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Abstract

This paper intends to give a comprehensive overview on

the basic mathematical tools which are presently used in optimal

semiconductor design. Focusing on the drift diffusion model for

semiconductor devices we collect available results concerning the

solvability of design problems and present for the first time results

on the uniqueness of optimal designs. We discuss the construction

of descent algorithms employing the adjoint state and investigate

their numerical performance. The feasibility of this approach is

underlined by various numerical examples.

1. Introduction

From the very beginning of semiconductor industry there has been a

never–ending drive towards increased miniaturization. The rapidly increas-

ing demand for semiconductor technology requires that the design cycle for a

new device gets shorter from year to year. The original aim was to produce

more devices per unit area, e.g. the Semiconductor Industry Association

(SIA) projects that by 2009 the leading edge MOS device will employ a

0.05µm length scale and an oxide thickness of 1.5 nm or less. So far, numer-

ical simulations proved to be the main tool for the reduction of the time of a

design cycle. These require enhanced models which are capable of describing
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the electronic behavior of the device appropriately. This reveals several chal-

lenging problems for electrical engineers and applied mathematicians, too.

In fact, they all have to contribute to the three topics Modeling, Simulation

and Optimal Design.

Concerning the first point, there exists a hierarchy of models, which

ranges from microscopic, like the Boltzmann–Poisson or the Wigner–Poisson

model, to macroscopic models, like the energy transport, the hydrodynamic

and the drift diffusion (DD) model [17, 25, 28, 33]. Having these models

at hand it was possible to shorten the design cycle significantly. Numerical

simulations helped to plan experiments and the computer could even replace

expensive experiment set–ups. Clearly, also the development of new numer-

ical techniques yielded an important speed up of the required simulation

times. There was a strong need for new discretization schemes and non-

linear iterations exploiting the structure of the underlying model equations,

since they typically posed severe numerical problems. As the models consist

of nonlinear elliptic, parabolic or hyperbolic equations, which are generally

strongly coupled, this led to the development of many new mathematical

techniques. Most popular and widely used in commercial simulation pack-

ages is the DD model, which allows for a very efficient numerical study of

the charge transport in many cases of practical relevance. There exists a

large amount of literature on this model (cf. [7] and the references therein),

which covers questions of the mathematical analysis [12, 24, 26] as well as

of the numerical discretization and simulation [13, 18].

The increasing computing power and the availability of fast simulation

tools made it even possible to compute the optimal design of semiconduc-

tors. First approaches in the engineering literature were based on black box

optimization tools or nonlinear least–squares methods applied to the well

understood DD model [6, 8, 19, 20, 22, 27, 30, 31, 32]. Unfortunately, they

require hundreds of solves of the underlying model equations. Nevertheless,

they gave reasonable results and sometimes even unexpected answers to spe-

cial design questions. Only recently the applied mathematics community did

begin to investigate methods from optimization theory and optimal control

of partial differential equations as well as specially designed optimization

algorithms, which made it possible to speed up the numerical optimization

tools significantly [1, 2, 3, 5, 9, 10, 11, 14, 15].

The main objective in optimal semiconductor design is to get an im-

proved current flow at a specific contact of the device, e.g. focusing on the
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reduction of the leakage current in MOSFET devices or maximizing the drive

current [30]. In both cases a certain working point is fixed and one tries to

achieve the objective by a change of the doping profile.

This paper intends to give a comprehensive overview on the basic math-

ematical tools which are presently used in optimal semiconductor design. We

will focus on the DD model which is presented in Section 1.1 and embed the

design question in the context of optimization with constraints given by par-

tial differential equations (cf. Section 1.2). The question of uniqueness for

optimal designs is investigated in Section 2, where a non–uniqueness result

is proven. Section 3 is devoted to the discussion of the first–order optimality

system leading to the adjoint state equations. These are used in Section 4

for the construction of a descent algorithm whose performance is studied for

a new cost functional. Concluding remarks are given in Section 5.

1.1. The drift diffusion model

The stationary standard DD model for semiconductor devices stated on

a bounded domain Ω ⊂ R
d, d = 1, 2, or 3 reads

Jn = q (Dn∇n+ µn n∇V ) , (1.1a)

Jp = −q (Dp∇p− µp p∇V ) , (1.1b)

divJn = 0, (1.1c)

divJp = 0, (1.1d)

−ǫ∆V = q(n− p− C). (1.1e)

The unknowns are the densities of electrons n(x) and holes p(x), the

current densities of electrons Jn(x) and holes Jp(x), respectively, and the

electrostatic potential V (x). The total current density is given by

J = Jn + Jp. (1.1f)

The doping profile is denoted by C(x). The parameters Dn,Dp, µn, µp are

the diffusion coefficients and mobilities of electrons and holes respectively.

The physical constants are the elementary charge q and the permittivity

constant ǫ.

Remark 1.1. For notational simplicity we assume that the device is

operated near thermal equilibrium such that no generation–recombination
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processes are present, but it is possible to extend the forthcoming ideas also

to cases where recombination models of Shockley–Read–Hall or Auger type

as well as impact ionization play a role [33].

In the following we will only consider regimes in which we can assume

the Einstein relations

Dn = UT µn, Dp = UT µp,

where UT = kB T/q is the thermal voltage of the device and T denotes its

temperature and kB the Boltzmann constant. Further, let the mobilities be

constant.

System (1.1) is supplemented with the following boundary conditions:

We assume that the boundary ∂Ω of the domain Ω splits into two disjoint

parts ΓD and ΓN , where ΓD models the Ohmic contacts of the device and

ΓN represents the insulating parts of the boundary. Let ν denote the unit

outward normal vector along the boundary. First, assuming charge neutral-

ity and thermal equilibrium at the Ohmic contacts ΓD and, secondly, zero

current flow and vanishing electric field at the insulating part ΓN yields the

following set of boundary data

n = nD, p = pD, V = VD on ΓD, (1.1g)

Jn · ν = Jp · ν = ∇V · ν = 0 on ΓN , (1.1h)

where nD, pD, VD are the H1(Ω)–extensions of

nD =
C +

√

C2 + 4n2
i

2
,

pD =
−C +

√

C2 + 4n2
i

2
,

VD = −UT log

(

nD

ni

)

+ U, on ΓD.

Here, U denotes the applied voltage and ni the intrinsic carrier density.

We employ the following scaling

n → Cm ñ, p → Cm p̃, x → L x̃,

C → Cm C̃, V → UT Ṽ , Jn,p →
q UT Cm µn,p

L
J̃n,p
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where L denotes a characteristic device length, Cm the maximal absolute

value of the background doping profile and µn,p a characteristic value for the

respective mobilities. Defining the dimensionless Debye length

λ2 =
ǫ UT

q Cm L2

the scaled equations read

div(∇n+ n∇V ) = 0, (1.2a)

div(∇p− p∇V ) = 0, (1.2b)

−λ2∆V = n− p−C, (1.2c)

where we eliminated the current densities and omitted the tilde for notational

convenience. The Dirichlet boundary conditions transform to

nD =
C +

√
C2 + 4 δ4

2
, (1.2d)

pD =
−C +

√
C2 + 4 δ4

2
, (1.2e)

VD = − log
(nD

δ2

)

+ U, on ΓD, (1.2f)

where δ2 = ni/Cm denotes the scaled intrinsic density.

This system is analytically well understood, e.g. the solvability of the

state equations for every C ∈ H1(Ω) is a consequence of the following result

whose proof can be found in [23, 26].

Proposition 1.2. Let ∂Ω be regular. Then for each C ∈ H1(Ω) and all

boundary data (nD, pD, VD) ∈ H1(Ω) with

1

K
≤ nD(x), pD(x) ≤ K, x ∈ Ω, and ‖VD‖L∞(Ω) ≤ K

for some K ≥ 1, there exists a solution (n, p, V ) ∈
(

H1(Ω) ∩ L∞(Ω)
)3

of

system (1.2) fulfilling

1

L
≤ n(x), p(x) ≤ L, x ∈ Ω, and ‖V ‖L∞(Ω) ≤ L

for some constant L = L(Ω,K, ‖C‖Lp(Ω)) ≥ 1, where the embedding H1(Ω) →֒
Lp(Ω) holds.
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Note, that in general one cannot expect uniqueness of solutions to the

DD model. This will only hold near to the thermal equilibrium [25].

1.2. The optimization problem

The objective of the optimization, the current flow over a contact Γ, is

given by

I =

∫

Γ
J · ν ds =

∫

Γ
(Jn + Jp) · ν ds. (1.3)

This can be done minimizing the functional

Q(n, p, V,C)
def
= Q1(n, p, V ) +

γ

2

∫

Ω

∣

∣∇(C − C̄)
∣

∣

2
dx, (1.4)

where C̄ is a given reference doping profile and the parameter γ allows to

adjust the deviations from C̄. One is mainly interested in functionals Q1,

which depend only on the values of the outflow current density on some

contact Γ

Q1(n, p, V ) = R(J · ν|Γ). (1.5)

In [15], the functional under investigation was

R(J · ν|Γ) =
1

2
‖(J − J∗) · ν‖2

(H
1/2
00

(Γ))∗
, (1.6)

corresponding to the objective of finding an outflow current density J · ν
close to a desired density J∗ · ν. In [5] the total current flow on a contact is

studied, i.e.

R(J · ν|Γ) =
1

2

∣

∣

∣

∣

∫

Γ
J · ν ds− I∗

∣

∣

∣

∣

2

(1.7)

(for some desired current flow I∗). Note that especially in the one dimen-

sional setting these two functionals are equivalent.

Since the current density J is given by a solution of the DD model this

yields altogether a constrained optimization problem, which is well–known

in the context of optimal control of nonlinear partial differential equations

[16]. To get a solution to this problem one can follow two different ideas.

On the one hand one can discretize the overall problem and then use non-

linear programming techniques [22]. On the other hand one can formulate

the optimization algorithms on the continuous level and use then internal
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approximations for each step. This is also the method we want to use since

it inherits more structure of the problem and allows finally for different dis-

cretization techniques. For this purpose we introduce the state x
def
= (n, p, V )

and an admissible set of controls C ⊂ H1(Ω) and rewrite the state equations

(1.2) shortly as e(x,C) = 0. Now one defines function spaces X
def
= xD+X0,

where xD
def
= (nD, pD, VD) denotes the boundary data introduced in (1.2)

and X0
def
=

(

H1
0,ΓD

(Ω) ∩ L∞(Ω)
)3

, where we define

H1
0,ΓD

(Ω)
def
=

{

φ ∈ H1(Ω) : φ|ΓD
= 0

}

,

as well as Z
def
= [H1(Ω)]3. Then, e : X ×H1(Ω) → Z∗ is well–defined. These

preliminaries allow for the exact mathematical setting of our minimization

problem

min
X×C

Q(n, p, V,C) such that e(n, p, V,C) = 0. (1.8)

Remark 1.3. This concept of constrained optimization is very gen-

eral, since it allows to study various cost functionals and all forthcoming

techniques can also be adopted to other constraints, e.g. different semicon-

ductor models.

In [15] the existence of a minimizer is proved under mild assumptions

on the cost functional Q.

Theorem 1.4. The constrained minimization problem (1.8) admits at

least one solution (n∗, p∗, V ∗, C∗) ∈ X × C.

In general, we cannot expect the uniqueness of the minimizer since the

optimization problem is non–convex due to the nonlinear constraint. Fur-

ther, already the state system might admit multiple solutions. In the next

section we present analytical and numerical results showing that the opti-

mization problem has in fact multiple solutions for some special devices.

2. Uniqueness and Non–uniqueness

The question of uniqueness or possible non–uniqueness of the minimizer

is so far not studied in the existing literature. This question is challenging

since already the state system may admit for multiple solutions [25] and also

for the adjoint system uniqueness could be only established for small current
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flows [15]. In the following we present analytical and numerical results that

show that there exist indeed multiple solutions to the above minimization

problem at least in some cases.

2.1. Multiple solutions in the symmetric case

In this section we consider the optimal design problem for a one dimen-

sional symmetric np–diode, i.e. we assume that C̄(x) = −C̄(1 − x). Then

the following non–uniqueness result holds.

Theorem 2.1. There exist at least two minimizers Ci ∈ H1(Ω), i =

1, 2, to the optimal design problem (1.8) with Q1(n, p, V ) =
∣

∣J − J̄
∣

∣

2
. Espe-

cially, let (n1, p1, V1, C1) ∈
[

H1(Ω)
]3 ×C be a minimizer. Then, there exists

a second minimizer (n2, p2, V2, C2) ∈
[

H1(Ω)
]3 × C given by

C2(x) = −C1(1− x), n2(x) = p1(1− x) (2.1a)

p2(x) = n1(1− x), V2(x) = −V1(1 − x) + U. (2.1b)

Furthermore, it holds Jn2 = Jp1, Jp2 = Jn1 and Q(n1, p1, V1, C1) = Q(n2, p2,

V2, C2).

Proof. Let (n1, p1, V1, C1) ∈
[

H1(Ω)
]3×C be a minimizer. First, we show

that (n2, p2, V2, C2) defined by (2.1) fulfills the state system. We define the

new variable ξ = 1− x and calculate

Jn2 = ∂xn2(x) + n2(x)∂xV2(x) = −∂ξp1(ξ) + p1(ξ) ∂ξV1(ξ) = Jp1,

Jp2 = −∂xp2(x) + p2(x)∂xV2(x) = ∂ξn1(ξ) + n1(ξ) ∂ξV1(ξ) = Jn1.

Hence, it holds ∂xJn2 = ∂xJp2 = 0. Further, we have

−λ2∂xxV2(x) = λ2∂ξξV1(ξ)

= −n1(ξ) + p1(ξ) + C1(1− ξ)

= n2(x)− p2(x)− C2(x).

One easily verifies that (n2, p2, V2, C2) also satisfies the boundary conditions

such that it is indeed a solution of the state system and the total currents

fulfill J1 = J2.
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Finally, we note that
∫

Ω

∣

∣∂x(C̄(x)− C2(x))
∣

∣

2
dx =

∫

Ω

∣

∣∂x(C̄(1− x)− C1(1− x))
∣

∣

2
dx

=

∫

Ω

∣

∣∂x(C̄(x)− C1(x))
∣

∣

2
dx,

which finishes the proof due to Q(n1, p1, V1, C1) = Q(n2, p2, V2, C2), i.e.

(n2, p2, V2, C2) is indeed a second minimizer. �

From the proof we learn that the main reason for the multiplicity of

optimal designs is the prescription of the total current density J , which

allows for an interchange of roles of the electron and hole current density.

This can be clearly seen in the following numerical example. In Figure

2.1 we present the two optimal designs for a symmetric np-diode and the

corresponding reference doping profile. The computations were performed

on a uniform grid with 300 points and the scaled parameters were set to

λ2 = 10−3, δ2 = 10−2 and U = 10, i.e. ten times the thermal voltage. For the

parameter γ we chose 10−3. The state system and the adjoint system were

discretized by an exponentially fitted scheme [4, 29]. The first minimizer is

computed using a descent algorithm (see Algorithm 1 in Section 4, which

is used here with a constant stepsize 1), while the second is given by (2.1).

That this is also a stationary point for the descent algorithm can be seen from

Figure 2.2, which shows the evolution of the cost functional if the algorithm

is initialized with (2.1). The respective electron and hole densities can be

found in Figure 2.3 and Figure 2.4.
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Figure 2.1. Optimized doping pro-

files.

Figure 2.2. Evolution of the cost

functional.



578 MICHAEL HINZE AND RENÉ PINNAU [June
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Figure 2.3. Optimized electron
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Figure 2.4. Optimized hole densi-

ties.

2.2. Numerical study of the unsymmetric case

Now, we study the case of an unsymmetric np–diode numerically. The

main reason is that the above proof cannot be directly extended to the

unsymmetric case, since it crucially exploits the symmetry of the reference

doping profile. The reference doping profile, depicted in Figure 2.5, is also the

starting point for the gradient algorithm which will be discussed in Section

4. The parameters are the same as in Section 2.1.

The good performance of the algorithm can be seen from Figure 2.6,

where the evolution of the cost functional is depicted. The algorithm termi-

nates with the minimizer C2 given by the dashed line in Figure 2.5.

Secondly, we initialize the algorithm with C0(x) = 2 · C̄(x) − C2(x).

Again, the algorithm terminates and the computed solution can be found

as the solid line in Figure 2.5. But now, we only know that this is another

critical point of the first–order optimality system, which still might be a

saddle point. Nevertheless, this example underlines that one has to inter-

pret the numerical results carefully, although the gradient algorithm behaves

very robust. Clearly, the convergence properties and also the limit strongly

depends on the starting point for the iteration.
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Figure 2.6. Evolution of the cost

functional.

3. The First–Order Optimality System

In this section we want to discuss the first–order optimality system which

is somehow the basis for all optimization methods seeking at least a station-

ary point. Since we have a constrained optimization problem, we write the

first–oder optimality system using the Lagrangian L : X × C × Z → R

associated to problem (1.8) defined by

L(x,C, ξ) def
= Q(x,C) + 〈e(x,C), ξ〉Z∗,Z ,

where ξ
def
= (ξn, ξp, ξV ) denotes the adjoint variable. For the existence of a

Lagrange multiplier associated to an optimal solution (x∗, C∗) of (1.8) it is

sufficient that the operator e′(x∗, C∗) is surjective. Note the equivalence

e′(x,C)[(v, C̃)] = g in Z∗ ⇔ ex(x,C)[v] = g − eC(x,C)[C̃] in Z∗.

For the DD model this does in general not hold, but one can ensure the

bounded invertibility of e′(x∗, C∗) for small current densities [25]. This idea

was used in [15] to prove the unique existence of adjoint states.

Theorem 3.1. There exists a constant j = j(Ω, λ, U) > 0 such that for
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each state x ∈ X with

∥

∥

∥

∥

J2
n

n

∥

∥

∥

∥

L∞(Ω)

+

∥

∥

∥

∥

∥

J2
p

p

∥

∥

∥

∥

∥

L∞(Ω)

≤ j

there exists an adjoint state ξ ∈ Z fulfilling (ex(x,C))∗ξ = −Qx(x,C).

Hence, at least for small current densities there exists a unique Lagrange

multiplier ξ∗ such that together with an optimal solution (x∗, C∗) it fulfills

the first–order optimality system

∇(x,C,ξ)L(x∗, C∗, ξ∗) = 0. (3.1)

In fact one can rewrite this equations in a more concise form [15]:

e(x∗, C∗) = 0 in Z∗,

e∗x(x
∗, C∗)ξ∗ +Qx(x

∗, C∗) = 0 in X∗,

eC(x
∗, C∗)ξ∗ +QC(x

∗, C∗) = 0 in C∗.

I.e., a critical point of the Lagrangian has to satisfy the state system (1.1)

with boundary data given in (1.2), as well as the adjoint system

∆ξn −∇V ∇ξn = ξV , (3.2a)

∆ξp +∇V ∇ξp = −ξV , (3.2b)

−λ2∆ξV + div (n∇ξn)− div (p∇ξp) = 0, (3.2c)

supplemented with appropriate boundary data and the optimality condition

γ∆
(

C − C̄
)

= ξV in Ω, (3.3a)

C = C̄ on ΓD, ∇C · ν = ∇C̄ · ν on ΓN . (3.3b)

Remark 3.2. The specific form of the boundary data for the adjoint

system (3.2) depends on the special choice of the cost functional Q1 (cf. [5,

15]).

4. Numerical Methods

The construction of numerical algorithms for the solution of (1.8) mainly

relies on the knowledge of derivatives of the cost functional and the con-
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straint, since one wants to construct first order or second order convergent

algorithms, like gradient descent or Newton-like methods. The differentia-

bility of the cost functional is easy to achieve by its convenient definition,

while the differentiability of the state mapping is the content of the following

result [15].

Theorem 4.1. The mapping e is infinitely often Fréchet–differentiable

with derivatives vanishing for order greater than 2.

An adequate and easy to implement numerical method for the solution

of (1.8) is the following gradient algorithm.

Algorithm 1.

1. Choose C0 ∈ C.
2. For k = 1, 2, . . . compute Ck = Ck−1 − αkQ̂

′(Ck−1).

Here, Q̂(C)
def
= Q(x(C), C) denotes the reduced cost functional, which

can be introduced near to the thermal equilibrium state, and Q̂′(C) is the

Riesz representative of its first variation. The evaluation of

Q̂′(C) = QC(x,C) + e∗Cξ

requires the solution of the nonlinear state system for x as well as a solution

of the linear adjoint system for ξ and finally a linear solve of a Poisson

problem to get the correct Riesz representative.

Remark 4.2. There exist various choices for the parameters αk en-

suring the convergence of this algorithm to a critical point. The overall

numerical performance of this algorithm relies on an appropriate choice of

the step–size rule for αk, since these methods require in general consecutive

evaluations of the cost functional requiring additional solves of the nonlinear

state system [21].

4.1. Numerical examples

In this section we apply Algorithm 1 for the optimal design of an un-

symmetric n–p–diode (for the reference doping profile see Figure 4.1). We

already learned that the cost functional employed so far might admit multi-

ple minimizers. For this reason we study here a slightly different functional
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of the form

R(Jn · ν|Γ, Jp · ν|Γ) =
1

2

∣

∣

∣

∣

∫

Γ
Jn · ν ds− I∗n

∣

∣

∣

∣

2

+
1

2

∣

∣

∣

∣

∫

Γ
Jp · ν ds− I∗p

∣

∣

∣

∣

2

.

This allows to adjust the electron and hole current separately. The compu-

tations were performed on a uniform grid with 1000 points and the scaled

parameters were set to λ2 = 10−3, δ2 = 10−2 and U = 10. For the pa-

rameter γ we chose 2 · 10−2. The step–size αk is computed by an exact one

dimensional linesearch

αk = argminαQ̂
(

Ck−1 − αQ̂′(Ck−1)
)

.

The iteration terminates when the relative error
∥

∥

∥
Q̂′(Ck)

∥

∥

∥

H1

/
∥

∥

∥
Q̂′(C0)

∥

∥

∥

H1

is less than 5 · 10−4.
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Figure 4.1. Optimized doping pro-

files.

Figure 4.2. Evolution of the rela-

tive error.

In Figure 4.1 we present the optimized doping profiles for different

choices of I∗n, I
∗
p , i.e. we are seeking an amplification of either the hole cur-

rent (I∗n = J∗
n, I

∗
p = 1.5 ·J∗

p ) or of the electron current (I∗n = 1.5 ·J∗
n, I

∗
p = J∗

p )

or of both of them I∗n = 1.5 · J∗
n, I

∗
p = 1.5 · J∗

p ) by 50%. The evolution of the

relative error of the gradient can be found in Figure 4.2. Note that the num-

ber of gradient steps is independent of the cost functional, which is at a first

glance astonishing. A possible explanation is the fixed parameter γ which

introduces somehow the same amount of convexity into the three problems.
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To get an impression of the overall performance of the method we also

have to consider the nonlinear solves needed for the exact one dimensional

linesearch. These are presented in Figure 4.3 and one realizes that this is

indeed the numerically most expensive part. In Figure 4.4 we present the

evolution of the observation R(Jn · ν|Γ, Jp · ν|Γ), where one observes that a

good approximation of the minimizer is already attained after a few gradient

steps, which is characteristic for this method. Further, we note that the third

case has the worst match which can on the one hand be explained by the

unsymmetry of the device and on the other hand by the fixed choice of γ.
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Figure 4.3. Function evaluations

for the line search.

Figure 4.4. Evolution of the obser-

vation.
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Figure 4.5. Evolution the relative

error.

Figure 4.6. Function evaluations

for the line search.

The dependence of the algorithm on the grid spacing is studied in Figure

4.5, where we solve the second test case for various grid sizes. One sees that
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the number of gradient steps is not affected by the grid size, whereas the

function evaluations for the line search are indeed depending on the grid.

Note that it is essential that the stopping criterion is related to the dis-

cretization error, else it might happen that the iteration does not terminate.

5. Conclusion

In this paper we gave an overview of the mathematical tools which are

employed in optimal semiconductor design. Using the DD model as the

underlying semiconductor model it was possible to apply techniques from

variational calculus to prove existence of optimal designs. There is analytical

and numerical evidence that such optimal designs are not unique which

should be encountered by the construction of numerical algorithms. The

introduction of the adjoint state yields an elegant possibility to formulate

numerical algorithms on the continuous level and allows for an adequate

consecutive discretization. Gradient–based descent algorithms yield a robust

performance. Future work will focus on the development of second–order

methods, multi–objective optimization as well as additional constraints on

the design variable or the state.
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