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LORENTZ GAS IN A FORCE FIELD
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Abstract

We analyze the behavior of the stochastic Lorentz gas in the

presence of a force field and we show how can be rigorously proved

that certain (very smooth) fields prevent the process obtained by

the Boltzmann-Grad limit from being Markovian. The markovian-

ity of the limit can be recovered by introducing a slightly different

setting which allows this difficulty to be removed.

1. Introduction

We present here an analysis of the rigorous derivation of linear kinetic

transport equations from stochastic particles systems when a force field is

present.

We shall describe the behavior of a linear system of particles in which

a single particle moves in a random distribution of obstacles (the so called

Lorentz gas) in the Boltzmann-Grad asymptotics, that is the one in which

the mean free path of the particle is kept finite, and we shall show how

the presence of a force field strongly modifies the stochastic properties of

the limit system with respect to the case in which the force field vanishes.

In particular, we shall show that when the obstacles have fixed random

positions certain fields can prevent the limit process from being Markovian,

and therefore the limit transport equation is not of linear Boltzmann type. In

order to obtain a markovian limit, an additional stochasticity in the velocity

distribution of the obstacles is needed. While the mathematical theorems
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are formulated for very simple kinds of forces and properties of the obstacles,

the contexts in which the discussion can be applied is much wider. We shall

refer to results obtained in [6].

The failure of the validation of the linear Boltzmann equation in the

presence of a force field was illustrated at the formal level in [2], in the

analysis of the motion of charged particles in a constant magnetic field: in

this case, the equation which is derived heuristically in the Boltzmann-Grad

asymptotics has a non–Markovian collision term, which is a consequence of

the high probability of recollision with a given obstacle. This originates from

the particular shape of the trajectory associated to the particle’s position in

the dynamics defined by the Lorentz force.

This example shows that, at variance with the case where no force field is

acting on the particle, having a stochastic distribution in the positions of the

obstacles does not guarantee to obtain a Markovian limit in the Boltzmann-

Grad asymptotics. We recall in fact that in the absence of force fields it has

been proved for different random distributions of fixed obstacles that it is

possible to derive the linear Boltzmann equation from the Lorentz gas dy-

namics in the Boltzmann–Grad limit (see [7, 8] and [1, 11] for the continuum

case; [5, 10] for obstacles with random distribution on a lattice), while this

is not the case, in the same asymptotics, for a (deterministic) distribution

of obstacles on a lattice (see [3, 9]).

We want here to make precise how the phenomenon described in [2]

occurs and which kind of randomness we need in order to remove it.

The outline of the paper is the following: we shall first introduce the

validity problem for the linear Boltzmann equation and we shall discuss the

relevance of recollisions for both cases, in the absence and in the presence of

a force field; then we shall introduce a simple model (absorbing obstacles)

for which it can be proved that the equation associated to the limit system

in the Boltzmann–Grad asymptotics is non–Markovian; we shall finally show

that, considering a distribution which is random both in the positions and

in the velocities of the obstacles, we can recover a Markovian limit equation

for the Lorentz gas.
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2. The Lorentz Gas and the Boltzmann–Grad Asymptotics

The (generalized) linear Boltzmann equation

{

∂tf + v · ∇xf +∇v · (Ff) = L(f)

f(0, x, v) = fin(x, v) ∈ L1(Rd × R
d)

(1)

is meant to describe the dynamics of light particles moving in a medium

through the evolution of their one particle density f(t, x, v) in the phase space

in a suitable asymptotics. Here t ∈ [0, T ], x ∈ R
d, v ∈ R

d denote resp. time,

position and velocity variables and f is the density to find a particle at the

phase space point (x, v) at time t; F = F (t, x, v), F : [0, T ]×R
d ×R

d → R
d,

is a force field (in more general cases, like in the linear Vlasov-Boltzmann

equation, F can depend on f); L is a suitable linear operator which describes

the interactions of the particles with particles in the medium (which are of

different species with respect to the species associated to f): for instance,

L(f) = µ(Cd

∫

Sd−1 dn|v·n|f(t, x, v−2(v·n)n)−|v|f(t, x, v)) for a hard–sphere

type interaction and L(f) = −µ|v|f(t, x, v) for an absorbing medium, with

µ constant and |v|(Cd)
−1 =

∫

Sd−1 |v · n| dn.

For the L considered here, equation (1) describes a Markov process in

which particles move according to the equation of motion

{

ẋ = v

v̇ = F

between interactions with the medium (collisions) and suffer collisions at

exponentially distributed free lengths.

Our aim is to analyze the derivation from particle dynamics of (1).

A particle system which can be associated to (1) is the (generalized)

Lorentz gas: a test particle, having initial position (x, v) ∈ R
d × R

d, moves

under the action of the force F among fixed obstacles, interacting with them

through a compactly supported potential Vε(z) = V (|z|/ε), z ∈ R
d, of in-

teraction radius (the size of the support) r = ε. The obstacles positions

c = (c1, . . . , cn, . . .), ci ∈ R
d, are distributed according to a given probability

distribution P (dc), with mean density µε. We denote by

{

ẋc = vc
v̇c = Fc(t, xc, vc)

(2)
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the equation of motion of the particle (Fc now includes the contribution of

the collisions) and by T t
c
(x, v) = (xc(t), vc(t)) the flow associated to (2). In

what follows, we shall call trajectory of the particle the trajectory in the

position space associated to the equation of motion of the particle. We can

define the evolution of an initial density f0 (induced from the previously

defined stochastic process) on test functions φ as

∫

dxdvfε(t, x, v)φ(x, v) =

∫

dxdvf0(x, v)E
cφ(T t

c
(x, v)) (3)

where E
c denotes the expectation with respect to P (dc).

We say that equation (1) can be derived from the Lorentz gas dynamics

in a suitable topology if limε→0 fε = f in that topology, where f is the

solution of (1). This may happen, under suitable conditions on P (dc) and

F , in the so called Boltzmann–Grad asymptotics, which in this case means

ε → 0, µε → ∞, εd−1µε → µ > 0. Here µ is a constant proportional to the

inverse of the mean free path.

The evolved density fε, defined in (3), can be split into two components:

fε = fM
ε + fNM

ε

The first one, fM
ε , which we shall denote as Markovian component, is associ-

ated to the trajectories of the stochastic process which collide at most once

with each obstacles, the second one, fNM
ε , the non–Markovian component,

includes all other kinds of trajectories, which are associated to recollisions.

In general, what we wish to prove is that fM
ε → f (and fNM

ε → 0).

When F = 0, the particle travels between collisions along straight lines.

This implies that it can recollide with a given obstacle only after having

suffered collisions with other different obstacles in the medium. In the

Boltzmann–Grad asymptotics, for well-behaving probability distributions

P (dc) (like f. i. the Poisson distribution), the probability of having such

a kind of event vanishes. This seems to indicate that a good asymptotic

behavior for the stochasticity in the positions of the obstacles alone allows

to obtain a Markovian limit for fε in the Boltzmann-Grad limit.

The first result in this direction was obtained in [7]. Here the linear

Boltzmann equation is derived in the case of a Poisson distribution of ob-

stacles and a hard–sphere cross section (v ∈ Sd−1): in this case, estimates

are particularly simple and it is possible to prove the convergence fM
ε → f
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without needing an explicit evaluation of the size of fNM
ε . This result has

been then improved in [S1] and [BoBuS]. The linear Boltzmann equation

with hard–sphere cross section can be derived also from a stochastic distri-

bution on a lattice (lattice gas; see [5, 10]), but, due to the discrete structure

of the space of positions of the obstacles, here explicit estimates of the size

of the recollisional part are needed.

On another side, in the case of a deterministic distribution on a lat-

tice (periodic Lorentz gas), the distribution of the first impact time in the

Boltzmann–Grad asymptotics is non–exponential and the limit is not de-

scribed by a linear Boltzmann equation. We refer to [3, 4, 9] for details on

this case.

When F 6= 0, the laps of the trajectory between collisions are no more

straight lines: as it is obvious for the case described in [2], where F is the

Lorentz force (that is F = constB ∧ v and B is a constant magnetic field)

and the trajectories associated to the free motion are arcs of a circle, in this

case recollisions may occur even when only one single obstacle is present. In

general, when the behavior of the trajectories becomes very different from

the one of straight lines (in the case of the magnetic field, when d = 2, this

happens when t > 2π/const|B|), the limit fails to be Markovian. This will

be more precisely shown in the example in the following section.

3. The Boltzmann–Grad Limit of a Lorentz Gas with

Fixed Absorbing Obstacles

We consider a Lorentz gas in which the scatterers are spheres of radius

ε distributed according to a Poisson law with parameter µε = µ ε−1 on R
2

(the case of R3 can be treated similarly). The scatterers are assumed to

be absorbing (i.e., the test particle disappears when it enters an obstacle)

and the probability distribution of finding exactly N obstacles in a bounded

measurable set Λ ⊂ R
2 is given by:

P (dcN ) = e−µε|Λ|µ
N
ε

N !
dc1 . . . dcN , (4)

where c1 . . . cN = cN are the positions of the centers of the scatterers and

|Λ| denotes the Lebesgue measure of Λ; Eε will denote the expectation with

respect to the Poisson repartition of parameter µε.
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We consider a fixed force, F ≡ F (t, x), F ∈ C(R;W 1,+∞(R2)) acting on

the test particle: the equation of motion of the particle, with initial position

x and initial velocity v, is given by

d

dt
(T t

1(x, v)) = T t
2(x, v),

d

dt
(T t

2(x, v)) = F (t, T t
1(x, v)), (5)

up to the first time τc(x, v) when the particle enters an obstacle. Since F is

globally Lipschitz, the flow T t is well–defined for all t and for t ∈ [0, T ] the

trajectory T−t
1 (x, v) is included in some ball B(0, R(T )) depending on the

initial datum (x, v).

This system has two convenient features: recollisions are absent and

fε = fM
ε can be calculated explicitly.

For a given initial datum fin ∈ L1(R2 ×R
2), the evolved density for the

particle system is given by:

fε(t, x, v) = E
ε[fin(T

−t(x, v)) 1{t≤τc(x,v)}]

=
∑

N≥0

e−µε |B(0,R(T ))|µ
N
ε

N !

∫

c1∈B(0,R(T ))
..

∫

cN∈B(0,R(T ))
fin(T

−t(x, v)) 1{T−s
1 (x,v)/∈B(ci,ε),s∈[0,t],i=1..N} dc. (6)

Let denote by

θε(t, x, v) = {y ∈ R
2,∃s ∈ [0, t], |y − T−s

1 (x, v)| ≤ ε} (7)

the tube of width ε around the trajectory; θε is the set of points around the

particle’s trajectory which has to be free of centers of obstacles in order not

to have absorption in the interval [0, t). Since here θε does not depend on

the configuration of obstacles, we get from (6) a simpler expression for fε:

fε(t, x, v) = e−µε |θε(t,x,v)| fin(T
−t(x, v)). (8)

If the behavior in the Boltzmann–Grad limit of such a particle system

would be Markovian, we would expect the limit density to satisfy the fol-

lowing evolution equation:

∂tf + v · ∇xf + F · ∇vf = −2µ |v| f (9)
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whose solution is

f(t, x, v) = e−2µ
∫ t

0 |T−s
2 (x,v)|ds fin(T

−t(x, v)). (10)

But, as it is easily detected by comparing (8) and (10), this may happen

only if the asymptotic behavior for the tube (7) when ε → 0 is given by:

ε−1|θε(t, x, v)| ≈ 2

∫ t

0
|T−s

2 (x, v)|ds. (11)

Now, what we can hope to get at best is actually only:

ε−1|θε(t, x, v)| ≈ 2l(γ) (12)

where l(γ) is the 1-dimensional measure of the set γ = {y ∈ R
2, y ∈

∪σ∈[0,t[{T
−σ
1 (x, v)}}, that is the length of the trajectory of the particle up

to time t, while (11) involves the distance traveled by the particle along

its trajectory up to time t, so that each time the two quantities do not co-

incide (that is the case for instance when the trajectory up to time t is a

closed curve which is traveled by the particle more than once) (8) does not

converge in the ε → 0 limit to (10). Moreover, there are trajectories such

that ε−1|θε(t, x, v)| may not follow at all the behavior described by (12).

These two situations correspond to the fact that after a time smaller than

the considered time t the particle comes sufficiently near to a space point it

already visited in the past, and therefore it is possible to predict if it will

suffer or not a collision, and this happens for a set of times whose closure

has nonvanishing measure in the limit.

Both cases may in principle occur, and sometimes for not such unusual

forces: for instance, the case analyzed in [2] and the 2-dimensional harmonic

oscillator F (x) = −x when t > π/2 correspond to the situation described at

first, while the second one occurs whenever there is an accumulation point

of self–intersections of the trajectory of the particle in the interval of time

considered.

What actually can be proved for the Lorentz gas with absorbing obsta-

cles is the following theorem ([6]):

Theorem 1. Let c be given by a Poisson’s repartition of parameter

µε = µ ε−1 on R
2 and F ≡ F (t, x) ∈ C(R;W 1,+∞(R2)). We denote by

T t the flow defined (for t ∈ R) by (5) and by fε the quantity defined by
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(8). We suppose moreover that F is such that for a.e. initial data (x, v) ∈

R
2×R

2, T s
2 (x, v) 6= 0 for s ∈ R. Then for fin ∈ L1(R2×R

2), we have, when

ε → 0, fε
L1([0,T ]×R

2×R
2)

−→ f for all T > 0, where f is the unique solution in

L1([0, T ] × R
2 × R

2) of the equation

{

∂tf + v · ∇xf + F · ∇vf = − 2µ |v| f 1{x 6=T−s
1 (x,v),s∈]0,t[}

f(0, x, v) = fin(x, v).
(13)

As soon as the trajectories in the space of x of the ODE (5) cross them-

selves for a set of times of strictly positive measure and for a non zero measure

set of initial data, equation (13) is at variance with (9).

Theorem 1 is easily proved, through Lebesgue’s dominated convergence

theorem, after proving the following lemma :

Lemma 1. Under the assumptions of Theorem 1, for all t ∈ [0, T ] and

a.e. x, v, the volume of the tube θε(t, x, v) satisfies the following asymptotic

property:

lim
ε→0

ε−1|θε(t, x, v)| = 2

∫ t

0
|T−s

2 (x, v)| 1{T−s
1 (x,v)/∈∪σ∈[0,s[{T

−σ
1 (x,v)}}ds. (14)

Lemma 1 states in fact the validity of (12) for the class of forces selected

in Theorem 1 and its proof is obtained by expressing through convenient

coordinates the integration variable in the definition of the flow tube.

The condition T−s
2 (x, v) 6= 0 for s ∈ R a.e. in (x, v) allows to define

(a.e.) ν(−u) and R(−u), resp. the normal vector to the trajectory and

its (signed) radius of curvature, at the point T−u
1 (x, v) and, together with

the Lipschitz property of F , implies, for u ∈ [0, t], |R(−u)| > Rmin > 0.

This bound prevents the occurrence of accumulation points of self–crossings.

When 0 < ε < Rmin/2 we can define the following change of variable (which

is only locally one-to-one) for given t, x, v

ζ : [0, t]× [−ε, ε] −→ R
2

(s, z) 7→ ζ(s, z) =

∫ s

0
T−h
2 (x, v)dh + ν(−s) z. (15)

and obtain lower and upper bounds on the R
2-measure of the flow tube (for
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enough small ε and δ > 0 ) as follows:

|θε(t, x, v)| ≤ 2ε (1 + ε/Rmin)

∫

s∈Bc

|T−s
2 (x, v)| ds + π ε2,

|θε(t, x, v)| ≥ 2 ε (1 − ε/Rmin)

∫

{s∈[0,t]: d(s,B)≥δ}
|T−s

2 (x, v)|ds,

where B =
{

s ∈ [0, t] : T−s
1 (x, v) ∈ ∪σ∈[0,s[{T

−σ
1 (x, v)}

}

is the set of times

for which a selfcrossing occurs. The bound from above is obtained by simply

performing the integration in the new variables on the whole domain but

the subdomain s.t. s ∈ B (the term π ε2 comes from the extremities of the

trajectory, which do not belong to the image of ζ), while the lower bound is

obtained by cutting out from the domain of integration the points where the

change of variable ζ is in fact not one-to-one (typically, for ε small enough,

the points close to some self-crossing of the trajectory).

We obtain therefore:

lim sup
ε→0

ε−1 |θε(t, x, v)| ≤ 2

∫ t

0
|T−s

2 (x, v)| 1{s∈Bc} ds.

and

lim inf
ε→0

ε−1 |θε(t, x, v)| ≥ 2

∫

{s∈[0,t]: d(s,B)≥δ}
|T−s

2 (x, v)| ds.

so that, since for all s ∈ [0, t], 1{s∈[0,t]: d(s,B)≥δ} converges to 1B̄c , and,

as a consequence of the fact that |R(−u)| > Rmin > 0, B is a closed set of

[0, t], we obtain (14) by letting δ go to 0, thanks to Lebesgue’s dominated

convergence theorem.

Of course, even though we just considered the case F = F (t, x), the

behavior described by Theorem 1 is more general and it is a consequence of

the topological properties of the trajectories associated to the free motion

(5).

4. The Lorentz Gas with Moving Absorbing Obstacles:

the Markovian Limit

As we showed in the previous section, in the presence of a force field a

well-behaving stochasticity in the localization in space of the collision is not

sufficient to get a Markovian limit for the density describing the (generalized)

Lorentz process.
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We now try now to obtain an equation describing a Markovian process,

in the Boltzmann-Grad asymptotics, by adding some additional stochasticity

on the system.

We shall consider a new distribution of obstacles: their initial position

c is still given by the Poisson law with parameter µε = µ ε−1, but now

the obstacles also move with a (fixed) velocity w = (w1, . . . , wN ) which

is distributed according to a centered Gaussian law with variance 1. The

velocities of the obstacles are independent from each other and independent

of c. The obstacles are again assumed to be absorbing. We denote the

expectation with respect to the measure we just described by E
ε′. We still

consider the force F (t, x), the equation of motion (5) and τ now also depends

on w.

For a given initial datum gin ∈ L1(R2 × R
2), the density associated to

the particle system is:

gε(t, x, v) = E
ε′ [gin(T

−t(x, v)) 1{t≤τc,w (x,v)}] (16)

and for this system we can prove the following theorem [6]:

Theorem 2. Let c,w be given by a repartition as described above (with

independence of c and w), and F ≡ F (t, x) ∈ C(R;W 1,+∞(R2)). Then for

gin ∈ L1(R2 ×R
2)), we have, when ε → 0, gε

L1([0,T ]×R
2×R

2)
−→ g for all T > 0,

where g is the unique solution in L1([0, T ] × R
2 × R

2) of the equation







∂tg + v · ∇xg + F · ∇vg = −2µ g
∫

w∈R2 |v − w| e
−

|w|2

2

2π dw

g(0, x, v) = gin(x, v).
(17)

Note that in this theorem, no assumption on F (or on the flow T t) is

made, apart from the smoothness assumption of the force field.

Since gε is given now by:

gε(t, x, v) = lim
R→+∞

∑

N≥0

e−µε|B(0,R)|µ
N
ε

N !

∫

c1∈B(0,R)
· · ·

∫

cN∈B(0,R)

∫

w1∈R2

· · ·

∫

wN∈R2

×gin(T
−t(x, v))1{T−s

1 (x,v)/∈B(ci−wis,ε),s∈[0,t],i=1,...,N}e
− |w|2

2
dw

(2π)N
dc. (18)
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we can get an explicit expression analogous to (8) by modifying our definition

of the tube θ in the following way, for each w ∈ R
2 :

θ′ε(t, x, v, w) = {y ∈ R
2,∃s ∈ [0, t], |y − T−s

1 (x, v) + w s| ≤ ε}. (19)

We get then:

gε(t, x, v) = lim
R→+∞

e−µε

∫
w∈R2

|θ′ε(t,x,v,w)| e−
|w|2

2 dw
2π gin(T

−t(x, v)). (20)

and therefore, in a similar way to what we did in the case of fixed obstacles,

we can get the proof of Theorem 2 through Lebesgue’s dominated conver-

gence theorem after proving the lemma :

Lemma 2. The volume of the tube θ′ε(t, x, v, w) satisfies the following

asymptotic property : for all (t, x, v) ∈ [0, T ] × R
2 × R

2,

lim
ε→0

ε−1

∫

w∈R2

|θ′ε(t, x, v, w)|e
− |w|2

2
dw

2π
=2

∫ t

0

∫

w∈R2

|T−s
2 (x, v)−w|e−

|w|2

2
dw

2π
ds.

(21)

The proof of Lemma 2 is analogous to the one of Lemma 1, We consider

a given (t, x, v) ∈ [0, T ] × R
2 × R

2 and we prove first that ε−1 |θ′ε(t, x, v, w)|

converges to
∫ t
0 |T

−s
2 (x, v) − w| ds for a.e. w.

Since for a.e. w ∈ R
2, the translated velocity T−s

2 (x, v) − w is different

from 0 for all s (since {T−s
2 (x, v), s ∈ [0, t]} is a Lipschitz curve of R2) we can

apply the same technique as in Lemma 1. We get first the convergence of

ε−1 |θ′ε(t, x, v, w)| towards 2
∫

Bc
w
|T−s

2 (x, v) − w| ds, where Bw = {s ∈ [0, t] :

∃σ < s, T−σ
1 (x, v) − wσ = T−s

1 (x, v) − w s}. Then, since the set U =
{(

s,
T−s
1 (x,v)−T−σ

1 (x,v)
s−σ

)

, 0 ≤ σ < s ≤ t

}

has Lebesgue measure 0, we get

(from Fubini’s theorem) that for a.e. w ∈ R
2, the set Bw is negligible.

This concludes the proof of Lemma 2.

As we saw, adding a stochasticity in the velocity of the obstacles allows

to recover in the limit a Markovian process, described from equation (17).

This happens for very general F and makes the meaning of Theorem 2 very

general.

What is reasonable to think is that Theorem 2 can be extended to

more general kind of interactions between the test particle and the obstacles,

like the hard–spheres rebound, and to different kind of stochasticity (in the
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interaction or in the distribution of obstacles), whenever this is somehow

equivalent to consider moving obstacles.

We notice that in our Markovian model the obstacles do not interact

among themselves (i.e. they are transparent except to the test particle), so

that, in the given asymptotics, effects due to overlappings disappear (even

for hard–spheres interaction).
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