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Abstract

A system coupling the condensate density to the non-

condensate distribution function of a gas at very low tempera-

ture is considered. A global existence in time of a solution to the

Cauchy problem is proven for an initial datum with finite mass

and energy.

1. Introduction

Since the recent discovery of Bose-Einstein condensation in ultracold

trapped atomic gases [1, 4], that makes possible to observe fundamental

properties of quantum statistics, the interest in the quantum framework of

the Boltzmann equation has increased. In the 1920’s, Bose and Einstein

theoretically predicted the existence of Bose-Einstein condensates. A fun-

damental result of quantum statistics stated that above a certain critical

density all added bosons enter the ground state, so that Bose-Einstein con-

densates form. Since then, the presence of Bose-Einstein condensates has

been inferred rather than observed in a number of phenomena, like super-

conductivity and supraconductivity in helium. It is in 1995 only that they

were produced in a very low temperature context for a gas of rubidium

in a trapped potential. Mathematically, the quantum Boltzmann equation

presents formal analogies to the classical Boltzmann equation, but its so-

lutions present quite different features. In particular, the boundedness of

the classical entropy provides L1 compactness for the distribution function,

whereas the boundedness of the quantum entropy does not. Indeed, the
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quantum entropy is bounded from above by a multiple of the mass. Hence the

a priori bounds of mass, energy and entropy reduce to bounds on mass and

energy. Therefore, concentrations of the distribution function are expected.

Splitting the gas distribution function into its Lebesgue absolutely contin-

uous part and its singular part enables to distinguish the non-condensate

from the condensate parts of the gas. For a mathematical analysis of the

quantum Boltzmann equation we refer to [3, 5, 10]. In [10], global existence

and time asymptotics of isotropic solutions to a modified quantum Boltz-

mann equation are studied in a space-homogeneous frame, under a cut-off

condition on the collision kernel. This cut-off prevents Dirac measures to

form in finite time. For an initial mass bigger than the mass of the Planck-

ian distribution function, some velocity concentration is proven to occur at

infinite time. In [11], distributional isotropic solutions to the homogeneous

quantum Boltzmann equation are determined in a hard sphere frame. In [3],

some modelling and numerical aspects in quantum kinetic theory for a gas

of interacting bosons are reviewed. In order to study the evolution of the

condensates, a system is presented, coupling the Gross-Pitaevskii equation

for the condensate wave function and a quantum Boltzmann equation for the

non-condensate distribution function. In [5], the questions of well-posedness,

i.e. existence, uniqueness, stability of solutions, and long time behaviour of

the solutions are treated in some particular cases.

In this paper we consider a system of equations coupling the non-con-

densate and the condensate parts evolutions. This results in a quantum

kinetic equation for the non-condensate distribution function, coupled to a

Gross-Pitaevskii equation for the condensate wave function. In a very low

temperature setting, only the coupling source terms remain in the quan-

tum kinetic equation. Isotropic non-condensate distribution functions are

considered in a space-homogeneous frame. Existence of solutions to the

coupled system is proven, with bounded condensate densities and measure

non-condensate distribution functions. The boundedness of mass and en-

ergy allows to give a weak sense to the collision term of the non-condensate

distribution function, as the derivative of a bounded measure. Finally the

exchange of mass between condensate and non-condensate is discussed at

the end of Section 4.
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2. The Model

For the derivation of kinetic quantum models and the use of the Gross-

Pitaevskii equation for the condensate wave function as well as their physical

study, we refer to [8, 12, 13, 14, 15]. The observation of Bose-Einstein con-

densation in some atomic gases motivates a description of the evolution of

the condensates that takes full account of the microscopic nature of atomic

interactions in a trap, both close to and far from equilibrium. The conven-

tional description relies on the well-known Gross-Pitaevskii equation, also

known as a nonlinear Schrödinger equation. In this equation, one assumes

that the atoms are all effectively condensed and the atomic interactions can

be accurately modeled by a pseudopotential, expressed in terms of the s-

wave scattering length. The resulting equation of motion for the condensate

wave function ψ is

ih̄
∂ψ

∂t
= (− h̄2

2m
∆x + V + g

∣

∣

∣
ψ
∣

∣

∣

2
)ψ.

Here h̄ is the Planck constant, m the mass of the atoms, V an external

potential, and g = 4πh̄as
m

is the interaction strength determined by the s-

wave scattering length as. If the atoms are in the dilute gas, they can be

studied by a kinetic quantum equation of Boltzmann type,

∂F

∂t
+ p · ▽xF

=

∫

B(p− p∗, p
′ − p)

(

F ′F ′
∗(1 + F )(1 + F∗)− FF∗(1 + F ′)(1 + F ′

∗)
)

×δ(p + p∗ = p′ + p′∗, p
2 + p2∗ = p′2 + p′2∗ )dp∗dp

′dp′∗, (2.1)

where B is a given collision kernel and F ′ = F (p′), F ′
∗ = F (p′∗), F = F (p),

F∗ = F (p∗).

After the time of condensate formation, the kinetic equation (2.1) is inap-

propriate, and the finite number of particles in the condensate corresponds

to the infinite value of the distribution function at energy zero. In order to

describe the system of particles interacting with the condensates, the simul-

taneous treatment of both condensate and non-condensate parts has been

developed in [2, 6, 16, 17]. The resulting equations of motion reduce to

a generalized Gross-Pitaevskii equation for the condensate wave function,

coupled with a quantum Boltzmann equation for the thermal cloud,

ih̄
∂ψ

∂t
(x, t) = − h̄2

2m
∆xψ(x, t) + V (x)ψ(x, t)
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+[U0(nc(x, t) + 2n(x, t))− iR(x, t)]ψ(x, t), (2.2)

∂F

∂t
+
p

m
· ▽xU · ▽pF = Q̄(F ) +Qc(F ). (2.3)

Here, nc(t, x) =
∣

∣

∣
ψ(x, t)

∣

∣

∣

2
is the condensate density and V (x) the confining

potential. The collision integral Q̄(F ) is the quantum operator defined in

(2.1), whereas Qc(F ) describes the collisions between condensate and non-

condensate particles and is given by

8a2snc
m2

∫

δ(pc + p∗ = p′ + p′∗, ǫc + ǫ∗ = ǫ′ + ǫ′∗)

×[δ(p = p∗)− δ(p = p′)− δ(p = p′∗)]

×
(

F ′F ′
∗(1 + F∗)− F∗(1 + F ′)(1 + F ′

∗)
)

dp∗dp
′dp′∗. (2.4)

Here, ǫ = 1
2p

2 + U(x, t), where U = V + 2U0(nc + n) is the mean field

potential, and n denotes the non-condensate density

n(x, t) =
1

(2πh̄)3

∫

F (x, p, t)dp.

F∗ (resp. F ′, F ′
∗) denotes F (p∗) (resp. F (p

′), F (p′∗)). The source term R is

given by

R(x, t) =
h̄

2nc(2πh̄)3

∫

Qc(F )dp.

In the space-homogeneous case, the system (2.2-3) becomes

ih̄
∂ψ

∂t
= (V + U0(nc + 2n)− iR)ψ, (2.5)

∂F

∂t
= Q̄+Qc(F ), (2.6)

so that the condensate density nc and the non-condensate gas density F

evolutions are given by h̄n′c = −2Rnc, i.e.

n′c = − 1

(2πh̄)3

∫

Qc(F )dp, (2.7)

and equation (2.6). Solving the system (2.5-6) comes back to solve (2.6-

7) first, where the unknowns are F and nc, then easily compute the wave

function ψ from (2.5). Therefore, we aim at solving (2.6-7). Notice that this

system can also be formally obtained by starting from the quantum kinetic
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equation (2.1) with collision kernel identically equal to one for the total -

condensate and non-condensate - gas distribution function f ,

∂f

∂t
=

∫

δ(p + p∗ = p′ + p′∗, p
2 + p2∗ = p

′2 + p
′2
∗ )

×
(

f ′f ′∗(1 + f + f∗)− ff∗(1 + f ′ + f ′∗)
)

dp∗dp
′dp′∗,

then splitting f into its condensate part nc(t)δp=pc and its non-condensate

part F , ([12, 14])

f(t, p) = nc(t)δp=pc + F (t, p).

It means that nc and F should respectively satisfy

n′c(t) = nc(t)

∫

δ(pc + p∗ = p′ + p′∗, p
2
c + p2∗ = p′2 + p′

2
∗)

×(F ′F ′
∗ − F∗(1 + F ′ + F ′

∗))dp∗dp
′dp′∗ + n2cB1 + n3cC1,

∂F

∂t
=

∫

δ(p + p∗ = p′ + p′∗, p
2 + p2∗ = p′2 + p′

2
∗)

×
(

F ′F ′
∗(1 + F + F∗)− FF∗(1 + F ′ + F ′

∗)
)

dp∗dp
′dp′∗

+ncA+ n2cB2 + n3cC2,

where

B1 =

∫

δ(pc + p∗=p
′ + p′∗, p

2
c + p2∗=p

′2 + p′
2
∗)
(

F ′δ(p′∗=pc) + F ′
∗δ(p

′ = pc)

−F∗δ(p
′ = pc)− F∗δ(p

′
∗ = pc)− (1 + F ′ + F ′

∗)δ(p∗ = pc)
)

dp∗dp
′dp′∗,

C1 =

∫

δ(pc + p∗=p
′ + p′∗, p

2
c + p2∗=p

′2 + p′
2
∗)
(

δ(p′=p′∗=pc)

+δ(p∗=p
′=p′∗=pc)− δ(p∗=p

′=pc)− δ(p∗=p
′
∗ = pc)

)

dp∗dp
′dp′∗,

A =

∫

δ(p + p∗ = p′ + p′∗, p
2 + p2∗ = p′2 + p′

2
∗)
(

F ′F ′
∗δ(p∗ = pc)

+F ′(1+F+F∗)δ(p
′
∗=pc)+F

′
∗(1+F+F∗)δ(p

′=pc)−FF∗δ(p
′=pc)

−FF∗δ(p
′
∗ = pc)− F (1 + F ′ + F ′

∗)δ(p∗ = pc)
)

dp∗dp
′dp′∗,

B2 =

∫

δ(p + p∗ = p′ + p′∗, p
2 + p2∗ = p′2 + p′

2
∗)
(

F ′δ(p′∗ = p∗ = pc)

+F ′
∗δ(p

′ = p∗ = pc)− Fδ(p∗ = p′ = pc)− Fδ(p∗ = p′∗ = pc)
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+(1 + F + F∗)δ(p
′ = p′∗ = pc)

)

dp∗dp
′dp′∗,

C2 =

∫

δ(p + p∗=p
′+p′∗, p

2+p2∗=p
′2+p′

2
∗)δ(p

′=p′∗=p∗=pc)dp∗dp
′dp′∗.

Moreover, the four first terms in B1 cancel each other. The set defined by

2pc = p′ + p′∗, 2p
2
c = p′2 + p′2∗ reduces to p = p∗ = pc, so that the integration

on it of the measure F which support does not contain pc is zero. And so,

B1 = 0. The term C1, equal to
∫

δ(pc + p∗ = p′ + p′∗, p
2
c + p2∗ = p′2 + p′2∗ )

×(2δ(p∗ = pc)− δ(p′∗ = pc)− δ(p′ = pc))dp∗dp
′dp′∗,

vanishes. The term A can also be written as
∫

δ(pc + p∗ = p′ + p′∗, p
2
c + p2∗ = p′2 + p′2∗ )

×
(

δ(p=p∗)−δ(p=p′)−δ(p=p′∗))(F ′F ′
∗−F∗(1+F

′+F ′
∗)
)

dp∗dp
′dp′∗.

It follows from the same arguments as for B1 that B2 = 0. And so, the

system (2.6-7) is recovered for nc and F .

In a way similar to the procedure used by Lee and Yang ([9]) for the

equilibrium properties of a condensed Bose gas, two regions can be distin-

guished, namely

- a moderately low temperature region,

and

- a very low temperature region.

In this paper, we restrict to the second region of very low temperature.

Moreover, if the number of particles in the condensate is sufficiently large, the

interactions with the condensate will dominate the dynamics of the system,

so that Q̄ is negligible compared to Qc ([7]). If we finally consider a space-

homogeneous frame and isotropic distribution functions, and denote by ǫ

and F (t, ǫ), respectively 1
2p

2 and the distribution function of the dilute gas,

the collision operator Qc writes Qc(F ) = nc(X − 2Y ), with

X=

∫

δ(p∗=p
′ + p′∗, p

2
∗=p

′2+p′
2
∗)δ(p=p∗)

(

F ′F ′
∗−F∗(1+F

′+F ′
∗)
)

dp∗dp
′dp′∗,

Y =

∫

δ(p∗=p
′ + p′∗, p

2
∗=p

′2 + p′2∗ )δ(p=p
′
∗)
(

F ′F ′
∗−F∗(1+F

′+F ′
∗)
)

dp∗dp
′dp′∗.
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Then, if ϕ0 = Arcos

√

ǫ′

ǫ
,

X =

∫ ǫ

0

√
2ǫ′

∫ 2π

0

∫ π

0
sinϕ′ δ

(

− 4
√
ǫǫ′ cosϕ′ + 4ǫ′ = 0

)

×
(

F ′F (ǫ− ǫ′)− F (1 + F ′ + F (ǫ− ǫ′)
)

dϕ′dθ′dǫ′

= 2π

∫ ǫ

0

√
2ǫ′

(

∫ π

0
sinϕ′ δ(4

√
ǫǫ′(sinϕ0)(ϕ

′ − ϕ0) = 0)dϕ′
)

×
(

F (ǫ′)F (ǫ− ǫ′)− F (ǫ)(1 + F (ǫ′) + F (ǫ− ǫ′))
)

dǫ′

=
π√
2ǫ

∫ ǫ

0

(

F (ǫ′)F (ǫ− ǫ′)− F (ǫ)(1 + F (ǫ′) + F (ǫ− ǫ′))
)

dǫ′.

Moreover,

Y = 2π

∫ √
2ǫ′

(

∫ π

0
sinϕ′ δ(4

√
ǫǫ′ cosϕ′ = 0)dϕ′

)

×
(

F ′F − F (ǫ+ ǫ′)(1 + F ′ + F )
)

dǫ′

= 2π

∫ √
2ǫ′

∫ π

0
sinϕ′ δ

(

4
√
ǫǫ′(ϕ′ − π

2
) = 0

)

×
(

F ′F − F (ǫ+ ǫ′)(1 + F ′ + F )
)

dϕ′dǫ′

=
π√
2ǫ

∫

(

F ′F − F (ǫ+ ǫ′)(1 + F (ǫ′) + F (ǫ)
)

dǫ′.

Forgetting the constant π√
2
for the sake of clarity, Qc(F ) =

nc√
ǫ
Q(F ), with

Q(F )(t, ǫ) =

∫ ǫ

0

(

F (ǫ′)F (ǫ− ǫ′)− 4F (ǫ)F (ǫ′)
)

dǫ′ − 2F (ǫ)

∫ +∞

ǫ

F (ǫ′)dǫ′

+2

∫

F (ǫ+ ǫ′)(F (ǫ′) + F (ǫ))dǫ′ − ǫF (ǫ) + 2

∫ +∞

ǫ

F (ǫ′)dǫ′.

And so, the system to be studied is

n′c(t) = −nc(t)
∫

Q(F )dǫ, (2.8)

∂

∂t
(
√
ǫF ) = ncQ(F ), F (0, ǫ) = Fi(ǫ), (2.9)

with the initial non-neggative data nc(0) and Fi given. The total mass and
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energy are assumed to be bounded, i.e.

nc(0) +

∫ √
ǫFi(ǫ)dǫ < +∞,

∫

ǫ
3

2Fi(ǫ)dǫ < +∞. (2.10)

3. A Priori Estimates

Lemma 3.1. For any function ϕ,
∫

Q(F )(ǫ)ϕ(ǫ)dǫ = 2

∫

F (ǫ)

∫ ǫ

0
F (ǫ′)

(

ϕ(ǫ+ ǫ′) + ϕ(ǫ− ǫ′)− 2ϕ(ǫ)
)

dǫ′dǫ

+

∫

F (ǫ)
(

2

∫ ǫ

0
ϕ(ǫ′)dǫ′ − ǫϕ(ǫ)

)

dǫ. (3.1)

Proof of Lemma 3.1. For any function ϕ defined on IR+,

∫

ϕ(ǫ)

∫ ǫ

0
F (ǫ′)F (ǫ− ǫ′)dǫ′dǫ =

∫

F (ǫ)F (ǫ′)ϕ(ǫ+ ǫ′)dǫdǫ′

= 2

∫

F (ǫ)
(

∫ ǫ

0
F (ǫ′)ϕ(ǫ+ ǫ′)dǫ′

)

dǫ,

∫

ϕ(ǫ)F (ǫ+ǫ′)(F (ǫ′)+F (ǫ))dǫ′dǫ =

∫

F (ǫ)

∫ ǫ

0
F (ǫ′)(ϕ(ǫ−ǫ′)+ϕ(ǫ′))dǫ′dǫ.

And so,
∫

Q(F )(ǫ)ϕ(ǫ)dǫ = 2

∫

F (ǫ)

∫ ǫ

0
F (ǫ′)(ϕ(ǫ + ǫ′) + ϕ(ǫ− ǫ′)− 2ϕ(ǫ))dǫ′dǫ

+

∫

F (ǫ)
(

2

∫ ǫ

0
ϕ(ǫ′)dǫ′ − ϕ(ǫ)

)

dǫ. �

Lemma 3.2.

nc(t) +

∫ √
ǫF (t, ǫ)dǫ = nc(0) +

∫ √
ǫFi(ǫ)dǫ, (3.2)

∫

ǫ
3

2F (t, ǫ)dǫ =

∫

ǫ
3

2Fi(ǫ)dǫ, a.a.t ∈ [0, T ]. (3.3)

Proof of Lemma 3.2. (3.2) follows from adding (2.8) integrated from 0

to t and (2.9) integrated on (0, t)× IR+. (3.3) follows from Lemma 3.1 with

ϕ(ǫ) = ǫ. �
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Lemma 3.3. Under (2.10), the bilinear part of Q(F ),

∫ ǫ

0

(

F (ǫ′)F (ǫ− ǫ′)− 4F (ǫ)F (ǫ′)
)

dǫ′ − 2F (ǫ)

∫ +∞

ǫ

F (ǫ′)dǫ′

+2

∫

F (ǫ+ ǫ′)(F (ǫ′) + F (ǫ))dǫ′,

is the derivative of a bounded measure.

Proof of Lemma 3.3. By Lemma 3.1 and (2.10), for any function ϕ ∈
C1(IR+) such that ϕ and ϕ′ are bounded,

∣

∣

∣

∫

Q(F )(ǫ)ϕ(ǫ)dǫ
∣

∣

∣

≤ 2

∫ √
ǫF (ǫ)

∫ ǫ

0

√
ǫ′F (ǫ′)

∣

∣

∣

√

ǫ′

ǫ

∫ 1

0

(

ϕ′(ǫ+ λǫ′)− ϕ′(ǫ− λǫ′)
)

dλ
∣

∣

∣
dǫ′dǫ

≤ 4
∣

∣

∣
ϕ′
∣

∣

∣

∞

(

∫ √
ǫF (ǫ)dǫ

)2
≤ c

∣

∣

∣
ϕ′
∣

∣

∣

∞
. �

It follows from Lemmas 3.1 and 3.3 that weak solutions of the Cauchy prob-

lem (2.8-9) can be defined.

Definition 3.1. A weak solution to the Cauchy problem (2.8-9) on the

interval of time [0, T ] is (nc, F ) ∈ C1([0, T ])×L∞(0, T,M√
ǫ(IR+)) such that

√
ǫF contains no Dirac part at ǫ = 0, and for any function ϕ ∈ C1([0, T ] ×

IR+) such that ∂ϕ
∂ǫ

is bounded and ϕ(t, ·) = 0, t ∈ [0, T ],

nc(t) = nc(0)e
−

∫ t

0

∫
ǫF (s,ǫ)dǫds,

∫ √
ǫF (t, ǫ)ϕ(t, ǫ)dǫ −

∫ √
ǫFi(ǫ)ϕ(0, ǫ)dǫ −

∫ t

0

∫ √
ǫF (s, ǫ)

∂ϕ

∂t
(s, ǫ)dǫds

= nc(0)

∫ t

0
e−

∫ s

0

∫
ǫF (τ,ǫ)dǫdτ

(

∫ √
ǫF (s, ǫ)

∫ ǫ

0

√
ǫ′F (s, ǫ′)

√

ǫ′

ǫ

∫ 1

0
(
∂ϕ

∂ǫ
(s, ǫ+λǫ′)− ∂ϕ

∂ǫ
(s, ǫ−λǫ′))dλdǫ′dǫ

+

∫

F (s, ǫ)(2

∫ ǫ

0
ϕ(s, ǫ′)dǫ′ − ǫϕ(s, ǫ))dǫ

)

ds. (3.4)

Remark 1. It is for keeping the spirit of the coupling between the

condensate and non-condensate parts of the gas, that
√
ǫF is required to
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have no Dirac part at energy 0.

4. The Existence Theorem for the Cauchy Problem.

Theorem 4.1. Under assumption (2.10) of bounded initial mass and en-

ergy, there exists a weak solution (nc, F ) ∈ C1([0, T ])×L∞(0, T ;M√
ǫ(IR

+))

to the Cauchy problem (2.8-9) in the sense of Definition 3.1.

The proof of Theorem 4.1 splits into two parts. An approximation pro-

cedure first leads to a sequence (F j), solution to a Cauchy problem with ap-

proximated collision operators behaving smoothly close to the energy zero.

Then the passage to the limit in the equation satisfied by F j when j → +∞
provides a weak solution to the Cauchy problem (2.8-9).

Lemma 4.4. For any j ∈ IN∗, there is a unique solution (njc, F j) ∈
C1([0, T ]) × C1([0, T ], L1√

ǫ
(IR+)) to

nj
′

c = −njc
∫

Qj(F
j)dǫ, njc(0) = nc(0), (4.1)

√
ǫ
∂F j

∂t
= njcQj(F

j), F j(0, ǫ) = Fi(ǫ), (4.2)

where

Qj(F )(ǫ) =

∫ ǫ− 1

j

1

j

F ′F (ǫ− ǫ′)dǫ′ − 4χǫ> 1

j
F (ǫ)

∫ ǫ

1

j

F ′dǫ′

−2χǫ> 1

j
F (ǫ)

∫ +∞

ǫ

F ′dǫ′ + 2

∫ +∞

1

j

F ′F (ǫ+ ǫ′)dǫ′

+2χǫ> 1

j
F (ǫ)

∫

F (ǫ+ ǫ′)dǫ′−χǫ<jǫF (ǫ)+2χ 1

j
<ǫ<j

∫ +∞

ǫ

F ′dǫ′.

Proof of Lemma 4.1. Denote by c1 = nc(0)+
∫ √

ǫFi(ǫ)dǫ. Starting from

a nonnegative function f(t, ǫ) such that
∫ √

ǫf(t, ǫ)dǫ ≤ c1, t ≥ 0, there

are functions (N(t), F (t, ǫ)) solutions to

N ′ = −N
∫

Q̃j(f, F )dǫ, N(0) = nc(0), (4.3)

√
ǫ
∂F

∂t
= NQ̃j(f, F ), F (0, ǫ) = Fi(ǫ), (4.4)
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where Q̃j(f, F ) is defined by

Q̃j(f, F )(t, ǫ) =

∫ ǫ− 1

j

1

j

f ′f(ǫ− ǫ′)dǫ′ − 4χǫ> 1

j
F (ǫ)

∫ ǫ

1

j

f ′dǫ′

−2χǫ> 1

j
F (ǫ)

∫ +∞

ǫ

f ′dǫ′ + 2

∫ +∞

1

j

f ′f(ǫ+ ǫ′)dǫ′

+2χǫ> 1

j
f(ǫ)

∫

f(ǫ+ǫ′)dǫ′−χǫ<jǫF (ǫ)+2χ 1

j
<ǫ<j

∫ +∞

ǫ

f ′dǫ′.

Indeed, consider the sequence (F j) defined by F 0 = 0, and

√
ǫ
∂F j+1

∂t
= N jQ̃j(f, F

j+1), F j+1(0, ǫ) = Fi(ǫ),

where N j is the solution to

N j′ = −N j

∫

Q̃j(f, F
j)dǫ, N j(0) = nc(0).

From N j and F j+1 written in exponential form, it follows that N j ≥ 0 and

F j+1 ≥ 0. Then a contraction argument is used in C0([0, T ∗], L1√
ǫ
) for T ∗

small enough, to prove that (F j) converges. The time T ∗ is chosen so that

uniformly in j,
∫ √

ǫF j(t, ǫ)dǫ ≤ 2c1, t ∈ [0, T ∗].

It can be done in the following way. Since

N j(t) = nc(0)e
−

∫ t

0

∫
Q̃j(f,F j)dǫds,

∣

∣

∣

∫

Q̃j(f, F
j)dǫ

∣

∣

∣
≤ 5j

(

∫ √
ǫfdǫ

)2
+ 4j

(

∫ √
ǫfdǫ

)(

∫ √
ǫF jdǫ

)

+
√

j

∫ √
ǫF jdǫ+ 2j

3

2

∫ √
ǫfdǫ,

and
∫ √

ǫfdǫ ≤ c1,

∫ √
ǫF jdǫ ≤ 2c1,

it holds that

N j(t) ≤ nc(0)e
20c21j

2T ∗

, t ∈ [0, T ∗], j ∈ IN∗,
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and
∫ √

ǫF j+1(t, ǫ)dǫ ≤
∫ √

ǫFi(ǫ)dǫ+ 20c21j
2nc(0)T

∗e20c
2
1
j2T ∗

≤ c1 + 20c21j
2nc(0)T

∗e20c
2
1
j2T ∗ ≤ 2c1,

for T ∗ small enough. Let us prove that

sup
t∈[0,T ∗]

∫ √
ǫ
∣

∣

∣
(F j+2−F j+1)(t, ǫ)

∣

∣

∣
dǫ ≤ k sup

t∈[0,T ∗]

∫ √
ǫ
∣

∣

∣
(F j+1−F j)(t, ǫ)

∣

∣

∣
dǫ,

for some k < 1, uniformly with respect to j.

First, writing Q̃j(f, F ) as α(f) − Fν(f), the difference
√
ǫ ∂
∂t
(F j+2 −

F j+1) can be split into

√
ǫ
∂

∂t
(F j+2 − F j+1) = N j+1(α(f)− F j+2ν(f))−N j(α(f)− F j+1ν(f))

= α(f)(N j+1 −N j)−N j+1(F j+2 − F j+1)ν(f) + (N j+1 −N j)F j+1ν(f).

Then,
∣

∣

∣
(N j+1 −N j)(t)

∣

∣

∣

≤ nc(0)e
−

∫ t

0

∫
α(f)dǫds

∣

∣

∣
e
∫ t

0

∫
ν(f)F j+1(s,ǫ)dǫds − e

∫ t

0

∫
ν(f)F j (s,ǫ)dǫds

∣

∣

∣

≤ nc(0)
∣

∣

∣

∫ t

0

∫

ν(f)(F j+1 − F j)(s, ǫ)dǫds
∣

∣

∣
ecT

∗

≤ c

∫ t

0

∫ √
ǫ
∣

∣

∣
(F j+1 − F j)(s, ǫ)

∣

∣

∣
dǫds.

Consequently,

∂

∂t

∫ √
ǫ
∣

∣

∣
(F j+2 − F j+1)(t, ǫ)

∣

∣

∣
dǫ ≤ c

∫ t

0

∫ √
ǫ
∣

∣

∣
(F j+1 − F j)(s, ǫ)dǫds

+c

∫ √
ǫ
∣

∣

∣
(F j+2 − F j+1)(t, ǫ)dǫ.

Hence,

∫ √
ǫ
∣

∣

∣
(F j+2 − F j+1)(t, ǫ)

∣

∣

∣
dǫ ≤ c

∫ t

0

∫ √
ǫ
∣

∣

∣
(F j+1 − F j)(s, ǫ)dǫds.
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And so,

sup
t∈[0,T ∗]

∫ √
ǫ
∣

∣

∣
(F j+2 − F j+1)(t, ǫ)

∣

∣

∣
dǫ ≤ c̃T ∗ sup

t∈[0,T ∗]

∫

∣

∣

∣
(F j+1 − F j)(t, ǫ)

∣

∣

∣
dǫ.

It is sufficient to choose T ∗ < 1
2c̃ to end the contraction argument. And so,

there are (N,F ) solutions to (4.3-4) on [0, T ∗]. But adding equations (4.3)

and (4.4) implies that

N(T ∗) +

∫ √
ǫF (T ∗, ǫ)dǫ = N(0) +

∫ √
ǫF (0, ǫ)dǫ ≤ c1.

This means that the whole argument for defining (N,F ) solution to (4.3-4)

on [0, T ∗] also holds on [T ∗, 2T ∗], ...finally on the whole interval [0, T ].

Consider the map T that maps (n, f) ∈ C0([0, T ])×C0([0, T ], L1(IR+)) such

that

nc(t) +

∫ √
ǫf(t, ǫ)dǫ ≤ c1, t ∈ IR+,

into (N,F ) solution to (4.3-4). It follows from the expressions of N(t) and

F (t, ǫ) written in exponential form that they stay nonnegative like their

initial data. Then,

N(t) +

∫ √
ǫF (t, ǫ)dǫ ≤ c1. (4.5)

For T̃ small enough, T is a contraction in C0([0, T̃ ])×C0([0, T̃ ], L1√
ǫ
). Indeed,

consider (n1, f1) and (n2, f2) such that (4.5) holds, and

(N1, F1) =T (n1, f1), (N2, F2) =T (n2, f2). Then,

∂

∂t

∫ √
ǫ
∣

∣

∣
F1 − F2

∣

∣

∣
dǫ

≤ N1

∫

∣

∣

∣
Q̃j(f1, F1)− Q̃j(f2, F2)

∣

∣

∣
dǫ+

∣

∣

∣
N1 −N2

∣

∣

∣

∫

∣

∣

∣
Q̃j(f2, F2)

∣

∣

∣
dǫ

≤ c2N1

(

∫ √
ǫ
∣

∣

∣
F1 − F2

∣

∣

∣
dǫ+

∫ √
ǫ
∣

∣

∣
f1 − f2

∣

∣

∣
dǫ
)

+ c3

∣

∣

∣
N1 −N2

∣

∣

∣
.

Here, and in the following, ci, i ≥ 2, denote constants depending on c1 and

j. Moreover, Ni(t) = nc(0)e
−

∫ t

0

∫
Q̃j(fi,Fi)dǫds, 1 ≤ i ≤ 2, so that

N1(t) ≤ nc(0)e
c2T̃ ,

∣

∣

∣
N1(t)−N2(t)

∣

∣

∣
≤ c3e

c4T̃

∫ t

0

∫ √
ǫ
∣

∣

∣
(F1 − F2)(s, ǫ)

∣

∣

∣
dǫds, t < T̃ .
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And so,

∂

∂t

∫ √
ǫ
∣

∣

∣
(F1 − F2)(s, ǫ)

∣

∣

∣

≤ c5

∫ √
ǫ
∣

∣

∣
(F1 − F2)(t, ǫ)dǫ+ c6e

c7T̃

∫ t

0

∫ √
ǫ
∣

∣

∣
(F1 − F2)(s, ǫ)

∣

∣

∣
dǫ

+c8

∫ √
ǫ
∣

∣

∣
(f1 − f2)(t, ǫ)

∣

∣

∣
dǫ, t < T̃ .

Hence, x(t) :=
∫ t

0

∫ √
ǫ
∣

∣

∣
(F1 − F2)(s, ǫ)dǫds satisfies a second-order linear

differential equation with a source term h(t) ≤ c8
∫ √

ǫ
∣

∣

∣
(f1 − f2)(t, ǫ)

∣

∣

∣
dǫ.

Hence,

x(t) =
1

c9 − c10

∫ t

0
h(s)(ec9(t−s) − ec10(t−s))ds.

Consequently,
∫ √

ǫ
∣

∣

∣
(F1 − F2)(t, ǫ)

∣

∣

∣
dǫ ≤ c8

∣

∣

∣
c9 − c10

∣

∣

∣

(

c9(e
c9t − 1) + c10(e

c10t − 1)
)

× sup
s≤T̃

∫ √
ǫ
∣

∣

∣
(f1 − f2)(s, ǫ)

∣

∣

∣
dǫ, t ≤ T̃ .

Hence,

sup
t≤T̃

∫ √
ǫ
∣

∣

∣
(F1 − F2)(t, ǫ)

∣

∣

∣
dǫ ≤ c11(e

c12T̃ − 1) sup
t≤T̃

∫ √
ǫ
∣

∣

∣
(f1 − f2)(t, ǫ)

∣

∣

∣
dǫ,

sup
t≤T̃

∣

∣

∣
(N1 −N2)(t)

∣

∣

∣
≤ c13T̃ e

c14T̃ (ec12T̃ − 1) sup
t≤T̃

∫ √
ǫ
∣

∣

∣
(f1 − f2)(t, ǫ)

∣

∣

∣
dǫ.

And so, a Banach fixed point argument can be applied to T in C0([0, T̃ ])×

C0([0, T̃ ], L1√
ǫ
) for T̃ small enough. It follows from (4.5), holding on [0, T ],

that the previous procedure can be applied on [T̃ , 2T̃ ], . . ., up to T . By

(4.1-2), (nj, F j) belongs to C1([0, T ]) × C1([0, T ], L1√
ǫ
(IR+)).

End of the Proof of Theorem 4.1. It remains to pass to the limit in

(4.1-2) when j tends to +∞. From (4.1-2) it follows that

njc(t) +

∫ √
ǫF j(t, ǫ)dǫ = c1,

∫

ǫ
3

2F j(t, ǫ)dǫ =

∫

ǫ
3

2Fi(t, ǫ)dǫ. (4.6)
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Hence up to a subsequence, the sequence (
√
ǫF j) converges in a weak-*

sense to a bounded measure
√
ǫF + β(t)δǫ=0, with the support of

√
ǫF not

containing ǫ = 0. Moreover,

lim
j→+∞

∫

ǫF j(t, ǫ)dǫ =

∫

ǫF (t, ǫ)dǫ.

Consequently,

lim
j→+∞

njc(t) = lim
j→+∞

nc(0)e
−

∫ t

0

∫
ǫF j(s,ǫ)dǫds = nc(0)e

−
∫ t

0

∫
ǫF (s,ǫ)dǫds.

Then, (nj
′

c ) is bounded in C0([0, T ]), so that the Ascoli theorem implies that

up to a subsequence, (nj) uniformly converges to nc(0)e
∫ t

0

∫
ǫF (s,ǫ)dǫds. Then

for any C1 test function ϕ, integrate (4.2) multiplied by ϕ on (0, t), so that

∫ √
ǫF j(t, ǫ)ϕ(t, ǫ)dǫ −

∫ √
ǫFi(ǫ)ϕ(0, ǫ)dǫ

=

∫ t

0

∫ √
ǫF j(s, ǫ)

∂ϕ

∂t
(s, ǫ)dǫds

+

∫ t

0
njc(s)

∫ +∞

1

j

√
ǫF j(s, ǫ)

∫ ǫ

1

j

√
ǫ′F j(s, ǫ′)

√

ǫ′

ǫ

∫ 1

0
(
∂ϕ

∂ǫ
(s, ǫ+ λǫ′)

−∂ϕ
∂ǫ

(s, ǫ− λǫ′))dλdǫ′dǫds

+

∫ t

0
njc(s)

(

2

∫ +∞

1

j

(

∫ min(ǫ,j)

1

j

ϕ(s, ǫ′)dǫ′
)

F j(s, ǫ)dǫ−
∫ j

0
ǫF j(s, ǫ)ϕ(s, ǫ)dǫ

)

ds,

where njc(s) = nc(0)e
−

∫ s

0

∫
ǫF j(τ,ǫ)dǫdτ . Passing to the limit when j → +∞ in

the previous equality implies that
∫ √

ǫF (t, ǫ)ϕ(t, ǫ)dǫ −
∫ √

ǫFi(ǫ)ϕ(0, ǫ)dǫ + β(t)ϕ(t, 0)

=

∫ t

0

∫ √
ǫF (s, ǫ)

∂ϕ

∂t
(s, ǫ)dǫds +

∫ t

0
β(s)

∂ϕ

∂t
(s, 0)ds

+

∫ t

0
nc(0)e

−
∫ s

0

∫
ǫF (τ,ǫ)dǫdτ

∫ √
ǫF (s, ǫ)

∫ ǫ

0

√
ǫ′F (s, ǫ′)

√

ǫ′

ǫ

×
∫ 1

0
(
∂ϕ

∂ǫ
(s, ǫ+ λǫ′)− ∂ϕ

∂ǫ
(s, ǫ− λǫ′))dλdǫ′dǫds

+

∫ t

0
nc(0)e

−
∫ s

0

∫
ǫF (τ,ǫ)dǫdτ

(

2

∫ ǫ

0
ϕ(s, ǫ′)dǫ′ − ǫϕ(s, ǫ)

)

F (s, ǫ)dǫds. (4.7)
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Indeed, the other terms containing β vanish at the limit, in a way already

noticed in Section 2. Choosing then ϕ such that ϕ(t, 0) = 0, t ∈ [0, T ] leads

to the weak formulation (3.4) for F . The existence of a solution (n, F ) ∈
C1([0, T ]) × L∞(0, T,M√

ǫ(IR+)) to the Cauchy problem (2.8-9) is therefore

proven. �

Proposition 4.1. If the limit
√
ǫF + β(t)δǫ=0 of

√
ǫF j for the weak-*

topology of bounded measures, has no other singular part than β(t)δǫ=0, i.e.

if
√
ǫF ∈ L∞(0, T, L1(IR+)), and if 0 is a Lebesgue point of

√
ǫF , then β is

identically zero.

Proof of Proposition 4.1. If
√
ǫF is integrable, then

lim
n→+∞

∫ 1

n

0

√
ǫF (t, ǫ)dǫ = 0.

If moreover, 0 is a Lebesgue point of
√
ǫF , then n

∫

1

n

0

√
ǫF (t, ǫ)dǫ is bounded,

so that

lim
n→+∞

n
(

∫ 1

n

0

√
ǫF (t, ǫ)dǫ

)2
= 0.

Consider then the equality (4.7) for the test functions ϕn defined by

ϕn(ǫ) = 1− nǫ, ǫ ∈ [0,
1

n
], ϕn(ǫ) = 0, else.

All terms vanish at the limit n → +∞ in (4.7) for ϕn, except β(t)ϕn(0) =

β(t). Indeed,

∫ √
ǫF (t, ǫ)ϕn(ǫ)dǫ ≤

∫ 1

n

0

√
ǫF (t, ǫ)dǫ,

∫ √
ǫF (s, ǫ)

∫ ǫ

0

√
ǫ′F (s, ǫ′)

√

ǫ′

ǫ

∫ 1

0
(ϕ′

n(ǫ+ λǫ′)− ϕ′
n(s, ǫ− λǫ′))dλdǫ′dǫ

≤ 2 sup
∣

∣

∣
ϕ′
∣

∣

∣
(

∫ 1

n

0

√
ǫF (s, ǫ)dǫ)2 ≤ 2n(

∫ 1

n

0

√
ǫF (s, ǫ)dǫ)2,

and

∫

(

2

∫ ǫ

0
ϕn(ǫ

′)dǫ′ − ǫϕn(ǫ)
)

F (s, ǫ)≤
∫ 1

n

0
ǫF (s, ǫ)dǫ+

1

n

∫ +∞

1

n

F (s, ǫ)dǫ≤ c√
ǫ
. �
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Remark. Passing to the limit when j → +∞ in (4.6) leads to

nc(t) + β(t) +

∫ √
ǫF (t, ǫ)dǫ = c1,

∫

ǫ
3

2F (t, ǫ)dǫ ≤
∫

ǫ
3

2Fi(t, ǫ)dǫ. (4.8)

Hence the solution (F, nc) provided by Theorem 4.1 conserves the total mass

if and only if β is identically zero. In this case however, the original conden-

sate nc(t) = nc(0)e
−

∫ t

0

∫
ǫF (s,ǫ)dǫds is decreasing with time. This may make

the model (2.8-9) no more valid after some time, since it has been derived

under the assumption of a large amount of condensates, compared to the

non-condensate fraction of the gas. The case β 6= 0 is interesting in the sense

that then the condensate at time t is given by (nc(t) + β(t))δǫ=0, so that a

new component of condensates arises, coming from the non-condensate part

of the gas. This new component could not be seen from equation (2.9), i.e.

n′c(t) = −nc(t)
∫

Q(F )dǫ = −nc(t)
∫

ǫF (t, ǫ)dǫ.

Lemma 4.5. The possible β-part of the condensate is bounded and

explicitly given by

β(t) = nc(0) lim
n→+∞

∫ t

0
e−

∫ s

0

∫
ǫF (τ,ǫ)dǫdτ

(

∫ 1

n

0
F (s, ǫ)

∫ ǫ

1

n
−ǫ
F (s, ǫ′)(n(ǫ+ǫ′)−1)

+

∫ +∞

1

n

F (s, ǫ)

∫ ǫ

ǫ− 1

n

F (s, ǫ′)(1− n(ǫ− ǫ′))dǫ′dǫ
)

ds

Proof of Lemma 4.5. It follows from (4.8) that β is bounded. Then its

explicit expression is part of the proof of Proposition 4.1. �

5. Conclusion

In this paper, we have proven the existence of a global solution to an

homogeneous quantum coupled system describing the evolution of a gas at

very low temperature, for an initial datum with finite mass and energy.

The analysis shows that the non-condensate fraction of the gas is creat-

ing new condensates.
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