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Abstract

The construction of discrete velocity models or numerical

methods for the Boltzmann equation, may lead to the necessity

of computing the collision operator as a sum over lattice points.

The collision operator involves an integral over a sphere, which

corresponds to the conservation of energy and momentum. In di-

mension two there are difficulties even in proving the convergence

of such an approximation since many circles contain very few lat-

tice points, and some circles contain many badly distributed lat-

tice points. This paper contains a brief description of the proof

that was recently presented elsewhere ([L. Fainsilber, P. Kurlberg,

B. Wennberg, SIAM J. Math. Anal., 37, p 1903–1922]). It also

presents the results of numerical experiments.

1. Introduction

The Boltzmann equation is

∂tf(x, v, t) + v · ∇xf(x, v, t) = Q(f, f)(x, v, t). (1)

We consider this equation in two spatial dimensions, so x ∈ R2, and v ∈ R2.

The collision operator in the right hand side acts only in velocity space, and
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is defined as

Q(f, f)(v) =

∫

R2

∫

S1

(

f(v′)f(v′∗)− f(v)f(v∗)
)

q(|w|, cos θ) dθ
2π

dv∗. (2)

The velocities “before and after a collision” are related by

v′ =
1

2
(v + v∗) + |w|u

(3)

v′∗ =
1

2
(v + v∗)− |w|u.

Here w = (v∗ − v)/2, and the unit vector u ∈ R2 is defined as a rotation by

the angle θ of w/|w|:

u = Rθ
w

|w| .

The two velocities v and v∗ are antipodal points on a well defined circle,

and (3) implies that after a collision, the two new velocities are different

antipodal points on the same circle. We parametrise this circle by θ, and

dθ/2π is simply the unit measure. Finally, q(|w|, cos θ) is the differential

cross section.

In a discrete velocity model (DVM), the velocities are concentrated on

a (usually finite) set of points vj ∈ Rd in the velocity space:

f(x, v, t) =
∑

j

fj(x, t)δv=vj .

The Boltzmann equation (1) is then changed into a nonlinear system of

ordinary differential equations, or, when also the spatial dimension is taken

into account, a system of conservation laws:

∂tfj + vj · ∇xfj =
∑

k,k′,j′

Γj′,k′

j,k

(

fj′fk′ − fjfk
)

. (4)

The constants Γj′,k′

j,k ≥ 0 must be chosen so that (4) makes sense from a

physical point of view. In particular we require that (vj , vk) and (vj′ , vk′)

are two pairs of antipodal points on the same circle, just as for the usual

Boltzmann equation.

The first example of a discrete velocity model is that of Carleman ([5]),

which has two velocities in R, but there are many other models with different

number of velocities.
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There are at least two reasons for studying such models. First, from

certain points of view, they are mathematically more tractable than the

continuous Boltzmann equation (though certainly not in all respects), and

results pertaining to the discrete models could also say something about the

full equation. Also they provide a means of doing numerical calculations for

gases far away from equilibrium.

When used for real gas simulations, it is essential that the model is phys-

ically realistic (i.e., that satisfy the right conservation laws and an entropy

principle), and this problem has recently been addressed e.g. by [4, 19, 20].

The family of models considered here can be seen as coming from a

rather straightforward discretization of the collision integral (2), where the

integrand is evaluated only on lattice points, v ∈ hZ. Integrating over w =

(v∗ − v)/2 rather than over v∗ gives

v′ = v + w + |w|u,
v′∗ = v + w − |w|u.

Also, v∗ = v + 2w, and writing

gv(w, u) =
(

f(v′)f(v′∗)− f(v)f(v∗)
)

q(|w|, cos θ), (5)

we find

Q(f, f)(v) = 4

∫

R2

(
∫

S1

gv(w, u) d
θ

2π

)

dw. (6)

If g is sufficiently regular (continuous), and decays sufficiently rapidly for

large w, then the Riemann sum for the outer integral converges:

(2h)2
∑

ζ∈Z2

∫

S1

gv(hζ, u) dθ −→ 4

∫

R2

(
∫

S1

gv(w, u)
dθ

2π

)

dw (7)

when h → 0. In order to construct a consistent DVM, it is then sufficient to

evaluate the inner integral in terms of the values of g on the lattice points

hZ2, in such a way that the result converges to
∫

S1 g(w, u)
dθ
2π .

While with the formula (3), the collision integral should be taken over

all u ∈ S1, we have here only access to those u for which v′ and v′∗ belong to

hZ2. But this is automatically achieved if ζ ∈ Z2, and if u = ζ ′/|ζ ′|, where
ζ ′ ∈ Z2 and |ζ ′| = |ζ|; then for all v ∈ hZ2, v + hζ ± h|ζ|u ∈ hZ2. However,

note that with this construction, the center of the sphere is restricted to lie

on a lattice point, and so it excludes cases like v = (0, 0), v∗ = (h, h).
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Giving all points on the circle equal weight, one arrives at the following

expression for the full collision operator, valid for all v ∈ hZ2:

Qh(f, f)(v)=(2h)2
∑

ζ∈Z2

1

r(|ζ|2)
∑

ζ′∈Z2

|ζ′|=|ζ|

(

f(v′)f(v′∗)−f(v)f(v∗)
)

q(|hζ|, cos θ). (8)

The function r(n) denotes the number of points with integer coordinates on

a sphere in R2 with center at the origin and radius
√
n, i.e. the number of

integer solutions to x21+x22 = n. The angle θ is the angle between ζ and ζ ′. To

obtain the discrete velocity model (4) one can then take fξ(x, t) = f(hξ, x, t).

This would then be a model with countably many velocities, but it is natural

to restrict velocities to belong to a bounded subset of Z2.

We are interested in proving that

Qh(f, f) → Q(f, f), (9)

when h → 0, at least for sufficiently regular functions f . If this convergence

holds, we say that the model is consistent, which together with stability is a

main ingredient when proving that a numerical method converges.

Indeed, (9) holds. For dimensions strictly larger than 2, this result was

established by Palczewski, Schneider and Bobylev ([3]). The same result

was proven for d = 2 in [12]. In this paper we give a short description of

the proof, and present some numerical calculations, which have not been

presented elsewhere.

Although we do not pretend to construct valid and useful methods for

solving the Boltzmann equation, it is interesting to test whether the model

is admissible from a physical point of view. For the particular model given

in equation (8), we know that it is admissible, because it is an example of

a general method of constructing discrete velocity models that is presented

in [4]. We discuss that general method in Section 4, and present some results

from a computer implementation of the method.

We also show the results of some calculations for a spatially homoge-

neous relaxation to equilibrium.

Discretizations of the Boltzmann equation have been discussed by sev-

eral authors. The most relevant papers in connection with the present one

are [2, 3] and also [17]. A different method based on Farey series was pre-

sented in [18]. The collision operator in the two-dimensional Boltzmann

equation is a three-fold integral, which is evaluated as an iterated integral.
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A different discretization based on the so-called Carleman representation of

the collision integral was presented in [15].

2. Main Result and Ideas of the Proof

The purpose of this section is to properly state the convergence re-

sult (7), and to discuss its proof. All details of the proof can be found

in [12].

In addition to the notation in Section 1, we write

Gv(w) =
1

2π

∫ π

−π
gv(w, θ) dθ,

in the continuous case, and for the discrete case (then we assume, of course,

that v ∈ hZ2)

Gh
v (hζ) =

1

r(|ζ|2)
∑

ζ′∈Zd

|ζ′|=|ζ|

gv(hζ, θ),

where θ is the angle between ζ ′ and ζ. As before, r(|ζ|2) denotes the number

of integer points on a circle with radius |ζ|.
We also write

Zh,R = {z ∈ Z2 s.t. |z| ≤ R/h} (10)

for some R > 0 (this is the most straight forward way of restricting to a

finite set of velocities, but other choices might be more efficient, as we shall

see later).

The convergence result can now be expressed as

Q(f, f)(v)− (2h)2
∑

ζ∈Zh,R

Gh
v (hζ) → 0 (11)

when h → 0.

Theorem 1. Suppose that gv(w, θ) in (5) satisfies

1. gv(w, θ) is a C1-function w.r.t. w.

2. gv(w, θ) is a C2-function w.r.t. θ.

3. ‖gv(·, θ)(1 + | · |2)‖L1(dw) ≤ C.
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(This holds e.g. if the function f and the cross section q are C2.) For given

R > 0 and h > 0, let Zh,R be as in (10). Then given ε > 0 there are reals

R > 0 and h > 0 such that

∣

∣

∣
Q(f, f)(v)− (2h)2

∑

ζ∈Zh,R

Gh
v (hζ)

∣

∣

∣
≤ ε .

For a given ε, one can take h

h = o
(

exp(−2 (log ε)2 ε−2/(1− 2

π
))
)

, (12)

which corresponds to a rate of convergence no better than O((log(1/h))−p),

where p < (1− 2/π)/2.

Proof. We still consider Q(f, f) as an iterated integral, and write (for

v ∈ hZ2)

Q(f, f)(v)− (2h)2
∑

ζ∈Zh,R

Gh
v (hζ)

=

∫

R2

Gv(w)dw−(2h)2
∑

ζ∈Zh,R

Gv(hζ)+(2h)2
∑

ζ∈Zh,R

(

Gv(hζ)−Gh
v (hζ)

)

.(13)

The difference between the integral in the right hand side and the first

sum can be estimated easily by truncating the integral for large velocities

and using that the sum is a Riemann sum for the remaining part of the

integral. So the difference is bounded by

C1

R2
+ C2R

2h,

where the constants depend on the C1-bounds of g.

Next we turn to the difference Gv(hζ)−Gh
v (hζ), i.e. of

1

2π

∫ π

−π
gv(hζ, θ) dθ −

1

r(|ζ|2)
∑

ζ′∈Z2

|ζ′|=|ζ|

gv(hζ, θ), (14)

(recall that in the second term, θ is the angle between ζ ′ and ζ). We first

write the periodic function gv(hζ, θ) as a Fourier series,

gv(hζ, θ) =
∑

k∈Z

ĝv(ζ, k)e
ikθ,
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where

ĝv(ζ, k) =
1

2π

∫ π

−π
gv(hζ, θ)e

−ikθ dθ.

The assumptions on g imply the existence of a constant C3 so that

|ĝv(ζ, k)| ≤
C3

1 + k2
. (15)

Then (14) becomes

ĝv(ζ, 0)−
1

r(|ζ|2)
∑

ζ′∈Z2

|ζ′|=|ζ|

ĝv(ζ, 0) +
1

r(|ζ|2)
∑

ζ′∈Z2

|ζ′|=|ζ|

∑

k 6=0

ĝv(ζ, k)e
ikθ,

where the first terms cancel out, and only last sum remains. We next split

that sum into a part with |k| ≤ M , and a remainder. The estimate (15)

implies that the remainder is smaller than

R2C4

M
. (16)

The terms that remain after these truncations add up to the main con-

tribution. This is the the most difficult part to estimate. Using (15) again,

we find a bound of the form
∣

∣

∣

∣

∣

∑

0<|k|<M

C3

1+k2
1

r(|ζ|2)
∑

ζ′∈Z2

|ζ′|=|ζ|

eikθ

∣

∣

∣

∣

∣

≤ max
0<|k|<M

∣

∣

∣

∣

S(|ζ|2, k)
r(|ζ|2)

∣

∣

∣

∣

∑

0<|k|<M

C3

1 + k2
(17)

Here we have introduced the notation

S(n, k) =
∑

u∈Z2:|u|2=n

eikθu (18)

where θu is defined by u = |u| ·(sin θu, cos θu). From this it is straightforward

to derive (we refer to [12] for the details)

|Q(f, f)(v)−Qh(fh, fh)(v)|

≤ C1

R2
+ C2R

2h+
R2C4

M
+ C3(2h)

2 max
0<|k|<M

∑

n<(R/h)2

∣

∣S(n, k)
∣

∣, (19)

Proposition 3, which is stated in the next section, gives an estimate of ex-
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ponential sums of this kind, and using it, we obtain

∑

n<(R/h)2

∣

∣S(n, k)
∣

∣ ≤ C5

(

R

h

)2

exp

(

−
(

1− 2

π
) log

log
(

(R/h)2
)

(logM)2

)

,

where C5 is a positive constant. We conclude the proof by choosing

1. R =
√

4C1/ε,

2. h < ε/(4R2C2) = ε2/(4C1C2),

3. M = 4R2C4/ε = 64C1C4/ε
2.

With these choices of R and M , the last term in (19) can then be bounded

by

4C3C5
4C1

ε
exp

(

−
(

1− 2

π
) log

log(4C1/(εh
2))

(log(64C1C4/ε2))
2

)

, (20)

which converges to zero when h → 0, and so there is an h so small that also

the last term in (19) is smaller than ε/4. Solving for h in (20) gives (12).�

3. Number Theoretic Background

In order to explain the origin of Proposition 3, and also to explain the

numerical algorithm used to produce the results in Section 4, we need to

introduce the concept of Gaussian integers, and give some related results.

To prove that the inner sum of (8) converges to the correct limit when

h → 0, one is lead to study the set

{ζ/|ζ| : ζ ∈ Z2, |ζ|2 = n} (21)

and to show that there are many points in this set, and also that these points

are well distributed on S1 when n is large. This is not true in general. For

example, when n is a power of 2, there are exactly four points in the set.

But even circles which do have a large number of points may behave poorly,

as the following theorem shows:

Theorem 2.(Cilleruelo [6]) For any ǫ > 0 and for any integer k, there

exists a circle x2 + y2 = n with more than k lattice points such that all the

lattice points are on the arcs
√
ne(π/2)(t+θ)i with |θ| < ǫ, t ∈ {0, 1, 2, 3}.
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On the other hand, we may use some other techniques from analytic

number theory to show that lattice points on circles are equidistributed on

average, and this is good enough for our purpose. To do this it is convenient

to rephrase the problem in terms of the Gaussian integers, i.e., the ring of

integers of the field Q(i), Z[i] = {x + iy ∈ C, (x, y) ∈ Z2}. The Gaussian

integers behave in many ways like the usual integers, and in particular there

is a unique factorization into Gaussian primes. We refer to [14], for basic

number theoretical results.

The Gaussian primes (i.e. the elements of Z[i] that cannot be writ-

ten as a product of Gaussian integers with smaller modulus), are of three

types:

• the prime numbers q ∈ Z such that q ≡ 3mod 4 remain prime in Z[i]

(e.g. 3, 7, 11, 19, . . .);

• for prime numbers p ∈ Z such that p ≡ 1mod 4, there exist x, y ∈ Z s.t.

p = x2+ y2. Hence p factors in Z[i] as a product of two Gaussian primes

p = (x+ iy)(x− iy) (e.g. 5 factors into (2 + i)(2 − i) in Z[i]).

• last, 1+ i is prime (note that (1+ i)(1− i) = 2 and that 1− i = −i(1+ i)

is merely “another form of the same prime” just as 3 and −3 represent

the same prime).

If n is the sum of two squares, then it can be factored in Z[i]: n = X2+Y 2 =

(X + iY )(X − iY ).

If z = x+iy is a prime factor of X+iY , then z̄ = x−iy must be a prime

factor of X− iY . It follows that prime factors q ≡ 3mod 4 of n must appear

in even powers. In addition, multiplying n by an even power of a prime q

that is congruent with 3mod 4 changes neither the number of solutions to

n = X2 + Y 2 nor the distribution of arguments of the solutions.

Suppose now that n contains a factor pα, where p ≡ 1mod 4. The

number p can be factored in Z[i] as (x+iy)(x−iy), and hence the multiplicity

of x+ iy as a factor of n is α, and the same is true for x− iy. It follows that

the multiplicity of x + iy in X + iY can be any integer j, with 0 ≤ j ≤ α,

and the multiplicity of x− iy is then α− j.

The same calculation can be done for powers of 2; however, the solutions

given by different choices of j in that case differ by a multiplication by a

power of i, and so the power of 2 does not influence the number of solutions.
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All solutions to n = X2 + Y 2 can now be expressed as X + iY =√
n exp(iθ), where all possible values of the argument θ can be computed as

sums of terms deriving from the different factors of n in the following way:

1. X + iY can be multiplied by any unit, i.e. by ±1 or ±i. This gives a

term kπ/2 in the argument, k = 0, 1, 2, 3.

2. If the multiplicity of 2 in n is odd, then the argument must contain π/4,

the argument of 1 + i; the number of solutions does not change.

3. For each prime factor p ≡ 1mod 4 in n, let αp be the multiplicity of p

in n, let p = x2p + y2p, and set θp = arg(xp + iyp). For a particular choice

of j, 0 ≤ j ≤ αp, the argument added to X + iY is jθp − (αp − j)θp =

(2j − αp)θp.

Since the choices of k, and of the different j′s are independent, the number

of different solutions is 4
∏

p≡1mod 4(αp + 1).

This description is constructive, and can easily be implemented as a

computer program for tabulating the sets (21).

The key estimate remaining for the proof of Theorem 1 is the following

estimate for averages of exponential sums:

Proposition 3. If 4 ∤ k then |S(m,k)| = 0. If 4|k and k 6= 0, there

exist C and b > 0 such that

log
( 1

X

∑

m≤X

|S(m,k)|
)

≤ C − (1− 2/π) log

(

logX

(log |k|)2
)

for X sufficiently large and log |k| ≤ b
√
logX.

The proof is based on the observation that |S(m,k)|/4 is a multiplicative

function, i.e. a function f : N → C such that f(mn) = f(m)f(n) for all m,n

such that (m,n) = 1.

It turns out that the mean value of a multiplicative function, under

fairly general circumstances, can be bounded in terms of an exponential of

a sum over primes. The precise result that is proved and used in [12] is the

following weak form of the Halberstam-Richert inequality (cf. [13]).

Theorem 4. Let f be a nonnegative multiplicative function such that

∑

n≤x

f(n) = O(x), (22)
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and f(pk) = O(k) for all primes p and k ≥ 1. Then there exists C > 0 such

that

1

X

∑

m≤X

f(m) ≤ C · exp
(

∑

p≤X

f(p)− 1

p

)

+O(
1

logX
)

for all sufficiently large X.

One can check that 1
4 |S(p, k)| is a multiplicative function that satisfies

the conditions for Proposition , and so

1

X

∑

m≤X

|S(m,k)| ≤ C exp
(

∑

p≤X

1
4 |S(p, k)| − 1

p

)

+O

(

1

logX

)

.

It is also straightforward to check that

1

4
|S(p, k)| =

{

2| cos(kθp)| if p ≡ 1mod 4,

0 if p ≡ 3mod 4,

where θp is the argument of the Gaussian prime z such that zz̄ = p. Hence

∑

p≤X

1
4 |S(p, k)| − 1

p
=

∑

p≤X
p≡1mod 4

2| cos(kθp)|
p

−
∑

p≤X

1

p
.

This is the precise point where the angular distribution of Gaussian primes

is important, and we rely on the following estimate, which is a corollary of

a theorem by Kubilyus (see [11, 16])

Theorem 5. If k ∈ 4N and log k ≤ b
√
log x, then

∑

p≤x
p≡1mod 4

| cos(kθp)|
p

≤ 1

π
log log x+ (1− 2/π) log log k +O(1).

Using this corollary, together with Merten’s theorem see [14], Ch. 22.8,

∑

p≤X

1

p
= log logX +O(1),

we find

∑

p≤X

1
4 |S(p, k)| − 1

p
≤ (2/π − 1) log log x+ 2(1 − 2/π) log log k +O(1).
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4. Some Numerical Examples and Remarks

From a numerical point of view, the discretisation discussed above would

be far too costly: a discrete velocity model with N velocities would at least

correspond to a computational cost of O(N) per time step, because one

needs to compute a value for each velocity. When the collision term is

computed by the sum (11), the cost is O(N2) times some logarithmic factor

of N (which comes from the summation over the points on the circles). And

the calculation above showed that N grows exponentially in terms of the

accuracy, N ∼ 1
h >> exp(ε−c) for some positive constant c.

However, rather than estimating the computational cost in terms of the

number of discretisation points used, it is more relevant to give the cost in

terms of the desired accuracy, assuming that the discretization points are

used in an optimal way. The discussion around (11) suggests that one can

reduce the computational cost considerably without compromising the order

of accuracy. The poor rate of convergence is due to the approximation of

Gv(w). Generalizing the formula (11) slightly, we can write

∫

R2

Gv(w) dw ∼ 1

ρh

∑

ζ∈Zh

Gv(hζ) (23)

where ρh is the local density of Zh. For Zh = {ζ ∈ Z2 s.t. |hζ| ≤ R}, one
has ρh = h−2.

An important reduction in computational cost could then presumably

be obtained by replacing Zh by a much smaller carefully selected set in such a

way that the integrals over the corresponding circles are well approximated.

In addition to the problem of keeping the overall accuracy, one would

also need to address the question of spurious invariants, which we will do

briefly before giving some numerical illustrations.

Since our main concern in this work was to study how well the discretised

collision operator agrees with the continuous one, we have not discussed the

question of whether the models admits the correct number of conserved

quantities, a rather delicate problem, which we will briefly discuss here.

By a collision invariant, we mean a function Ψ(v) that satisfies

∀(j, k, j′, k′) such that Γj′,k′

j,k > 0,

Ψ(vj) + Ψ(vk) = Ψ(vj′) + Ψ(vk′) (24)
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The only invariants should be the ones corresponding to the conservation of

mass, momentum and energy, i.e.,

Ψ(v) = 1, Ψ(v) = b · v (b ∈ R2), and Ψ(v) = |v|2.

All other functions satisfying (24) are called spurious invariants.

That the present planar lattice model does not admit any spurious in-

variants, at least under some very modest requirements on the differential

cross section, follows from the fact that it can be constructed according to a

general method for constructing “normal” models. The construction, which

can be found in [4] is as follows:

Starting from a model which is known to possess the correct invariants,

one adds one point in a suitable way. More precisely, suppose that a discrete

velocity model consists of the velocities {v1, . . . , vm}, together with a set of

Γj′,k′

j,k . If a new velocity vm+1 is added together with an augmented set of

Γj′,k′

j,k , such that for at least one choice of j, k, j′ (all different), Γj′,m+1
j,k > 0,

then {v1, . . . , vm, vm+1}, is also an admissible model. In our situation, we see

the model as a discretisation of the continuous Boltzmann equation. Under

the mild assumption that the collision cross section is strictly positive, the

above amounts to saying that the new velocity belongs to a circle which has

at least three velocities from the original set of velocities.

With the model introduced in Section 1, only circles with centers at

lattice points are considered, and then it is natural to use only lattice points

(x, y) such that x + y is an even number. This corresponds to an integer

lattice scaled by a factor
√
2 rotated by π/2.

Following the idea in [4] we construct a sequence of models {Um} induc-

tively, and the model Um+1 is constructed by adding all points in Z2 \ Um,

(or Zh \ Um) that belong to a circle which contains at least three different

points from Um. As the first generation in this construction we can choose

an augmented Broadwell model consisting of the velocities (±1, 0), (0,±1),

extended with the point (0, 0), or, to satisfy the condition that the sums

of the coordinates be even, (±1,±1) and (0, 0), or any suitably scaled and

rotated version of this.

With this construction, one can see that in fact it is enough to use

points on a very small number of circles. This would then be an example

of how to reduce the computational cost, while keeping a physically correct

model. As an example we consider a model allowing only circles with ex-

actly 128 points. This model has been chosen because within the chosen
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square (2000x2000 points), we don’t find circles with a larger number of

points. The first generation in this example is a model with the velocities

±(905, 885), and ±(−885, 905) and also (0, 0). Then e.g. (0, 0), (905, 885),

and (885,−905) all are on the same circle with radius
√
801125, and hence

one can add all the other 128−3 on that same circle. In this way, because of

the four fold symmetry of the problem, a first round of adding points to the

Broadwell model gives 4× (128− 3) = 500 points new to the second genera-

tion. Figure 1 shows one quadrant of the second, third and fifth generation

of this procedure; it is in this case enough with four iterations to obtain a

model with all “even” (in the sense discussed above) points.
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Figure 1. The points added in the second, third and fifth generation of the

iteration from the implementation of the Bobylev-Cercignani method. In

the fourth generation 1862118 of the in all 2 million points are added, and

with the dot size used in the other plots, the square would be completely

filled. The plots show one quadrant, with the origin in the upper left corner.
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The conclusion of this is that allowing only circles with 128 points yields

an admissible model, but it would correspond to a, from a physical point of

view, very unrealistic differential cross section in the continuous case. The

continuous model would have a very restricted differential cross section, and

because of this the solutions could converge very slowly to equilibrium.

Finally, we give two examples of numerical calculations based on the

discrete velocity model. The purpose of the simulation is to illustrate the

equilibrium states. The exact time dependence of the solution is not im-

portant in this case, and a simple time stepping method has been choosen.

With fm(ζ) = f(hζ,m∆t), fm+1(ζ) = fm(ζ) + ∆t Q(fm, fm)(ζ), and ∆t

has been arbitrarily chosen to 0.1. For reasons of computational cost, we re-

strict the calculation to integers ζ = (j, k) with |j|, |k| < 100. The iteration

is computed with the formula

fm+1(ζ) = fm(ζ) + ∆t
∑

n

∑

|ζ1|2=n

1

rζ+ζ1(n)

∑

|ζ2|2=n

[

fm(ζ+ζ1+ζ2)fm(ζ+ζ1−ζ2)−fm(ζ+2ζ1)fm(ζ)
]

(25)

This corresponds to carrying out the integration over w in equation (6) with

polar coordinates. Note that this summation counts all integers in the lattice

exactly once, and that there is no need for a Jacobian as when changing to

polar coordinates in a plane integral. The list of solutions to |ζ1|2 = n

was tabulated in advance, using the techniques discussed in Section 3. The

function rζ+ζ1(n) denotes the number of integer points on a circle with radius√
n as before, but counting only points inside the square domain for the

simulation, and therefore it depends also on the center point ζ + ζ1.

The graphs in Figure 2 show the result for a few of the iterates, for the

case when the summation is carried out for circles with between 20 and 48

points (48 is the largest possible number of points on a circle in this case, and

the restriction to circles with at least 20 was made to reduce computational

cost). The corresponding values of |ζ2|2 lie between 325 and 10000, i.e.,

to a differential cross section that is strictly zero in a ball |w| <
√
325.

Because the density of circles with more than 20 points is larger in intervals

of n = |ζ1|2 with large n, this corresponds to hard potentials. However, the

simulation is carried out without any particular differential cross section in

mind.
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Figure 2. The initial data and iterations number 1, 200 and 800. The

summation in equation (25) includes circles with at least 20 points. The

graphs to the right show the support of the iterate or a contour plot.
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Figure 3. Initial data is as in Figure 1. Here only three different values of

n are included in eq. (25). The first two plots show the support of the first

iterate and the difference f1 − f0. The next two plots show iterate number

300000 (i.e. f300000) and the difference f300000 − f0, and then iterate f600000
and f600000 − f300000. The last row shows f900000 and f900000 − f600000.
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The plots in Figure 3 illustrate that when taking only a small set of

values for n (in this case circles with either 40 or 48 points, in total three

values for n), the rate of convergence to equilibrium is extremely slow. The

model is physically not very realistic, as it corresponds to a differential cross

section that is concentrated on only three values of |v− v∗|, and so it should

be considered only as an illustration to the the discussion in the paper.
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