operation and its serial iteration can be de-

fined recursively via min(u1, u2, u3) = min(min(u1, u2), u3), by in-

duction it follows that min
1≤i≤k

{ui} = min( min
1≤i≤k−1

{ui}, uk), and thus

if lim
α→0+

ψ−1
α (t)

(ψ−1
α (t))′

= 0, then min
α→0+

Ĉ(k)
α (u) = Uk(u) = min

1≤i≤k
{ui} fol-

lows.

(b)(ii) : If α→ ∞, then τ → 0, by eq.(3.7), it means lim
α→∞

∫ 1

0

∫ 1

0
Ĉα(ui, uj)

duiduj =
1
4 and hence lim

α→∞
Ĉα(ui, uj) = uiuj

△
=π2(ui, uj). Since the

product π(·) is also a binary operation and its serial iteration can

be defined recursively via πj(u1, u2, . . . , uj) = π2(πj−1(u1, u2, . . .,

uj−1), uj), for j≥3, by induction, it follows that πk(u)=u1u2 · · · uk,

hence lim
α→∞

Ĉα(u) = πk(u) = u1u2 · · · uk, also, by the relation (4.2),

we obtain the lower and upper limits of {Ĉ
(k)
α (·)|α∈R

+} which are

πk(u) < Ĉ
(k)
α (u) < min

1≤i≤k
{ui} for all u ∈ [0, 1]k , thus (b) follows. �

Referring back to the relation (4.1), the Fréchet-Hoeffding upper and
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lower bounds for the survival copula of X are respectively min
1≤i≤k

{ui} and

max{0,
∑k

i=1 ui − (k − 1)} for all u ∈ [0, 1]k. These two bounds can be

expressed in terms of the Archimedean generators and stated as the following

property:

Property 4.2. Let X ∼MP(k)(IV )(µ, σ, γ, α), for any α ∈ R
+, let

{Ĉ
(k)
α (·) | α ∈ R

+} be its corresponding family of Archimedean survival

copulas with Ĉα(u) = (
∑k

i=1 u
−1/α
i −(k−1))−α and let Ω = {ϕα(·) | α ∈ R

+}

be the set of its Archimedean generators, then

(a) the Fréchet-Hoeffding lower bound for Ĉα(u) is

(i) Lk(u) = max{0,
∑k

i=1 ui − (k − 1)}, and the generator of Lk(u) is

ϕ1(t) = 1− t.

(ii) Lk(u) is never a k-variate survival copula for k > 2.

(b) for general α ∈ R
+, the generator of Ĉα(·) is ϕα(t) = (1 + t)−α,

(c) the lower limit of {Ĉ
(k)
α (·) | α ∈ R+} which is a k-variate survival copula

is πk(u) = u1u2 · · · uk, and the generator of πk(u) is ϕ2(t) = e−t.

Proof (a)(i).

The inverse function of ϕ1(·) is ϕ
−1
1 (t) = 1 − t, for 0 < t < 1, and it is

easy to check that Lk(u) can be expressed as

Lk(u) = ϕ1

(

k
∑

i=1

ϕ−1
1 (ui)

)

= ϕ1

(

k
∑

i=1

(1− ui)
)

= 1−
{

k
∑

i=1

(1− ui)
}

= max
{

0,

k
∑

i=1

ui − (k − 1)
}

for all u ∈ [0, 1]k .

(a) (ii) is followed by Property 4.1 (ii).

(b) is followed by Property 3.1.

(c) The inverse of ϕ2(·) is ϕ
−1
2 (t) = − ln(t), for 0 < t < 1. It is straightfor-

ward to check that πk(u) can be written as

πk(u) = ϕ2

(

k
∑

i=1

ϕ−1
2 (ui)

)

= ϕ2

(

k
∑

i=1

(− ln(ui))
)

= e−
∑k

i=1(− ln(ui))

= eln(
∏k

i=1 ui) = u1u2 · · · uk, for all u ∈ [0, 1]k .
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πk(u) is a k-variate survival copula followed by Property 4.1 (i) for all

k ≥ 2. �

Acknowledgements

The author would like to thank the anonymous referee for some helpful

comments to improve this paper.

References

1. C. Alsina, M. J. Frank and B. Schweizer, Associative Functions on Intervals,

Working Paper, 1998.

2. B. C. Arnold, Pareto Distributions, International Cooperative Publ. House, Fair-

land, MD, 1983.

3. B. C. Arnold, Marginally and conditionally specified multivariate survival models.

In Statistics of Quality, (Edited by S. Ghosh, W. Schucany and W. Smith, W.), 233-252.

Marcel Dekker, New York, 1996.

4. D. G. Clayton, A model for association in bivariate Life tables and its application

in epidemiological studies of familial tendency in chronic disease incidence, Biometrika, 65

(1978), 141-151.

5. C. Genest and J. Mackay, The joy of copulas: bivariate distributions with uni-form

marginals, Amer. Statist., 40 (1986), 280-283.

6. C. Genest and L. P. Rivest, Statistical inference for bivariate archimedean copulas,

J. Amer. Statist. Assoc., 88 (1993), 1034-1043.

7. P. Hougaard, A class of multivariate failure time distributions, Biometrika, 73

(1986), 671-678.

8. T. P. Hutchinson and C. D. Lai, Continuous Bivariate Distributions, Emphasizing

Applications, Rumsby Scientific Publishing, Adelaide, 1990.

9. H. Joe, Multivariate Models and Dependence Concepts, Chapman and Hall, 1997.

10. S. Kotz, N. Balakrishnan and N. L. Johnson, Continuous Multivariate Distribu-

tions, V.1, John Wiley and Sons, Inc. (2000), 577-619.

11. R. B. Nelson, An Introduction to Copulas, Lecture Notes in Statistics, Springer,

1998.

12. D. Oakes, Bivariate survival models induced by frailties, J. Amer. Statist. Assoc.,

84 (1989), 487-493.

13. B. Schweizer and A. Sklar, Probabilistic Metric Spaces, North-Holland, New York,

1983.

14. D. V. Widder, The Laplace Transform, Princeton University Press, Princeton,

1941.

15. J. W. Vaupel, K. G. Manton and E. Stallard, The imapct of hetergeneity in indi-

vidual frailty and the dynamics of mortality, Demography, 16 (1979), 439-454.



2007] THE FRAILTY AND THE ARCHIMEDEAN STRUCTURE 729

16. H. C. Yeh, Some properties of the homogeneous multivariate Pareto (IV) distri-

butions, J. Multivariate Anal., 51(1994), No.1, 46-53.

17. H. C. Yeh, Two multivariate Pareto distributions and their related inferences,

Bull. Inst. Math. Acad. Sinica, 28 (2000), No.2, 71-86.

18. H. C. Yeh, Some alternative multivariate Pareto distribution, Technical Report,

NSC92-2118-M-002-006, 2002.

19. H. C. Yeh, Some properties and characterizations for generalized multivariate

Pareto distributions, J. Multivariate Anal., 88(2004a), 47-60.

20. H. C. Yeh, The generalized Marshall-Olkin type multivariate Pareto distribu-tions,

Comm. Statist. Theory Methods, 33(2004b), No.5, 1053-1068.

Department of Finance, College of Management, National Taiwan University, Rm. 1002,

No.85, Roosevelt Road, Section 4, Taipei, Taiwan, R.O.C. 106

E-mail: Yeh12345@management.ntu.edu.tw


	1. Introduction and Motivation
	2. The Frailty Structure of the
	3. Survival Copulas of the
	4. Limiting and Speical Cases of

