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Abstract

We show that bu A BO(n) splits as a wedge product of
suspended copies of HZ/2, bu, and bu A BO(1) at prime 2 for
n = 2, 3, and 4. Similarly, we show that bu A BSO(2n + 1) splits
as a wedge product of suspended copies of HZ/2 and bu at prime
2 for n =1 and 2.

1. Introduction

Let bu be the complex connective K-theory, RP>* = BO(1) be the infi-
nite real projective space, HZ/2 be the Z/2 FEilenberg-Mac Lane spectrum,
BO(n) be the classifying space of the n-th orthogonal group, BSO(n) be
the classifying space of the n-th special orthogonal group and H* (X) be the
reduced mod 2 cohomology of X. For simplicity of notation, we write ®

instead of ®z/s.

Eric Ossa [1] has showed that

2i+25—2 2
bun RP¥ ARP* =] v 3" T HZ VIS bun RP).
Z7J

D. C. Johnson and W. S. Wilson [2] gave a brief proof of this theorem and
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split bu ARP>°A- - -ARP* into suspended copies of HZ/2 and one suspended
copy of bu A RP*° inductively. Also, R. R. Bruner [3] provided the analogous
results in the real case ko. So far, we only know the stable splittings of
bu A BG for particular finite groups G at prime 2 (see [8]). For infinite
groups (G, we never know the stable splittings of bu A BG at prime 2. The
purpose of this paper is to give the stable splittings of bu A BO(n) (n = 2,
3, and 4) and bu A BSO(2n+1) (n =1 and 2). We consider bu A BO(n) for
n > 2 first.

Thoerem 1. There is a stable homotopy equivalence

2i+4j+2 -
bu A BO(2) ~ [OS\/Z'JZ HZ/2|v <]Z bu [bu A RP|

at prime 2.

Thoerem 2. There is a stable homotopy equivalence

2i+4j+2+6k 2i+4j+6k+3
bu A BO(3) ~ [0<ijz HZ/2]v[O<UkZ HZ/2]
4j
V[V bu] V [bu A RP®] v bu A RP*
[0<j ul V [bu Z U ]

at prime 2.

Thoerem 3. There is a stable homotopy equivalence

45481
bu A BO(4 HZ/2]V|[ V b
u Y3 HZPV Y, u)
V[bu A RP>®| Vv Z b A RP™]

at prime 2, where o = 2i4+454+-6k+814+4, 2i+4j+6k+348l, 2i+45+2+6k+8,
204+4j+24+6k+3+8l+4, and 2i +45+2+ 81+ 4 for all i, 5, k, 1 > 0.

Also we can consider the classifying space of the n-th special orthogonal
group BSO(n). The splitting of bu A BSO(2) = bu A C P> was given by D.
C. Johnson and W. S. Wilson [2]. Unfortunately, bu A BSO(4) can not split
into the similar parts as above. It seems that only bu A BSO(2n + 1) can
split as a wedge of suspended copies of HZ/2 and bu. Here we provide the
splittings of bu A BSO(3) and bu A BSO(5).
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Theorem 4. There is a stable homotopy equivalence

454246k 47
bun BSO() = [ v 3 HZ/2 V[V 3 bl

at prime 2.

Theorem 5. There is a stable homotopy equivalence

@ 45481
bu A BSO(5) ~ [V HZ/2IV[ Vv b
uABSOG) = [y Y " HZ/2 V[ v 3

at prime 2, where a = 45 4+ 6k + 8l + 4 4+ 10m, 45 + 2 + 6k + 81 4+ 10m,

454+24-6k+814+44+10m+>5, 4j+2+6k+3+8l+4+10m, and 4j+2+81+4+10m

for all j, k, I, m > 0.

Our main idea comes from [2]. The first step is to show that the FE-
module H*(BO(n)) is isomorphic to the direct sum of an E-module D* and
a free E-module M where E = E[Qo, Q1] (Qo = S¢' and Q1 = S¢®>+S¢>Sq")
is an exterior algebra which is a subalgebra of the mod 2 Steenrod algebra
A. The second step is to construct the space X and to determine « such
that H*(X) = D* and H*(VY.*HZ/2) =~ A ®p M. Finally, we construct
a map from bu A BO(n) toa VI *HZ/2] V [bu A X] and prove that this
map is a homotopy equivalen((jle at prime 2. The difficulty is to construct
the space X and the homotopy equivalence map. We show that X is a
wedge of suspended copies of bu and bu A RP*° and construct the homotopy
equivalence map for n = 2, 3, and 4. We shall describe the construction of
the difficult part of this map.

It is well-known that bu, = Z[v1] where degv; = 2 and H*(bu) =
A/JA(Qo, Q1) = A®p Z/2 where A(Qo, Q1) is the ideal generated by Qg
and Q1. D. C. Johnson and W. S. Wilson [4] showed that buz), the spec-
trum for complex connective K-theory localized at prime 2, is homotopic to
the Johnson-Wilson Spectrum BP (1). Also, W. S. Wilson [5] showed that
a tower of BP module spectra was constructed using Sullivan’s theory of

manifolds with singularities:

BP - ---— BP(n+1) — BP(n) —
- — BP(1) - BP(0) - BP(-1),
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where BP (0) is the Z(y) Eilenberg-Mac Lane spectrum and BP (1) is the
Z/2 Eilenberg-Mac Lane spectrum. We construct the 2-local stable map
from BO(n) to Z4j bu for each j > 0 by the Adams spectral sequence.

Lemma 1.1. There is a 2-local stable map W22j : BO(n) = "% bu
which is detected by w? € H*BO(n) for each j > 0.

Proof. Let A be the mod 2 Steenrod algebra and Zy) be the integers
localized at prime 2. The Adams spectral sequence (for the appropriate
spaces or spectra X and Y)

Ey* = Bot’{ (H*(X), H(Y)) = {Y, X}, ® Z)

can be used to compute BP' Y = {Y, BP}_, and lf)\ﬁa)Y = {Y, bu()} -« By
a well-known change-of-rings isomorphism [7] we can replace

Ext*(H* (BP A X), H*(Y)) with Extyo o, m}(fl*(X), H*(Y))

and replace
Bat’*(H* (buy A X), H*(Y)) with Baty*(H*(X), H*(Y)),

where E[Qo Q1,- -] is the exterior algebra on the Milnor primitives [6] and
E = FE[Qo, Q1] (see [7] and [8]). The forms of Adams spectral sequence we

use are

EmtEfQonl,..](Z/Z ﬁ*(Y)) — BP Y

and

Exty"(Z/2, H*(Y)) = bugyY.

After changing grading, we compare /BTD*BO(n) with lf)zzz)BO(n) under the
map BP — bug) described above. For each j > 0, W. S. Wilson [9] has
showed that ng € H*(BO(n)) is a permanent cycle for ETD*BO(n). Hence
ng € H*(BO(n)) is a permanent cycle for ?)\12?2)30(71) for each j > 0. Thus
we have a 2-local stable map W22j : BO(n) — S>> bu for each j > 0. This

completes the proof. O

Remark. If n > 4, Lemma 1.1 is also true for w%jwzl € H*BO(n)
by the same argument as above. It means there is a 2-local stable map
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W;ijl : BO(n) — S48 by, which is detected by wzj 2l ¢ H*BO(n) for
each j+1>0.

Let A be the mod 2 Steenrod algebra and F = E[Qq, Q1] (Qo = Sq¢* and
Q1 = Sq® +S¢>Sq') be an exterior algebra which is a subalgebra of A. Since
FE is a subalgebra of A, H*X is an E-module for any space or spectrum X.
If we know S¢*(w,,) for each k and m, then we can describe the E-module

structure of H*(BO(n)) by Cartan formula Sq(zy) = Z Sq?(2)Sq" 7 (y)

and the fact that Qp and @ act as derivations (that is, Qk(acy) Qr(z)y +
2Qk(y)). We provide Wu formula here.

k

Proposition 1.2.(Wu formula) S¢*(w,,) = (m_k;rt_l)wk_twmﬂ
=0

a(a—1)- (a b+1)

5 1s taken mod 2.

where the binomial coefficient (Z) =
Proof. See [10]. s

To show that H*(VY.* HZ/2) & A®p M for an appropriate o and a
free E-module M, we geed more information. We state the notation first.
Suppose M and N are left A-modules with the actions ujs and pp, then
M ® N is also a left A-module with the action defined by the composite

w®M®N A®T®N

ARM®N ARARM®N AoM® Ao N"™3' Mo N,

where 1 is the diagonal map of A and T'(a®b) = (—1)4medimb(px 4) is the
twist map. We write p(M ® N) to indicate M ® N with this left action.
Similarly, (M ® N) indicates the extended A action over M.

Proposition 1.3.(Proposition 1.7 of [11]) If B is a Hopf subalgebra of
A, M a left A-module, N a left B-module, then

p[M® (A®p N)| = [A®p p (M ® N)]
as left A-modules.

Since B is a subalgebra of A, we know that M is a left B-module. Hence
p(M ® N) is a left B-module with the action:

¢|B®M®N

BoM®N BeBeMoN 25N Be MoBaN "MEMN Mo N,
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where ¢|p is the diagonal map of A restricted on B and ujs|p is the action
of M restricted on B. Also we know that A is both a right B-module and a
left A-module, hence A ®p N is a left A-module with the extended action
over A. For the detail proof we refer the reader to [11].

Note: Let N be Z/2 and B be E in Proposition 1.3. Since
pM & (A®s Z/2) =p [(A®p 7/2) © M) and p(M © Z/2) = M
this isomorphism (see [12] and Proposition 1.1 of [11])
0:1 [Awg M) Sp [(A®g Z/2) @ M]

is given by f(a ® 7) = Y. d ® 1 ® a’x, with inverse 7 1(a ® 1 ® x) =
Sad' @ x(a")z, where ¥(a) = > a’ ® a” and y is the conjugation map.

Now we are ready to prove our theorems, that is, the stable splittings of
buANBO(n) (n =2, 3, and 4) and bu A BSO(2n+1) (n =1 and 2). Although
the proof of the general case still escapes us, it seems that the general case
can be solved by the same argument which we provide later. We believe that
bu A BO(n) splits as a wedge product of suspended copies of HZ/2, bu, and
bu AN RP* at prime 2 for each n > 2. Also, we believe that bu A BSO(2n+1)
splits as a wedge product of suspended copies of HZ/2 and bu at prime 2
for each n > 1.

2. The proof of theorem 1

Lemma 2.1. By Cartan formula, Wu formula, and the fact that Qg and
Q1 act as derivations, the E-module structure of H*(BO(2)) is as follows:

QO(wl w2 ) Q1(w1 w2 ) QOQl(wl w2 ) 0.

27+1 2i+1 2541 27+1 232+1 212+2
Qo(wi'wy’ ™) = wiwy ™, Qu(wiwy’ ) = wiPwy T fwi T wy
23, 25+1 2 2 2j+2
QOQl (wllwzj ) — i+ 2] .
2i+1,. 27 2 2 23 2i+1, 27 2i+4. 27
Qo(wlz-i- w2]) — 1z+ w2]7 Ql(,wlz—i- w2]) wlz-i- w2]’

QoQ1 (Wi wy’) = 0.

Qo( 2i+1 2J+1)_0 Q1( 2i+1 2j+1):w%z‘+2w2j+2’

2
QOQI( 21+1 2]+1) —0.
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We omit the action 1 in E since 1(z) = z for any = € H*(BO(2)). We
illustrate the E action on wy € H*(BO(2)) as follows:

/ N\
w2 j wiws9 w%wg @ w:{’wg
AN hN
2 @1 @1
4 wiws @g w%w%
N\ /"
Qogr

One should notice that w?wy and wjw? also have the nontrivial E-action,
although we do not point out.

Lemma 2.2. As an E-module, H*(BO(2)) is isomorphic to D* & M,
where D* is an E-module with the Z/2-basis {w!, ng | i, 7 >0} and M is
isomorphic to a free E-module H*(BO(2))/D* with E-basis {w%iwgﬁl | 4,
j >0

Proof. By Lemma 2.1, we know

(xa) Qo(wz) = wiwz, Q1(ws) = wiwz +wiws, QoQ1(ws) = wiws.

(xb) Qo(wr) = wi, Q1(w1) =wi, QoQ1(wi)=0.

Using that Qo and @ act as derivations, that is Qi(zy) = Qr(z)y +
xQk(y), it is easy to see that D* is an E-module by (xb) since the E-action

is closed on D*. Hence it remains to prove {w3! w? T4, j > 0} is a basis
of the free E-module H*(BO(2))/D*. Since 1(w¥ w?ﬂ) = w%iw?ﬂ and
Qo(wwF ) = w1 wd ™ by (xa), we know w2wy T and w? 1wt can

be generated unlquely By con&dermg (xa) Qq(w ng Jr1) = w%“gw? LR

2z+1 2]+2 2z+1

, we know wj ( j > 1) can be generated uniquely since we

have shown that w2’+3 g; +1 can be generated uniquely. Finally, we know

1 i 25+2
(xa) QoQ1(w¥wy*) = wi 2w *?,

hence w%ing (i, 7 > 1) can be generated uniquely.
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This completes the proof. O

Proof of Theorem 1. The proof of Theorem 1 is similar to that proof in
[2]. Define g; to be the composition

bun Vv _W22j

Yk :
g1 :bu A BO(2) = bu AV (buASY) S Vv (buASY),
0<j 0<y

where VV22 7 is the 2-local stable map in Lemma 1.1 and g is the multiplication

of the bu spectrum. Define g5 to be the map
g2 1 buABO(2) "5 bun RP>,

where det denotes the map which classifies the determinant bundle. For b =
wiwdt e HATT2(BO(2)), let gy : BO(2) — SS 22 H7/2 represent
b. Let i : bu — HZ/2 be the multiplicative map and p’ be the ring structure

map of HZ/2. Now we construct the map gg by the following composition:

buAVgy 2t Aj+2 Yv 2i4+45+2
tbuABO(2) = b HZ/2 HZ/2

go:buABO(2) = u/\[OS\/MZ /Hogvm_z /2,

where v : bu AN HZ/2 NIl HZ/2N\NHZ/2 “, HZ/2. Hence we have the

map

2i+-4j+2
g = go\/gl\/ggzbu/\BO(2)—>[0<\/ijZ HZ/2]

4j ~
v[ozjz bu] V [bu A RP*].

Now we show that g induces an isomorphism in mod 2 cohomology.
Recall that H*(bu) =2 A//A(Qo, Q1) = A®p Z/2 and the Kiinneth theorem
gives

-1

H*(bu A X) = H*(bu) @ H*(X) = (A®p Z/2) @ H*(X) "~ 4 @ H*(X)

for any space or spectrum X where #~! is an isomorphism described in

the note after Proposition 1.3. In Lemma 2.2, we show that H*(BO(2)) is



2007] THE COMPLEX CONNECTIVE K-THEORY OF BG 695

isomorphic to D* @ M as an F-module, hence

H*(bu A BO(2))
>~ H*(bu) ® H*(BO(2)) = (A®E Z/2) © H*(BO(2))

91 -
~ Ap H*(BO2)ZAp(D*eM)=2 A D*® A M.

The class {w?t, w%j | i, j > 0} give a Z/2-basis for the E-module D* which
is isomorphic to H *((0\/ %) v RP>). Consider the composite maps
<J

o A®g [ﬁ*(& S¥) @ H*(RP™)]
J

lR=

(A®p Z/2) ® ﬁ*(<0¥j54j )V RP™) =~ H*(bu) ® ﬁ*(<0¥j54j )V RP>)

1

(v bu A SYIV [buh RP) Y s (hu A BO(2))
= H*(bu) @ H*(BO(2)) = (A ®g Z/2) ® H(BO(2))
"~ Awp B(BOQ) = Aoy (D @ M)

~ A@pD*®Ap M2 Agy D*
where p; is the projection map. For 1 € A and % 1 ¢ I;VU(O\/ 547, since
<J
P(1)=1®1 and x(1) =1,

we follow the above oy diagram then we have the following diagram

a:te>X 7160 b1e10(3 " 100)
H1®(Z4j1@0)%1®(z4j1@0)
D g s 1ewd o 1010w
C1ouw? 510wl @0 - 1owd @0f 1 g wd.
The A-action on A ®p [ﬁ*(0\</j54j) ® H*(RP>)] is just on A and so is
A®pg D*, thus

45 ,
Oél(a®(zjl®0)):a®w§],
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for cach a € A and Y% 1 € HY (0\</ S$47). Similarly,
j

a1(a® (0D w})) =a®w,

for each a € A and w € H'(RP>). Hence o is an isomorphism and this
implies (g1 V ¢2)* takes H *([0\/ bu A SY]V [bu A RP*]) isomorphically onto
<J

A®g D* = H*(bu) ® D*. Now we consider the map

*

oo YV S HZ/9) B B (bu A BO2)) = B (bu) @ H(BO(2))

~ p—1 ~
~ (A®p Z/2) ® H'(BO(2)) = Aop H (BO(2)) = Ao (D* & M)
~ AQE D*d AR M B Agp M,

where po is the projection map. By the construction of the map gy, we

see that ¢ sends the generator S 2T4+%1 ¢ E[*(0<\/' SOEHUT2 g 7/9) to
<i,j

1 ®w%iw§j+l € H*(bu A BO(2)) for each i > 0 and j > 0. Let N be Z/2, A
be A, B be E and M be M in Proposition 1.3. We have

pIM ® (A®g Z/2)] =21 [A®E p (M ® Z/2)] =1 [A®p M].

The A-action on the left is by the diagonal and this is isomorphic to (A ®pg
Z/2)® M. The A-action on the right-hand side is just on A. Since x(1) =1,
we follow the above as diagram then we have the following diagram

2i+4j4+2 g it it
Qs : E 13 1@ wdwy ™ = 1@ wiwy’™
. . 9—1 . . . .
= 101wl 'S 10 wley ™ = 19 (0@ wiwy ™)

= 081 @uwiwd T B 1o wiwit

Hence

2i44j+2 —
az(d 1) =1@wiwy "

for each generator S-2 %21 of the free A-module ﬁ*(0<\/' ST 7/9).
Z7-]

| 4, 7 > 0}, this means
A®p M is a free A-module with basis {1 ® w%iwgﬁl | 7, 7 > 0}. Hence

ﬁ*(0<\/' S22 7/9) and A ®g M are both free A-modules and have
_Z7]

. ) . . i 2541
Since M is a free E-module with basis {wwy’ "
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the same rank. It follows that s is an isomorphism and this implies g take

H* (0<\/ S2#HIH2 [ 7/9) isomorphically onto A® g M. Now we have shown
<i,j

that

~ 2144542
By > 79 v Z b v [bu A FFP))

9LV e (b A BO(2)) 2 B (bu) @ H*(BO(2))

>~ (A®p Z/2) ®ﬁ*(BO(2)) > AQRp ﬁ*(BO(2)) 2 Ap (D*® M)
YAQp D*"® ARy M

is an isomorphism, hence ¢ induces an isomorphism in mod 2 cohomology
and this is an equivalence at prime 2. ]

3. The Proof of Theorem 2

Lemma 3.1. By Cartan formula, Wu formula, and the fact that Qg and
Q1 act as derivations, the E-module structure of H*(BO(3)) is as follows:

2 2 2
Qo(wflwzngk) Ql(wl w2jw§k) QOQl(wl w2jw§k) =0.

QO (w%zw§]w§k+1) 22+1w33w§k+1

Ql(wl ng §k+1) f”?’w?wgk“ + w2z+1 §]+1 2k+1 4 ) ‘w§Jw§k+27

Qle(w1 w?w%k“) - %z+2ng+1w2k+1 + w2i+1w§Jw§k+2_

Qo(wflwgﬁlwgk) — %i-l—lng-i-l gk + gngk-i-l’

Q1 (w? w§g+1w§k) = w23 2]+1 2 +w2z+2w§]w§k+1 +w%i+1w§j+2w§k
+w%z 2]+1 §k+17

QoQ1 (w? w?“wgk) — %z+2w2j+2w§k + w%ingw§k+2

Qo(wdiwf 1 ud ) = wiiud udh+2,

Ql(w%’wgﬁlwgk“) _ w%z+2w33w§k+27

Qou(wifwy i) = 0.

Qo(w%%i-lw?]wgk) 2z+2w§Jw§k’ Ql(w%i—i-lngwgk) _ w%i+4w§jw§k’

QOQI( 2i+1 2] Qk) 0.
2
Qo(w%z—i-lwz]wgk—i-l) _ 0’
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241 27 2k+1 2'22'+12k1 241 2 2%k+2
Q1(w 1Z+ w2jw3 * )= 1ZJr wzj * + wy " w2jw3 * )

QOQI( 21+1 2] §k+1):0.

21,25+ 2k 2it1y, 27, 2h+1
Qo(w] 3) = wi T wywy"
2t 20 2k 2043 20 KL 20420 2542 2k | 20 24 2k
Q1w wy! T ws") = wy w3” T Fwy tw w3z,
%41 2g+1 2 g2ty 2 w2k 2i+2,,2+1, 2k+1
QoQ1(wy 30 ) =wi T wyw +wy TTwy ws

2+1, 25+l 2k+1y _ . 2i+1, 2§ 2k42 242, 2j+1  2k+1
Qo(wy ™ wy T wi™ ) = wi' wy wytT + w T wy T wgt T
2ty 24 Ly 2043 2 2k +2 %itd. 2j+1 k41
Q1 (wy ) = wi" P wy w4+ wi T wy T ws

2i+1 2+1 2k+1
QOQl( i+ J 3+):O.

Lemma 3.2. As an E-module, H*(BO(3)) is isomorphic to D* & M,
where D* is an E-module with the Z/2-basis {wiw%j |i+j >0} and M is
isomorphic to a free E-module H*(BO(3))/D* with E-basis {w? w§]+1w§k,
whw w1, j, k> 0},

Proof. By Lemma 3.1, we know

(xa) Qo(ws) = wiws, Q1(ws) = wiws + wiwows + w3,

QoQ1(w3) = wiwaws + wiwi.

(*b) Qo(’wQ) = wiwa + w3, Ql(’UJQ) = w‘%wg + ’w%ZU3 + wlwg + wows,

QoQ1(ws2) = wiws + w3.

(x¢) Qo(wr) = w?, Q1(w1) = wi, QoQ1(w) =0.

Using that Qg and )1 act as derivations, it is easy to see that D* is an F-

: : 2i 2j+1 2k 21, 2] 2k+1 o

module by (xc). Hence it remains to prove {wi'wy’ ™ w3®, wi'w; |, 7,
k > 0} is a basis of the free F-module H*(BO(3 ))/D* Since 1(w? w%JH 2k)

= w%wzjJrl 2t and 1(w? wzngkﬂ) = w%wzngkJrl by (xb) and (xa) re-

spectively, we know that w?'w gg i w2k and w? w? ng can be generated
uniquely. By

(xa) Qo(w? 'w2jw§k+1) %i—i—lngwgk—i-l

and

(xb) Qo(w? wgﬁl 2k) = w? w2yw§k+1 _|_w2z+1 2j+1w§k’
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1 2 . .
we know w2l+1wzj w§k+1 and wy can be generated uniquely since

w%lngwgkﬂ can be generated umquely Since (xb) QoQ1(w? w§]+1)_ 2i+2

W22 2j+2 .
]+ 24245772 € D*, it means w%’w2 w% can be generated

25+1
2z+1 ]+ w2k

—|—w2’w w3 and wy

2 4

umquely. Therefore w ’wg ws can be generated uniguely by considering

(xb) QoQ1(w? wgﬁl %) 2”2 2J+2 2+w1 w2]w§

Repeat this argument, hence w%’wzj w%k (k > 1) can be generated uniquely.

Also we see that

9 . 2 Ry . 941
(*a) Ql (,w2 w ]w2k+1) — %z+3w2]w§k+l +w%zw2]w§k+2 +w%z+1w2]+ wgk-ﬁ-l’

hence w2’+1 §]+1w§k+1 can be generated uniquely since we have shown

2 i 2 .
2Z+3w2] w2 and w%lw; w22 can be generated uniquely. Now

(*a) Qle(w ngw§k+1) 22+2 2J+1 2k+1+w2z+1 gngkw

and

(xb) Q1 (w? ng—i-l %k) :w%i—i—l 2j+2 2k+w1 w§J+1 2k+1_|_a

w; w§k+1. We only concentrate on wi

2043, 25+1, 2k
wy” W3

; 2j+1
where o = w2l+3 J+ wzk + w2l+2

§]+2 2k+w2z 2]+1 §k+1 and

24 2J+1)

since we have shown that wj

P )

w%l+2w2j w2 can be generated uniquely. For k = 0, (xb) Q1 (w?
i 2541 i+1, 2j+2

+wiwy’ T rws 4 of, where w¥ w2 € D*

ated uniquely, hence w%lng Htlws can be generated uniquely. Also we know

; 2542
w%z+1w2J+ and o/ can be gener-

it 2j+1 2
(xa) QoQ1(w¥ w2 wg) %Z+2w2j+ w3 +w2’+1w2jw§,

hence w%”lwg] w% can be generated uniquely. Repeat this argument,

25+1 275+2 25+1
(*b) Q (w%szH_ w3) _w%z—i-l 2]+ 2 —l—w%lw2j+ wg —l—o//,

and o can be generated uniquely, hence w? ng +1w§’

2j+1
can be generated unlquely. By induction, we know w%’wzjJr w§k+1

] 25+2
where w%z-ﬁ-l 2]+ 2

and

w%’”rlng wg’f (k > 1) can be generated uniquely.

This completes the proof. O
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Proof of Theorem 2. It suffices to define the homotopy equivalence map.
Define

bun v W3 Vi ,
g :buAnBOB) = buA[V (buASY)) D v (buASY),
0<y 0<y
g2+ bu A BO(3) "8 bu A RP™,
g3 bu A BO(3) ™52 bu A [BO(3) x BO(3)] ™57 bu A [BO(3) A BO(3)]
bun v W2I Adet ' VUARP>® _
= AV (buAST)ARP®]T —  V (buASY ARP®),
0<j 0<j
and
go: bu A BO(3)
burVgp Qit4j+2+6k 2i+4j+6k-+3
b
= bun [[Oszv’j7k > HZ/2]V [Og\i/,j7kz HZ/2]|
Vv 2i+4j+2+6k 2i+4j+6k+3
b
HZ/2 HZ/2
oskajzz / ]V[OSkajzz /2

where A is the diagonal map, ¢ is the quotient map and the other maps are

defined as the proof of Theorem 1. The map

(VUARP)*

gi cH*(V (bu ASY ARP®)) = H*(buA[[V (buASY)]ARP™))
0<j 0<j

(bun v W3 Adet)*
7 H*(bu A [BO(3) A BO(3)))

CrD™ Fe o 1 [BO(3) x BO3)]) ™25V H* (bu n BO(3))

shows that
4j ~ (VuARP®®)* 4j 4
gii1ey 1ow, ' —  1e1e) 1eu)

(bun v W3 Adet)*

j (bunq) (bunA)* 2j

1®w§j®wi — 1®w§j®w’i = 1@ wiwy.

By the same argument as the proof of Theorem 1, this implies (g1 V g2 V g3)*
takes

H*([V bu A SY]V [bu A RP®] V[V (bu A SY A RP®)))
0<j 0<j
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isomorphically onto A @z D* = H*(bu) ® D*. Repeat the argument in the
proof of Theorem 1, we know g = ggV g1 V g2 V g3 is an equivalence at prime
2.

4. The proof of Theorem 3

Lemma 4.1. By Cartan formula, Wu formula, and the fact that ()¢ and
Q1 act as derivations, the E-module structure of H*(BO(4)) is as follows:

2 2 2
Qo(wiwy'wiui) = Qu(wiwy’wi*ui) = Qo1 (wi'wy witwi') = 0.

2 25 2k 2l+1 2i+1, 25, 2k, 2l+1
Qo(wi'wy’ w3 wy ) = w' wy witwy T,

2, 2j, 2k 20+1 22 g2+ 201 208,20 2k 21+
Q1 (wi'wy’ ws"wy ) = wi'wy ws + w T wy w3t w
2 1
B R T R T L

% 25 2%k 2041 2i+2,,2j+1, 2k, 2+1 241, 25 2k+1, 2041
QoQ1 (wi'wy w3 wy ) = wi T wy T wstw T +wi wy wg T w

2], 2k+1,,21 2it1,, 25, 2k, 2
Qo(wl Wy W3~ Wy ) = wiw; Ws™ Wy,

2% 2k+1. 2l 2420 2K 2,21 203,20 21,21
Qu(wf'wy w3 wi’) = witwy'w} +wp " wy wg

2942 2] 2k 2l+1

2 1
+w%l+1w2]+ §k+1 2l+w wy w3 wy

22K g2l 242, 20 Ly 2 o1 204327, 2k, 20+1
QoQ1 (wi'wy’ w3 wih) = wi T wy’ M wi +wy Wy w3yt wy

2
+w2z+1w2] w§k+2 2l

2§ 2k+1. 20+1 2§ 2k+1. 20+1 242 2j 2k2l2
QO(’wl’wzjwsJr +)—0 Ql(w w9w3+ 4+) 1ZJr 2] *

25 2k+1. 2041
QOQl(w1 w2jw3 * 4+ )=0

2541, 2k 20y 2it1, 25+ 2k, ol 2 2+ 20,
Qo(wi'wy’ " witwi') = wi™hwy T witwl + witwy v}

2% 2j+1 2k 2l 28 2L e A 202 2 e 1
Qr(wi'wy’ w3t wy) = wi T wy +wj 2 w3

27+1 2 2 2742 27 2k+2
QOQl(wl w2J w%k 21) w? i+ J 2k 2l+w1 w2jw3 + 2l

%, 251 2h 2041 2% 2h+1,,20+1
Qo(wi'wy’ " wiwy ) = wy w2 w3 wy o,

21,2541, 2k Wit 242 25 2k+1, 241 2%+l 25 2k 2042
Q1(wi'wy’ w3 ) =wiTwywy T wr T+ wy T wy witwy T,

2j+1_ 92k 20+1 242 2 2k 2042
Qle(w1 wy T wsTwy ) = wi T wy wytwy T

2i, 2541, 2kt1, 20y _ 20, 25, 2k+2, 21
Qo(wy Wy W3 wy') = wi Wy™ W3
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20,2+, 2K+ 1, 21 22, 2 2y 2 | 2Ly 2y e 211
Qu(wi'wy " ws" T wy) = wi wy wy +wy " wy ws

27+1
+w22+2 j+ %k 2141

9

2j+1, 2k+1, 21
QOQl(wl ’wzj Ws * 1) =0.

2i, 2j+1 2k+1 204+1\ _ . 2i4+1, 2j+1 2k+1, 21+1 2i, 25, 2k+2  2l+1
Qo(wi'wy’ w3 wi ) = wi T wy T wy T wy T+ witwy wyt T wy

Q1(w wg]-ﬁ-l §k+1wil+1):w%i+3w§j+1w§k+1wil+l+w2l+2 2j §k+2 2l+1
+w2i+1w2j+2w§k+lwzl+1 +w? 'w2]+1w§k+2w2l+1
+w22+1 gg §k+1 zl+2+w22+2 2j+1 gk 2l+2

Qle( 2i 2]-‘1-1 §k+1 zl+1) %z+2 §J+2 §k+1 2l+1—|—w w%ngk"'gwilﬂ
+w %z+3 §J+1 2k 2l+2+w22+2 3] §k+1 il+2'

Qolw %H—lwg]wgkwil) _ w%z-ﬁ-ng]wgszl’

241 2j 2k 9l 244 25 2k 2
Q1(w" wy w3 wy') = wi T wy wytwy’,

2
QOQl( 2z+1w2]w§szl) =0.

2i+1 27 2k 21 1
QO( i+ w2]w3 + ):0’

%41 25 2%k 241 2it1,,2, 2k-+1 Wi+l 2%42 241 2%k  20+1
Q1(wi wy w3 wy ) = wi T wy wy twy TTwy w3yt wy

)

2
QOQl( 2z+1w2]w§kw2l+1) 0.

27
QO( 2z+1 ] §k+1 2l) 0’

2ty 20 DRyl g 20ty 2 22, o1 2it2, 251, 2k+1, 21
Q1 (wi™ wy’wy 1) =wi T wy wy twy Twy w3t wy

2
+w22+3w2j w2k wzl—l—l

2
QOQl( 27,+1,w ]wgk-‘rl 2l) =0.

201,20, 2k 1, 2041 2042, 27, 241, 2041
Qo(wy Wy W3~ Wy ) = wi' Wy Wy Wy

)

Ql( %H—l g; 2k+1 ilﬂ) %1—1-4 g; 2k+1 2l+1+w2’+3w§]w§k 2l+2

QoQ1 (w 2z+1w§]w§k+l 2l+1) _ w%ZHw?w%kwilH.

QO( 2i+1 2j+1w§kwil) _ w%z—l—lwg]wgk—l—lwil’

Ql(w%i-i-lng—i-lw%kwil)_w%z-‘ri’:wg]wgk-‘rl 2l+w2z+2w§]+2 gk 21
+w2l+2w§]w2szl+l +w%z+1w§]+1w§k+lwzl,

QoQ1 (w? 2i4+1 2]+1 gk 21) 2z+3w2jw§szl+1+w2z+1 3] §k+2 21
+w%z+2wga+1w§k+1w

2+l 2j+1 9k 2041\ _ . 242 2j+1 2% 241 2t 27 o1 2
Qo(wi™ wy! w3 wy ) = wi T wy T witwi T + wy wy
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241 241 2k 20+1 2z+4 2]+1 2%k 2l+1 243,27, 2k+1,, 2041
Q1(wiwy T wstw ) =w w3 + wi T wy w3 T wy
2
Tw 2z+2w2]w2kzw2l+2

241 2j+1 2k 20+1
Qle(wl’Jr wy’ T ws w4Jr )=0.

%1, 241 k41 2\ _ 242 2j+1 k41 2 2+1, 2, 2k+2, 2
Qo(wi"™ wy’ T wi T wy) = wi T wy T wsT T wy +w T wy wyt Wy

2i+1 2j+1 2k+1. 20\ _  2it+4 2g+1 w2y 2143 23 w22y 2l
Q1 (wi w3 Twy') = wi ws +w wi
2 2 1
+w2z+2w2]w§k+1 2l+1+w2z+3 -+ %kwil—i—l’

2t 2Ly DL 21y o i 2L 2k UL | 208, 20, 2k 2L
QoQ1(wy wy T wy') = wi wy’ T ws +wp T wytwyT  wy

Qo(w%i-i-lwg]-i-l §k+1wzl+1) — w%i+1w§jw§k+2wzl+1,

Q1 (w2 2j+1w§k+1wil+1) :w2i+3w2jw§k+2w2l+l+w2i+2w2j+2w§k+lwil+l
+w2z+2 gg §k+1 20+2 w2z+1 §j+1w§k+2wil+1
—i—w%”?’ng“w%kwil”,

QoQ1 (w> ™! 2g+1 w2k ly2Hly = w2i+2w2j+1w2k+2w2l+1

w3 4 3 4
9
+w2z+1 2jw§k+3wil+1.

Lemma 4.2. As an E-module, H*(BO(4)) is z'somorphic to D* @& M,
where D* is an E-module with the Z/2-basis {w’iw?, w2 Twd i >0, 5+1>

0} and M s isomorphic to a free E-module H*(BO(4))/D* with E-basis

20,0120 2k, 2041 2, 27 2k+1 20,201 2k, 2020, 2041, 2k+1, 2141
{w?wy wikwi™ | wiwywi T wl, wwy? T wkw wiiey T ws Twi T

w%zng-i-l 2[+1 | Z ], ]6' l> 0}
Proof. By Lemma 4.1, we know

(*a) Qo(ws) = wiws, Q1(ws) = w3wy + Wiwy + wiwows,
QoQ1(ws) = wiwgwy + wiwswy.
(*b) Qo(ws) = wiws, Q1(w3) = w3 + wiws + wiwsws + wiwy,
Qle(w:s) = w%wgwg + wi’w4 + wlwg.
(x¢) Qo(ws) = wiws + w3, Q1(ws) = wwy+wiws+wiw3+wows+wiwy,
Qle(w2) = w%w% + wg.
(*d) Qo(wawsws) = wiwswswy + Wiws,
Q1 (wowswy) = w%w2w3w4 +w%w§w4+w1w§w3w4+w2w§w4+w1w3wi

+w%w2wi,
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2, 2 3 3 2 2 2
QoQ1 (wawswy) = wiwswswy + wiwy + wiwewi + wWiwswy.

(xe) Qo(waws)=wzws, Q1(wawy)=wiwsws+wiw;, QoQ1(wows)=wiwy.

(xf) Qo(wr) = w%, Q1(wr) = w‘f, QoQ1(wy) =0.

Using that Qo and @)1 act as derivations, it is easy to see that D* i

an EF-module by (>|< f). Hence it remains to prove that {w} w? w%szlﬂ

2 2§ 2k+1 2T T 2k 2l qp2iqp2d Ly 2k, 2041 2i, 25 +1, 2041
wi'wy wit !, witwy’ T wiFwll, witg wyTwy T witwy T wy | i,
g, k1> O} is a basis of the free E-module H*(BO(4))/D*. Since 1(x) =

for all z € H*(BO(4))/D*, the basis can be generated uniquely. Consider
2i+1,,27, 2k, 20+1 - 2141, 27, 2k+1, 2

the Qo action on the basis, hence w]"" w5y’ w3 w4 , wi T wywy Wy,
2j+1 2j+1 2
w2k 2t gkﬂwi”l and w¥wy wzw? ! can be gen-

erated unlquely. We con51der the complicated cases below.

First, we consider

(xd) Qle(w%ngﬁl 2k+1w2l+1) = w2i+2w§j+2w2k+1w21+1

27 2k+3 2l+1

2 2j+1, 2k wil?
+wiwy w w + Wi s +

27
_|_w22+2 J §k+1 il+2'

since we have

shown that other elements can be generated uniquely. Since w%zwg w3w21+1

We concentrate on w2 2wy T2l 2H 1 gy 20427 4243, 2041

can be generated uniquely, so can w%”wg] 2 wsw 2l+1 . Hence w%lng wg’wzlﬂ
can be generated uniquely. This means w%le w%“ 2l+1 can be gener-

ated uniquely by induction. Also we know (xa) Ql(wl w2 w%kwilﬂ) =

2i 27 2k+1 2l+1 2i+1 2j+1 w2k 2l+1
Wy Wy W3 +wy ' wywy

2j+1
uniquely. Hence w%”lw; gkt

+ a, where a can be generated

can be generated uniquely.

Secondly, we consider

2j+1 2 2 2j+2 25 2k+2

(*C) QOQl(wl w2J %kwil) i+ J 2k 2l +w w2Jw3 + wil

and (xe) QoQ1 (wwd M uwd+Y) = w2 w2, Since wiwy € D*, this
2,27, 2

implies wiwy’ w3 can be generated uniquely by considering

2541 ; 2j4+2 i 2
(xc) Qle(w%’wzJJr ) = w%“rzwz]Jr + w%zw;wg

Repeat this argument on (*c) Qle(’wl w§]+1w§k) %2+2 §J+2 2k 4 w
ngwgk“, it follows that wj ng w2k (k > 1) can be generated uniquely.

Also we know w%lw? w2 (i, 1 > 1) can be generated uniquely by (xe) QoQ1
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2j+1 2 2
(2w Ty = w20 w2 hence w¥wd wiw? (I > 1) can be gen-

erated uniquely by considering
(x¢) QoQ1(w? 2i 2J+1 Zl) _ %z+2 §J+2 2 4 w2 ngwngl
Repeat this argument on
() QoQu(wiiwy’ M wiFui) = wiPwy PwiFuwi +wihwy Wi,

we see that wi w? w%szl (k, 1 > 1) can be generated uniquely by induction.

Recall that D* is an E-module with the Z/2-basis {wiws!, wylwi | i > 0,
j+1>0}.Ifk=0and = 0, then w¥ w2 € D*(i+j >0).Ifk=0and ! > 1,
then w?wzl € D* (i=0,1>1) and we have shown that w%iw? 2> 1,
[ > 1) can be generated uniquely. If £ > 1 and [ = 0, then we have shown
that w2iw2] 2k (k > 1) can be generated uniquely. If If k > 1 and | > 1,
then we have shown that w? ngwzkwm (k > 1,1 > 1) can be generated
uniquely. Hence the case w%lw; w2*w¥ which belongs to H*(BO(4 )) /D*

can be generated uniquely. By considering (xb) Ql(w%ngw%kﬂ 2 =

2 25+1
21 ]w§k+2 2l+w22+1 2J+

wi'w, §k+1 2 + «, where a can be generated un-

iquely, it follows that w%”lwg] +1w§k+1 il can be generated uniquely.

Thirdly, we consider

%i )2 g 241y o 2042, 21, 2k, 2041 2i+1,,25, k41, 241
(xa) QoQ1(wi'wy w3 wy ™) = wi wy! w3zt wy T + wi'T wy w3t wy

and
2i,, 2541, 2k41, 2041y 2041, 2j+2 2k+1 2l+1
(+d) Q1(wi'wy " ws T wy ) =wi wy

2 1
+w1 ]+ 2k+2 2l+1+a

. . 2 1 . .
where « can be generated uniquely. Since w%’wzj + ilﬂ is contained in the

basis, w%”lwg] wnglH can be generated uniquely by considering

27, 2l+1 2i+2, 2j+1_ 21+1 2i+1,, 25 20+1
(*a) QOQI(U)2 w ]w4+ ) 1Z+ 'w2] w4+ +w11+ wzngw +

Therefore w%lng +1w§wzl+1 can be generated uniquely by

2j+1 ; 27492 S 9041
(+d) Qi (wiwy Mwawi™) = wi™ wy? Pwgw T + wiwy w4,

where o can be generated uniquely. Repeat this argument on (*a) QoQ1(w?
wi wFw ) and (xd) Qq(w¥wy T w2+ it follows that wws’t!
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wiFwi T (k> 1) and w2l+1w§]w§k+1 2+1 can be generated uniquely by

induction.
Finally, we consider
2,27 2k+1 o242 25+1 2k+1. 9] 2i4+1, 25, 2k+2, 2]
(xb) QoQ1 (wi'wy’ w3 4)—w1 wy wy wi HwT wywyt Wy
and

2i,,25+1 2I<: w2 2z+1 2542 2k 2l 2j+1 2k+1 21 ’
(xc) Q1(wi'wy’ 1) = wj 5wk wi + wiwy T wi T wi + o,

where o and o/ can be generated uniquely. Notice that w2Z+1 gj e D*. If

k=1=0, then w? w2] 1 w3 can be generated uniquely by considering
2j+1 241, 2j+2 i 2541
(xc) Q1(w¥wy’ ™) = witwy’ T + wwy T ws + o,

where o’ can be generated uniquely. By considering

(xb) QoQ1(w¥ w2 Twg) = w2y gJHw + w2’+1w§]w§ +a,

where a can be generated uniquely, we know that w2Z+1 g; w3 can be gen-

erated uniquely. Repeat this argument on
2j+1

(x¢) Q1(wiwy” M wiFwi)

and

(+b) QoQ1(w¥wy w3 wd),

this implies that w%iw? ngkﬂ and w? T w 33 2k (k > 1) can be generated

uniquely by induction. Notice that
2j+1 '
(*e) Ql(wl 2J+ Zl—i—l) — w%z—i—l w; w2l+2 + a,

where « can be generated uniquely, hence w%iﬂng wil (I > 1) can be gener-
ated uniquely. By the same argument as above, we see that w%ing +1w§k+1wil
(I > 1) and w22+1w33w§szl (k, 1 > 1) can be generated uniquely. From

the above argument, we know that w¥ w3’ ' w2 and w¥wy wikw?

(k41> 0) can be generated uniquely. This completes the proof. O

Proof of Theorem 3. It suffices to define the homotopy equivalence map.
Since n = 4, there is a 2-local stable map W/ W2l : BO(4) — S48 by
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which is detected by w2j 2l ¢ H*BO(4) for each j + 1 > 0 by the remark

after Lemma 1.1.
Define

buA0<\(+lW22j wi' . ‘\ilu .
g1 :bu A BO(4) AN bu N[ vV (buA S4]+81)] OV (bua S4j+8l)’
J 0<j+l
g2 : bu A BO(4) DUt b A RP®,

g3 - bu A BO(4) "% bu A [BO(4) x BO@4)] "3 bu A [BO(4) A BO(4)]

bquzngj Adet ' VIARP® '
— bu N[V (bu A SY)ARP®]’ — V (buASY ARP®),
0<j 0<j
and
bu/\\/gb
go:bu A BO(4) — buA \/Z HZ/2 Z HZ)/2],

where A is the diagonal map, ¢ is the quotient map, o = 2i 445+ 6k + 81+ 4,
2i4+4j+6k+3+8l,2i4+45+2+6k+8l,2i+4j+2+6k+3+8+4, and
2i +45 4+ 248l + 4 for all 7, j, k, Il > 0, and the other maps are defined as
the proof of Theorem 1. By the same argument as the proof of Theorem 1,

we know g = go V g1 V g2 V g3 is an equivalence at prime 2. U

5. The proof of Theorem 4

Lemma 5.1. By Cartan formula, Wu formula, and the fact that Qg and
Q1 act as derivations, the E-module structure of H*(BSO(3)) is as follows:

2 2
Qo(w¥wi*) = Q1 (w¥ W) = QoQ1 (w2 w) = 0.

2 2 9 5
Qo(wZ w2 1) = 0, Q1w ) = w2, QuQy (WP w 1) = 0.

2§12k 25 2k41 2§12k 2j+1  2k+1
Qo(w 2] )_w]w3+,Q( ! ):w2j w3+,

2 2
QOQ ( 7+1 2k’) w2]w§k+2

2j+1 2j+1 2j+1
Qo(w2]+ wgkﬂ) w2 w§k+2a Ql(%]Jr wgkﬂ) QoQ1 (w5 a 2k+1) =0.

Proof of Theorem 4. By Lemma 5.1, we know

Qo(wz) = w3, Q1(w2) = wowsz, QoQ1(w2) = w3.
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Using that Qg and 1 act as derivations, it is easy to see that H *(BSO
(3)) is isomorphic to D* & M as an E-module, where D* is an E-module
with the Z/2-basis {ng | 7 > 0} and M is isomorphic to a free E-module
H*(BSO(3))/D* with E-basis {wy " w3* | j,k > 0}. Let hg : BSO(3) —
BO(3) be the usual 2-folds map, then we have a 2-local stable map BSO(3)

hy BO(3) 3 S by for each j > 0 by Lemma 1.1. Define the homotopy
equivalence map as the proof of Theorem 1. This completes the proof by
the same argument as the proof of Theorem 1. O

6. The proof of Theorem 5

Lemma 6.1. By Cartan formula, Wu formula, and the fact that Qg and
Q1 act as derivations, the E-module structure of ]?I*(BSO(E))) is as follows:

Qo(wy’ witwi'wd™) = Qu(wy wituwi'wi™) = QoQu(wh witwi'wi™) = 0.
Qo(wy’wikwiw™) = 0, Qi(wy wiFwiwd™) = wilwiF witwd™
Qle(wzngszlwgmH) =0.

Qo uuH0d) = uudtudn

Ql(ngwzszlﬂ my = ng 2k+1 2l+1wgm’

QuQ1 (w3 wiFwi ™ wd™) = wi w3k witw .

Qo(w¥ w2+l 2m+1) wgngszzwmw

Ql(ngwgk 2+Ly2mtly — Q0Q1(’w§yw§k 2+1,,2m4L) _ g,
QuuuB I ud™) = 0, QuududHudod) =l ud+hufud”,

2§ 9k+1 21
QOQl(’wszg * 4“’5 ") =0.

2 2k 41,20, 2m+1 2k+1 2m+1
Qo(w2]w3 * wy wstr ) = Ql(% ws * w4 Wg m )

2
— Qle(’ng’wgk—H w3 wgm-i-l) —0.

Qo(ngwgkﬂ 20+1 2m) _ ngwgkﬂwzlwgmﬂ,

Q1 (w? 2j w22y = Q0Q1(’w§yw§k+1 w2 Hly2my = 0.
QO( 2j 2k+1 2l+1w§m+1) _ w2jw§k+1 §m+2’

Ql( 2j 2k+1 2l+1 §m+1) _ ngwgm-z 2041 §m+1’
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27 k41 2l+1 2m+1 2] w2k 22l 2m+2

QoQ1 (w3’ ws We ) = w3’ w3 T wy wg .
2]+1 2k, 2l 25 2k+1 2m
Qo(ws FFwitwi™) = wy w3 wiwd™,

2j+1, 2k, 21 _ 25+ 2k+1, 21 2m 25 2k 2l  2m-+1
Q1(wy " wiwiwi™) = wy’ Wi wiwi™ + wy witwilwi

2j+1, 2k, 2 2j  2k+2. 2l
QoQ1(wy ’ 3 Wy w5 ") = w2]w3 * Wy w5

2j+1 2k 21 2m+1 w2 2L 2l 2m+1
Qo(wy’ ™ w3 wi w; ) = wy' w3 wiwg )

2j+1 2k 21 2m+1 2§ 2k 2l 2m+2
Q1(wy’ T wi wiws™ ) = wyl wzwyws™

2Ly 2 2y 21
QoQ1 (w3’ Twe™ ) = 0.

251, 2k 2l+1 omy 25 2k+1 2l+1 2m 2j+1, 2k w2t
Qo(wy ws'™) = wy’ wy +wy w3 ws T,

Ql( 2j+1 2kal+1w§m) _wgngkalegmH’

QOQ( 2]+1 2k 2l-i—1w5 ) ngwgkw2lw2m+2'

Qo( 2j+1w§szl+1w§m+1) ggwgk-ﬂ zl+1 2m+1+w2j+1 2k 2l 2m+2’
Ql(ng+1w§kwil+1w§m+l):w§j+1w§k+1 204+1 2m+1+w2jw§szl+1 E2)m+27
Qle( 2g+1 2k 2l+1 §m+1)_ngw§k+2 2l+1 §m+1

25 2k, 21 2m+3

2j+1, 2k+1 2m+2
+awy? w22 L wkwlw?

2j+1 2k+1 2, 2my\ _ 27, 2k+2 21
Qo(w; wyws™) = w, Ws Wy w5 )

2j+1 2k+1 2 25 2k+1. 21 2m+1
Q1(wy wy w5 ") = wy w3 wy wg )

2j+1 wlk 1 2
QoQ1 (w3’ Th2wim) = 0.

2j+1 2k+1 w2t 2j,,2k+2,, 22+
Qo(w; Wy ) = wy’wy Wy )

2541, 2k+1, 20, 2mAly _ 21, 2k+2, 2, 2me+1 2 2k+1. 21 2m+2
Q1(wy’ w3 T wr w™ ) = wy T w3 T wi ws +wy w3y wyws T,

2j+1 2k+1 2l 2m+1y 2§ 2k+3 21 2m+1
Qle( Wy Wy ) = wy’ w3 wy wy .

2j+1 2k+1 2041, 2m 27, 2k+2 2l+1 2m 2741, 2k+1, 20, 2mt]
Qo(w; wy T wg™) = wy wy T wywyt wpws T

2j+1 2k 1 2041 2
Q1(wy ! * 4+w5m)

27+1 2
_w]-l- §k+2 2141 2m+wj 2k+1 2l+1 E2)m—i—1

9

241, 2k+1 2041, 2my _ 2k+3 2l+1 2j+1, 2k+2, 21, 2m+1
QoQ1(wy w3 Twy T ws™) = w2 w " wy’ T ws T wi wg
2] 2k+1 21 w2m+?
+wy’ wy wy .
2j+1 9k+1. 2041 2m41y\ _ 25  2k+2 2l+1 w2+
Qo(wy” w3 wy T w ) = wy’ws Wy

)

2j+1
_|_w2]+ w§k+1wilwgm+2

2541, 2k+1,, 2041, 2mAly _ 25 2kl 2041, 2me2
Q1(wy” w3 wy T w ) = wy’ w3 wy T w )
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s 2] 2K+ 20,23
QoQ1(w; wy T w™ ) = wy’ wi T rwy ws ™.

Lemma 6.2. As an E-module, H*(BSO(5)) is isomorphic to D* &
M, where D* is an E-module with the Z/2-basis {ngwil | j+1 > 0}

and M is isomorphic to a free E-module H*(BSO(5))/D* with E-basis

27, 2k 2l+1 2j+1 2k, 21 2j+1 2k, 2l+1, 2m-+1 2741 2k+1
{wy’ witwy 57 Wy wgww5 wy' WzTwy Wy , Wy Wsg

2itly 2m o, 21, 204 2
wy T wg™, wyT wy m|37klm>0}

Proof. By Lemma 6.1, we know

(xa) Qo(wa) = ws, Q1(wa) = wzws, QoQ1(ws) = wzws.

(xb) Qo(ws) = w3, Q1(w2) = wows + ws, QoQ1(w2) = w3.

(x¢) Qo(wawsws) = wywsws + wows, Q1(wowsws) = wrwswaws + wws,
QoQ1(wawsws) = wiwyws + wawzw? + wi.

(xd) Qo(wawswy) = wiws + wawsws, Q1(warwswys) = Wawiwy + wswaws,
QoQ1 (wawswy) = wiwy + wewiws + waws.

(x€) Qo(waws) = waws + wows, Q1(wows) = waws, QoQ1(waws) = w3.

It easy to see that D* is an F-module. Hence it remains to prove

2 2j+1 2j+1 2j+1
{w23w2kwil+1 2m J+ w2k qp2m w2]+ wgkwilﬂ §m+1 w23+ w§k+1
Zl+1w5 , ?H i”l 2m | 4k, 1, m >0} is a basis of the free E-module

H*(BSO(5))/D*. Since 1(z) = = for all € H*(BSO(5))/D*, the basis
can be generated uniquely. Consider the Qo action on the basis, hence

2] 2k 2l g2l )2 2k+1 2k+1 w2lt1,2m+l 2j+1, 2k+1, 21
Wo™ W3~ Wy Wp il Woy™ W wiwg™ 7“’2 Wy Ws , W' W3 W
§m+17 and w3’ + wd 2m+1 can be generated uniquely. Since
(*a) Ql(w w2kw2l+1 w? ) — w) w2k+1 Z%l—i—lw2m
and (xa) Qle(w2 w%szlﬂwg, ) = w2 w2 it means w2 w%Jrl
2
wilﬂwgm and wy’ §k+1w2lw§m+1 can be generated unlquely. Since

2j+1, 2k, 21 2j+1 2k+1 25, 2k, 21, 2m+1
(xb) Q1 (w5’ " w5 wy w5 ) = w, w w5 + wy’ wswi ws

2k, 21, 2m-+1

and we have shown that w2 w3 wi wy can be generated uniquely, this

. 2j+1 ]
implies w5’ + gkﬂwzlw can be generated uniquely. Now we want to show

ng wgkwmw5 which belongs to H*(BSO(5))/D* can be generated uniquely.
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Ifk=0and m =0, thenw2j e D Ifk=0andm > 1, thenw2 lewgm
can be generated uniquely by considering (xe) QoQ1 (w5 2j+1 2l+1 wim) =
w? wiw2™ 2 If k > 1, then w2] w2kw2lw2™ can be generated unlquely by

conisdering
2j+1 25, 2k+2
(+0)QoQ1 (w5’ T wiFwiwg™) = wy w3 P wiws

Hence the case w?w%wmwg, which belongs to H*(BSO(5))/D* can be

generated uniquely. Next we want to show the case wzj w%kwilﬂwgm“ can

25,201, 2m+1
0, then w3’ wi ™ ws

be generated uniquely. If k = can be generated

uniquely by considering
2j+1 21 1 2l 1, 2m+1
(xe) Q1(wy’ Hwgm) = 2 g™t
If £ > 1, then wzj 2k 2l+1 §m+1 can be generated uniquely by considering

2j+1 2A+1. 2m+1 22k22l121
(xc) QoQ1 (w3’ %kw4+ w5m+ ) = wy wy + Tlw2mtl 4 q

. 25+
where o can be can be generated uniquely. For the case w5’ w%kwilwgmﬂ,

2j+1,,204+1 2j+1 om+1
) Qo(ws ! Wy * wgm) = w2] wilw5m+

we can consider (xe and

2+12k12ll 2+12k2 2 1
(*d) QOQ ( J w3 + w4+ wgm) _ w2] + w2lw5m+ + a,

where o can be generated uniquely. Hence the case wzj 1 wFwiwi™ ! can
be generated uniquely. Finally we consider

2j+1 %A+1 2m+1 241 2Rt 20 2t
(x¢) Qu(wy” wiFwi T wi™ ) = wy' T wi T w T wE ™ +

2j+1 2j+1
and  (xd) Qq(ws! T w2y = il T2ty 2 y2m 4o/ where

a and o can be generated uniquely, hence w2j 1 §k+1 20+1 §m+1 and
gg i w3kwy 2+ 1y " (k > 1) can be generated uniquely. ThlS completes the
proof. O

Proof of Theorem 5. Let hs : BSO(5) — BO(5) be the usual 2-folds

map, then we have a 2-local stable map BSO(5) hy BO(5) i W SISy,
for each 7 +1 > 0 by the remark after Lemma 1.1. By the same argument,
we can define the homotopy equivalence map as the proof of Theorem 3.
This completes the proof. O
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