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Abstract

In this paper, we are concerned with numerical approxi-

mations of the Fokker-Planck-Landau equation which is a kinetic

model used to describe the evolution of charged particles in a

plasma. In this model, the particle interactions (or collisions) are

taken into account by a nonlocal and nonlinear diffusion opera-

tor acting on the velocity dependence of the particle distribution

function. In a first part of this work, we investigate different

strategies to perform efficient time implicit discretisations, while,

in the second part, we review various numerical approximations

of the collision operator. Both the time discretisation and the ap-

proximations of the collision operator are shown to satisfy some

important physical properties of conservation and entropy, and

to reach the right steady states. Furthermore, various accelera-

tions techniques are used to construct such approximations which

would make possible their use in a more realistic setting (inho-

mogeneous cases). In particular, we combine two new strategies

to rapidly and efficiently solve the FPL equation: the first one

concerns the time discretisation using time implicit schemes with

Krylov solvers, and the second one uses the approximation of the

collision operator using the wavelet approximation theory.
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1. Introduction

The Fokker-Planck-Landau (FPL) is a kinetic collisional model used to

describe a system of particles in plasma physics (see [20] for instance). The

particles are described through a distribution function f(t, x, v) depending

on time t, particle position x ∈ R
d, and their velocity v ∈ R

d (d = 2, 3).

In this paper we are concerned with the homogeneous case where f(t, x, v)

does not depend on x. The model writes in the so-called Landau form

∂tf(t, v) = Q(f)(v) = ∇·
∫

Rd

Φ(v−v∗) (f(v∗)∇f(v)− f(v)∇f(v∗)) dv∗, (1)

where Φ(w) is the following d× d matrix

Φ(w) = C|w|γ+2S(w) = C|w|γ+2

(

Id −
w ⊗ w

|w|2
)

.

In this expression, C is a positive constant and γ is a parameter leading to

the standard classification in hard potentials (γ > 0), Maxwellian potential

(γ = 0) and soft potentials (γ < 0). This last case includes the most

physically interesting case, the Coulombian case (γ = −3). The d×d matrix

S(w) is simply the orthogonal projection onto the plane orthogonal to w.

For all w 6= 0, Φ(w) is a positive matrix whose null-space is

KerΦ(w) = Rw.

Throughout this paper, when no confusion is possible, the values of any

function f under the integral signs will be denoted by f for f(v) and by f∗

for f(v∗). Beside, it is also useful to write the FPL collision operator in the

so called “Log form”:

Q(f)(v) = ∇ ·
∫

Rd

Φ(v − v∗)ff∗ (∇ log f −∇ log f∗) dv∗. (2)

This collision operator Q(f) satisfies the following weak formulation

∫

Rd

Q(f)φdv=−1

2

∫

Rd

∫

Rd

Φ(v−v∗)ff∗ (∇ log f−∇ log f∗) · (∇φ−∇φ∗) dvdv∗,
(3)

for all distribution function f and all test function φ. From this formu-

lation, one can immediately derive the following conservation and entropy

properties
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(i) the only functions φ(v) such that

∫

Rd

Q(f)φdv = 0, for all f,

are linear combinations of 1, v, |v|2. In particular, total mass, momen-

tum, and energy are conserved.

(ii) the entropy dissipation inequality

∫

Rd

Q(f) log(f) dv ≤ 0, for all f > 0.

This also gives the well known H-theorem, saying that the functional

H(f) =
∫

Rd f log(f) dv is a time non-increasing function. Furthermore,

this inequality becomes an equality if and only if f is a Maxwellian

feq(v) =
ρ

(2πT )
d
2

exp(−|v − u|2
2T

), (4)

where ρ, u and T are velocity independent parameters. This is formally

equivalent to say that f is an equilibrium function, that is Q(f) = 0.

Numerical experiments usually show that the exact preservation of prop-

erties (i) and (ii) provides efficient and stable numerical schemes. In a recent

past, numerous works have been concerned with constructing discretizations

of the collision operator that obey the above physical properties of conser-

vation and entropy. The first scheme in this direction was established in [9]

and is based on finite difference schemes on a regular velocity grid. Unfor-

tunately, it turned out to be very expensive in terms of CPU time. Indeed,

the cost of one evaluation of the collision operator is of the order of O(N2),

where N is the total number of the velocity grid points. Later, various fast

algorithms have been constructed to reduce this cost (see [5, 7, 17]) without

affecting the conservation and entropy properties. On the other hand, non

conservative schemes have to be sufficiently accurate to correctly describe

these physical laws. High accuracy could of course be achieved by refining

the velocity grid but this becomes very computationally demanding. Note

that this is not only due to the complexity of the collision operator but also

to its diffusive character which constrains the time step to be excessively

small in general. Then, an alternative method using spectral schemes as

in [21, 22] has been proposed. This method is well adapted to the convolu-

tion structure of the collision operator and yields a O(N logN) algorithm.

However, these methods are not exactly conservative nor entropic.
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A part of this paper is then devoted to a review of a method proposed in

[1, 2] which combines the advantages of the finite difference schemes (conser-

vation and entropy) and of the spectral method (accuracy) in the isotropic

case. The proposed velocity discretization of the FPL operator uses the

wavelet approximation theory and is based on the so called multiwavelet

method [3]. This leads to conservative, entropic and accurate schemes. Fur-

thermore, the evaluation of the collision operator has a cost of the order of

O(N) only, N being the dimension of the approximation space.

In all these works, the time discretization problem has not been com-

pletely solved. Indeed the used schemes are explicit in time, as for instance

the usual Euler explicit scheme

fn+1 = fn +∆tQ(fn) (5)

or higher order versions (explicit Runge-Kutta methods). It is known that

such schemes induce a strong parabolic CFL condition of the form ∆t ≤
C∆v2, ∆t and ∆v being the time and velocity steps. This condition is

due to the diffusive nature of the FPL operator and has been rigorously

established in [5] for the isotropic case (that is where the distribution function

only depends on the modulus of the velocity). Therefore, to reach a given

simulation time, a large number of iterations nit is required. For instance,

in the isotropic case, we have nit = N2, N being the dimension of the

approximation space. In that case, even with fast evaluations of the collision

operator in O(N) or O(N logN) (as proposed in the previous works), these

explicit schemes require a total simulation cost of the order of nitO(N) =

O(N3) or O(N3 logN). However, according to some recent works, it is

possible to use explicit schemes with slightly larger time steps. For instance

in [12] a high order explicit scheme with a large stability interval has been

used. But the gain obtained with this method remains relatively small: the

time step can be taken 5 at 10 times as large as that of the Euler method (5),

and the total CPU time is divided by a factor 4 only.

Consequently, it is attractive to use time implicit schemes, since it is

known that they can be free of restrictive time step conditions. This consists

in replacing Q(fn) in (5) by an approximation that also depends on fn+1.

Then the problem is how to construct such implicit schemes in order to

satisfy the following two requirements

• the properties (i) and (ii) must be preserved;
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• the total computational cost must be smaller than that of the explicit

scheme with almost the same accuracy.

Many works in plasma physics area use implicit schemes to solve the FPL

equation (see [14, 15] for instance and the references therein). However,

the problem of exact preservation of (i) and (ii) is generally not addressed.

Moreover, the total complexity of these algorithms is not optimal. We note

that, beyond the fact that implicit schemes usually induce an additional

computational cost (non-sparse matrix inversion), they may affect also the

properties of conservation and entropy. In [10] for instance, Epperlein has

proposed an implicit scheme which is conservative, whereas its total numer-

ical complexity is comparable to the usual explicit resolution. This has been

clearly shown in [6]. A more recent work by Chacón, Barnes, Knoll and

Miley [8] uses a fast linear solver to reduce the cost of their implicit scheme.

However, their approach does not exactly respect the conservation and en-

tropy properties. In fact, whereas they claim that their scheme preserves

the energy, they also point out that the solvers and the velocity boundary

conditions that they used in practice affect the conservation properties.

In a first part of this paper, we develop a strategy leading to exactly

conservative implicit schemes with a reduced computational cost, reviewing

the results of [18, 19]. One of these schemes also satisfies the entropy prop-

erty. Iterative Krylov solvers are used to efficiently solve the linear systems

generated by the implicit schemes. This strategy is also proved to be con-

servative, even if the linear systems are only solved approximately, and an

important gain in terms of computational cost is obtained. All the schemes

developed in this work concern both the 2 and 3-dimensional cases as well

as the isotropic FPL equation.

We point out that our method can apply for both the Landau form (1)

and the “Log” form (2) of the FPL equation. Hence it can be used with

various potentials, and easily be extended to quantum and relatvistic cases.

This does not seem to be possible if one uses the so-called Rosenbluth form

of the classical FPL equation, as done in [8]. Note also that our schemes

can easily be used in the resolution of inhomogeneous problems via standard

splitting techniques.

The outline of the paper is as follows. In the next section we focus

on the time discretization only, and present the different implicit schemes

and summarize the results in [18, 19]. In Section 3, the velocity variable is

also discretized using two different strategies: the first one is based on usual
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finite difference schemes, and the second uses the wavelet approximation

theory. This leads to completely discretized implicit schemes. All these

schemes require the resolution of large and non-sparse linear systems. This

is addressed in Section 4 where fast linear solvers are proposed. In Section 5,

we discuss the numerical complexity of our algorithms, while in Section 6 we

present various numerical tests in the isotropic case. The validation of the

present strategy for the 3-dimensional case needs further investigations to

solve the linear systems. Therefore the numerical tests for the 3-dimensional

geometries are defered to a forthcoming paper.

2. Time Implicit Schemes

In this section, we focus on the time discretization only. Suitable dis-

cretizations in the velocity variable will be developed in Section 3. Below,

we present different strategies to construct linear time implicit schemes that

have properties of conservation and entropy.

2.1. Contracted implicit scheme

We first note that the FPL operator (1) can be rewritten in the following

diffusive form

Q(f) = ∇ · (D(f)∇f + F (f)f) , (6)

where D(f) =
∫

Rd Φ(v − v∗)f(v∗) dv∗ and F (f) =
∫

Rd Φ(v − v∗)∇f(v∗) dv∗.
This shows in particular that the CFL condition resulting from the use of

time explicit schemes is due to the diffusive term ∇·(D(f)∇f) in (6). There-

fore the first idea is to make ∇f implicit in this last expression. On the other

hand, the conservation and entropy properties are a consequence of the sym-

metry property (between v and v∗) of the collision operator. To preserve this

symmetry, the friction coefficient F (f) has to be implicit too. This leads to

the following contracted implicit scheme

fn+1 − fn

∆t
= qc(fn, fn+1), with (7)

qc(f, g) = ∇ ·
∫

Rd

Φ(v − v∗) (f∗∇g − f∇g∗) dv∗. (8)
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Note that this operator qc is not the linearization of Q around f . The

linearized operator around f is in fact

q(f, g) = ∇ ·
∫

Rd

Φ(v − v∗) (f∗∇g − f∇g∗ + g∗∇f − g∇f∗) dv∗
= qc(f, g) + qc(g, f). (9)

Therefore, the contracted scheme (7) is not the usual linearized implicit

scheme as used by Epperlein in [10]. The operator qc is contracted in the

sense that we only keep the terms that are necessary to ensure the symmetry

between v and v∗ in the linearized operator q.

Proposition 2.1.

(i) The operator qc satisfies the following weak formulation:

∫

Rd

qc(f, g)φdv=−1

2

∫

Rd

∫

Rd

Φ(v−v∗) (f∗∇g−f∇g∗) · (∇φ−∇φ∗) dvdv∗,
(10)

for any test function φ.

(ii) The contracted scheme given by (7-8) is conservative:

∀n,
∫

Rd

(1, v, 12 |v|
2)T fn dv =

∫

Rd

(1, v, 12 |v|
2)T f0 dv.

(iii) The contracted scheme is first order in time.

For the proof, we refer to [19].

2.2. A θ-scheme

The present approach first consists in a time integration of equation (1)

using the standard θ-scheme:

fn+1 − fn

∆t
= (1− θ)Q(fn) + θQ(fn+1). (11)

Then we linearize Q(fn+1) around fn:

Q(fn+1) = Q(fn) +DQ(fn)(fn+1 − fn), (12)

where DQ(f)(g) = q(f, g) is given by formula (9). With this linearization,
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the θ-scheme (11) turns to

fn+1 − fn

∆t
= θq(fn, fn+1) + (

1

2
− θ)q(fn, fn), (13)

for any θ ∈ R. Note that the contracted scheme (7) is not a θ-scheme and

that the linearized implicit scheme used by Epperlein in [10] is obtained for

θ = 1. Now we give the main properties of this scheme.

Proposition 2.2.

(i) The θ-scheme given by (13) is conservative:

∀n,
∫

Rd

(1, v, 12 |v|
2)T fn dv =

∫

Rd

(1, v, 12 |v|
2)T f0 dv.

(ii) The θ-scheme is second order in time if θ = 1
2 , else it is first order.

This can be shown using the same arguments as for Proposition 2.1.

Unfortunately, we are not able to prove any entropy property for neither

the contracted nor θ-scheme, except in the isotropic case for the contracted

scheme (see [18]). Therefore, we propose another strategy that uses the

“Log form” (2) of the FPL collision operator. This leads to conservative and

entropic schemes that are detailed in the next section.

2.3. “Log” implicit schemes

The first step is to make implicit only the log terms in the “Log form” (2)

of the collision operator. This gives the following non-linear implicit scheme:

fn+1 − fn

∆t
= qlog(fn, fn+1)

= ∇ ·
∫

Rd

Φ(v − v∗)f
nfn∗

(

∇ log fn+1 −∇ log fn+1
∗

)

dv∗. (14)

Proposition 2.3.

(i) The operator qlog satisfies the following weak formulation:

∫

Rd

qlog(f, g)φdv

= −1

2

∫

Rd

∫

Rd

Φ(v − v∗)ff∗ (∇ log g−∇ log g∗) · (∇φ−∇φ∗) dvdv∗, (15)
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for any test function φ.

(ii) Scheme (14) is conservative:

∀n,
∫

Rd

(1, v, 12 |v|
2)T fn dv =

∫

Rd

(1, v, 12 |v|
2)T f0 dv.

(iii) The collision operator qlog dissipates the entropy in the following sense

∫

Rd

qlog(f, g) log g dv ≤ 0.

(iv) Discrete H-theorem: the entropy sequence Hn =
∫

Rd f
n log fn dv is non

increasing.

Again, we refer to [19] for the proof.

Note that qlog(fn, fn+1) is non-linear with respect to fn+1 which makes

it difficult to use in practice. Thus, we propose the following linearization

around fn. We write

log fn+1 ≈ log fn +
fn+1 − fn

fn
,

which is inserted in (14) to obtain the following “log”-linear implicit scheme

fn+1 − fn

∆t
= Q(fn) + ql(fn, fn+1), (16)

with

ql(f, g) = ∇ ·
∫

Rd

Φ(v − v∗)ff∗

(

∇
(

g

f

)

−∇
(

g

f

)

∗

)

dv∗. (17)

Note that ql(f, g) = ql(f, g − f) which clearly shows that the scheme is

consistent.

Proposition 2.4.

(i) Weak formulation for ql:

∫

Rd

ql(f, g)φdv

= −1

2

∫

Rd

∫

Rd

Φ(v−v∗)ff∗
(

∇
(

g

f

)

−∇
(

g

f

)

∗

)

· (∇φ−∇φ∗) dvdv∗. (18)
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(ii) Scheme (16-17) is conservative:

∀n,
∫

Rd

(1, v, 12 |v|
2)T fn dv =

∫

Rd

(1, v, 12 |v|
2)T f0 dv.

(iii) Collisional part of scheme (16-17) dissipates the entropy in the following

sense:
∫

Rd

(Q(f) + ql(f, g))(log f +
g

f
) dv ≤ 0.

(iv) Discrete H-theorem: the entropy sequence Hn =
∫

Rd f
n log fn dv is non

increasing if

inf
n∈N,v∈Rd

(

fn+1

fn

)

≥ 1

2
. (19)

(v) For all positive f , the linear operator g 7→ ql(f, g) is a non-positive

self-adjoint operator in the following sense:

〈ql(f, g), h〉 1

f
:=

∫

Rd

∫

Rd

ql(f, g)h
dv

f
= 〈ql(f, h), g〉 1

f
,

and 〈ql(f, g), g〉 1

f
≤ 0, for all g and h.

We refer to [19] for the proof.

Remark 1. The condition (19) of the proposition is reasonable, since

in practice the ratio fn+1

fn should be close to 1. However, to get a weaker

condition, one could consider the following modified scheme

fn+1 − fn

∆t
= Q(fn) +Aql(fn, fn+1),

where A is a free positive parameter. This scheme is still consistent and

condition (19) turns to

inf
n∈N,v∈Rd

(

fn+1

fn

)

≥ 1

2A
.

The last property of the proposition is of practical importance since

in that case, the Conjugate Gradient (CG) method could be used in the

inversion process of the linear system (see details in Section 4. However, the

weight 1
fn which is used to construct an inner product in the CG algorithm

should be positive at any time. Unfortunately, we cannot prove that this
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property is satisfied. We point out that the two first schemes (contracted

and θ-schemes) do not have the self-adjointness property. Therefore, we

propose modified versions of the θ and log-linear schemes in which the linear

operators are self-adjoint at any time (in particular, the positivity of the

weight is guaranteed at any time).

2.4. Equilibrium linearized implicit schemes

We write implicit terms q(fn, fn+1) and ql(fn, fn+1) of schemes (13)

and (16-17) in the following perturbative form: q(fn, fn+1− fn)+ q(fn, fn)

and ql(fn, fn+1 − fn). The idea is to replace the first argument fn of the

perturbative terms q(fn, fn+1 − fn) and ql(fn, fn+1 − fn) by its associate

Maxwellian equilibrium feq of the form (4) that has the same mass, momen-

tum and energy as fn:

q(fn, fn+1−fn)≈q(feq, fn+1−fn) and ql(fn, fn+1−fn)≈ql(feq, fn+1−fn).

This leads to the following schemes:

• Equilibrium θ-scheme:

fn+1 − fn

∆t
= Q(fn) + θq(feq, f

n+1 − fn). (20)

Because feq is a Maxwellian, it is well known that the linear operator g 7→
q(feq, g) is non-positive self-adjoint for the weight

1
feq

> 0. Moreover, this

scheme is conservative.

• Equilibrium “log” linear scheme:

fn+1 − fn

∆t
= Q(fn) + ql(feq, f

n+1 − fn). (21)

Because feq is positive, from property (v) of Proposition 2.4, the linear

operator g 7→ ql(feq, g) is non-positive self-adjoint for the weight 1
feq

.

Moreover, this scheme is conservative.

Remark 2. These schemes are not obtained by a linearization of

Q(fn+1) near the equilibrium feq.

3. Velocity Discretizations of the FPL Equation:

The Isotropic Case

The previous schemes can naturally be discretized in the velocity vari-

able using standard conservative and entropic discretizations [2, 5, 7, 9, 17].



544 MOHAMMED LEMOU AND LUC MIEUSSENS [June

In this section, we first illustrate this assertion with a simple velocity dis-

cretization of the FPL equation in the isotropic case. In a second step, we

present a more recent strategy based on wavelet approximation theory.

The isotropic FPL model is equation (1) in which the distribution func-

tion f only depends on time t and on the particle kinetic energy ε = |v|2. In
this case, the FPL equation writes

∂tf(t, ε) = Q(f) =
1√
ε

∂

∂ε

∫ +∞

0
K(ε, ε∗) (f(ε∗)∂εf(ε)− f(ε)∂εf(ε∗)) dε∗,

(22)

with K(ε, ε∗) =
16
3 π inf(ε

3/2, ε
3/2
∗ ) for Coulombian interactions, and K(ε, ε∗)

= 16
3 πε

3/2ε
3/2
∗ for Maxwellian interactions.

For any distribution function f , the collision operator Q(f) satisfies the

following weak formulation

∫ +∞

0
Q(f)φ(ε)

√
ε dε

= −1

2

∫ +∞

0

∫ +∞

0
K(ε, ε∗) (f∗∂εf − f∂εf∗) (∂εφ− ∂εφ∗) dεdε∗, (23)

φ being any test function. From this formulation, one can immediately derive

the following conservation and entropy properties

∫ +∞

0
(1, ε)TQ(f)

√
ε dε = 0,

∫ +∞

0
Q(f) log(f)

√
ε dε ≤ 0.

3.1. Finite difference schemes for the isotropic FPL equation

We briefly recall here the discretization used by Berezin, Khudic and

Pekker [4] (also studied by Buet and Cordier [6]). The energy domain is

replaced by a regular energy grid of step ∆ε and of nodes εi = (i − 1)∆ε,

with i = 1 to N . The case of and irregular discretization is also considered

at the end of this section. Here, the length of the grid is e = (N − 1)∆ε.

Any function f of ε is approximated on the grid by values (fi)
N
i=1 supposed

to be approximations of (f(εi))
N
i=1.

Integrals on R
+ with respect to the measure

√
εdε are approximated by
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the following weighted trapezoidal quadrature formula

∫ +∞

0
φ(ε)

√
ε dε ≈

N
∑

i=1

φ(εi)ωi, (24)

where ω1 = 1
2

∫ ε2
ε1

√
ε dε, ωi =

∫ εi+1

εi−1

√
ε dε for i = 2 to N − 1, and ωN−1 =

1
2

∫ εN
εN−1

√
ε dε.

A simple discretization of (22) is ∂tf = Q(f), where Q(f) now is a

N -vector of components

Qi(f) = − 1

ωi
(D∗F)i, i = 1 : N. (25)

The operator D∗ is defined by (D∗f)i = fi−1−fi, and the vector F is defined

by

Fi =
N−1
∑

j=1

Kij

(

fj(Df)i − fi(Df)j

)

, i = 1 : N − 1, (26)

and F0 = FN = 0. The finite difference operator D is the formal adjoint of

D∗ defined by (Df)i = fi+1 − fi. Approximation (25-26) is in fact a second

order approximation (see [6]).

This discretization is constructed so that the discrete collision operator

satisfies the following weak formulation

N
∑

i=1

Qi(f)φiωi = −1

2

N−1
∑

i=1

N−1
∑

j=1

Kij

(

fj(Df)i − fi(Df)j

)(

(Dφ)i − (Dφ)j

)

.

This implies that conservation and entropy properties are preserved (see the

proof in [6]), namely we have

N
∑

i=1

Qi(f)(1,
√
εi)

Tωi = 0,
N
∑

i=1

Qi(f)(log fi)ωi ≤ 0.

Another discretization is deduced from the “log” form of (22) similarly

to (2) (see [4]). In that case the discrete collision operator has the same form

as (25) but the vector F now is

Fi =

N−1
∑

j=1

Kijfifj

(

(D log f)i − (D log f)j

)

, i = 1 : N − 1, (27)
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and F0 = FN = 0. This scheme has the same properties as the “non-log”

scheme.

The main drawback of a regular discretization is the fact that the reso-

lution is not accurate near ε = 0, while there are too many points for large

ε. Therefore, it is interesting to consider an irregular discretization with a

varying energy step ∆εi = εi+1 − εi as in [5]. Following the same procedure

as for the regular case, we obtain this discrete collision operator

Qi(f) =
1

ωi
(Fi −Fi−1) i = 1 : N, (28)

with

Fi =
N−1
∑

j=1

Kij

(

fj(Df)i − fi(Df)j

)

∆εj, i = 1 : N − 1, (29)

and F0 = FN = 0. Here D is the following finite difference operator (Df)i =
fi+1−fi

∆εi
, for i = 1 : N − 1. This approximation is conservative, but the

associated equilibrium states are only approximations of the Maxwellians,

i.e.

(feq)i = β

i
∏

j=1

(1 + α∆εj),

β and α being some constants. Maxwellian equilibrium states can be ob-

tained by using an analoguous of the “log” form (27) in the case of a non-

regular discretisation.

Now let us check the numerical complexity of the discretisation (25)

where the flux is given by (26), (27) or (29). For clarity, we only consider

the discretization (26) since the two other discretisations can be handeled

in the same way. We first notice that the computational cost of a direct

evaluation of fluxes (26) is of the order of N2. However, in the Maxwellian

and Coulombian cases, we shall see that this cost can be strongly reduced

(to O(N)) without any additional approximations. In the next subsection

we show that a similar reduction can be obtained in the general case by

using more elborated accelerations techniques.

• The Maxwellian case: The kernel K has the following expression

K(ε, ε∗) = Cε3/2ε
3/2
∗ . (30)
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Then the flux (26) can be written as

Fi = Cε
3/2
i

(

N−1
∑

j=1

ε
3/2
j fj

)

(Df)i −Cε
3/2
i fi

(

N−1
∑

j=1

ε
3/2
j (Df)j

)

, i = 1 : N − 1,

(31)

and straightforwardly, this can be computed in O(N) operations only.

• The Coulombian case: The kernel K has the following expression

K(ε, ε∗) = Cmin
(

ε3/2, ε
3/2
∗

)

, (32)

which gives the following flux

Fi = C(Df)i

(

ε
3/2
i

i
∑

j=1

fj +

N−1
∑

j=i+1

ε
3/2
j fj

)

−Cfi
(

ε
3/2
i

i
∑

j=1

(Df)j +
N−1
∑

j=i+1

ε
3/2
j (Df)j

)

, i = 1 : N − 1, (33)

To evaluate this expression in O(N) operations, we first compute recur-

sively the partial summations
∑i

j=1 and
∑N−1

j=i+1 for all i = 1 : N − 1,

which requires a O(N) effort only. Then we evaluate the flux using these

precalculated quantities.

Unfortunately, in the general case, that is for general expressions of

the kernel K, these simple techniques cannot be used. In other words, the

variables ε and ε∗ cannot be separated in general. In the anisotropic situation

(ie. the full 3D case) and even for the most physical kernel (that is the

Coulombian case), the velocities v and v∗ cannot be directly separated and

some elaborated techniques based on a multiscale resolution, such as the so

called multipole method [17], or themultigrid Monte Carlo [7] method have to

be used. These are accelerated versions of the finite difference schemes and

lead to a computational cost of the order of O(N logN). In the isotropic

case, it is shown in [1, 2] that the wavelet approximation theory enables

to construct high accurate approximations that have a reduced complexity

O(N), and satisfy the conservation and entropy properties. In the following

we summarize the principle of this method.

3.2. Multiwavelet approximation of the FPL operator

3.2.1. Interpolating scaling and multiwavelet bases

Let M be an integer and {qi}0≤i≤M an L2([0, 1])-orthonormal basis of
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polynomial functions of degree less than M . We define the scaling functions

{ϕi}0≤i≤M on R by: ϕi(x) := qi(x) on [0, 1] and 0 otherwise. Let V0 be the

space of functions vanishing outside [0, 1] whose restrictions to [0, 1] are poly-

nomials of degree less or equal to M . Then we have V0 = Span{ϕi}0≤i≤M .

We briefly recall the multilevel structure of wavelet-type algorithms. For

a level n of resolution, we introduce Vn as the space of piecewise polyno-

mial functions vanishing outside [0, 1] and whose restriction to each interval

[2−nl, 2−n(l + 1)] is a polynomial of degree less or equal to M , for 0 ≤ l ≤
2n − 1. We then define the dilated-translated scaling functions ϕ

(n)
I (x) =

2n/2ϕi(2
nx − l), where I = (i, l) ∈ I = {(i, l)/0 ≤ i ≤M, 0 ≤ l ≤ 2n − 1}.

We have Vn = Span{ϕ(n)
I }I∈I and Vj ⊂ Vj+1, for j ≥ 0. Moreover, {ϕ(n)

I }I∈I
is an orthonormalized basis of Vn and dimVn = N = (M +1)2n. Let us now

introduce the corrective space Wn of Vn as the orthogonal complement of Vn
in Vn+1: Vn ⊕Wn = Vn+1. Another construction of spaces Wn can be also

described from W0 as follows. Consider an orthonormal basis {ψi}0≤i≤M

spanning W0 which is the orthogonal of V0 in V1. We define the dilated-

translated multiwavelet functions
(

ψ
(n)
I

)

I∈I
, and get Wn = Span{ψ(n)

I }I∈I ,
for n ≥ 1.

Up to now, the orthonormal families {ϕi}0≤i≤M and {ψi}0≤i≤M are not

specified. We are going to give a suitable basis for our approximation. This

basis was recently introduced by Alpert et al. [3], and our choice is motivated

by the localizing property (see below (35)) of these functions and by their

“easy to use” character. Let PM+1 be the Legendre polynomial of degree

M +1 on [−1, 1] and (x0, . . . , xM ) its roots. Consider the Lagrange interpo-

lating polynomials {li}0≤i≤M at the Gauss-Legendre points {xi}0≤i≤M and

let {ωi}0≤i≤M be the associated Gauss-Legendre weights, then the following

family of scaling functions

ϕi(x) :=

√

2

ωi
li(2x− 1), ∀x ∈ [0, 1], 0 ≤ i ≤M. (34)

is an orthonormal basis in L2([0, 1]). Starting from these functions, we con-

struct the spaces Vn and Wn as previously. The so obtained scaling and

multiwavelet functions respectively fulfill the following concentration and

vanishing properties

∫ 1

0
f(x)ϕ

(n)
I (x)dx = αn,if(

yi + k

2n
) and

∫ 1

0
f(x)ψ

(n)
I (x)dx = 0, (35)
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for every f ∈ Vn, with I = (i, k) ∈ I, αn,i = 2−n/2
√

ωi/2 and yi = (xi+1)/2.

Let f ∈ L2([0, 1]) and Pnf the orthogonal projection of f onto Vn. Then we

consider the following Galerkin approximation f of Pnf

Pnf ∼ f =
∑

I∈I

f Iϕ
(n)
I , with f I = αn,if(

yi + k

2n
) ∼

∫ 1

0
f(x)ϕ

(n)
I (x)dx.

(36)

To discretize Q(f) given by (22), we first define the product f ⊗ g, the

logarithm ln(f) and the exponential exp(f) of two approximations f and g

in Vn, by their components as follows

(f ⊗ g)I =
1

αn,i
f IgI , ln(f)I = αn,i ln(

f I
αn,i

) and exp(f)I = αn,i exp(
f I
αn,i

).

(37)

Of course, all these approximations are exact for polynomials of degree less

than M . To approximate Q(f), we also need to define some discrete deriva-

tive operators on Vn. Following [3] we introduce the right decentered deriva-

tive operator D defined by the relations

[Df ]k = R0[f ]k−RT
1 [f ]k+1, 0 ≤ k ≤ 2n−2, and

[

Df
]

2n−1
= R0,r[f ]2n−1,

(38)

for a function f ∈ Vn whose components in the scaling basis are stored by

blocks of length M + 1, that is f = ([f ]k)
2n−1
k=0 ∈ Vn with [f ]k = (f i,k)

M
i=0.

Blocks R0, R1 and R0,r are (M + 1)× (M + 1) matrices given by

(R0)i,j = 2n[−ϕi(1)ϕj(1) +

√

ωi

2
ϕ′
j(yi)], (R1)i,j = −2nϕi(0)ϕj(1)

and

(R0,r)i,j = 2n
√

ωi

2
ϕ′
j(yi),

for 0 ≤ i, j ≤ M , where the derivatives of the scaling functions are exactly

computed. We also introduce the adjoint (or transposed) operator D∗ of D.

Note that the order of accuracy of the above approximations is the number

M of scaling functions at level 0. Indeed, all these discretizations are exact

for polynomials of degree less that M (see [3] and [1] for details).

To proceed to the approximation of the collision operator, we first re-

strict the integration domain to [0, 1] and keep the same notation for Q(f)

√
εQ(f)(ε) =

∂

∂ε

[∂ ln f

∂ε
(ε)f(ε)(Tf)(ε) − f(ε)T

(∂ ln f

∂ε
f
)

(ε)
]

, (39)
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with

Tg(ε) =

∫ 1

0
K(ε, ε′)g(ε′)dε′. (40)

On Vn this operator T is represented by the matrix T (n) whose coefficients

are

T
(n)
I,J =

∫ 1

0

∫ 1

0
K(ε, ε′)ϕ

(n)
I (ε)ϕ

(n)
J (ε′)dεdε′. (41)

Using the first formula of (35), we then get an approximation T =

(T (n)
I,J )(I,J)∈I2 of the matrix T (n) , whose coefficients are

T (n)
I,J = αn,iαn,jK(

yi + k

2n
,
yj + l

2n
). (42)

Now, let f be the approximation of f defined by (36). Using the previous

approximations of the logarithm, the exponential and the product of two

elements of Vn, we can derive an approximation (in Vn) of the collision

operator (39). This is the subject of the following subsection.

3.2.2. Conservative and entropic multiwavelet approximations for

the isotropic FPL operator

Using the previous notations, we state the following approximation for

the FPL operator.

Proposition 3.1. Let f be the approximation of the unknown distri-

bution function f defined by (36), ln be the logarithm function on Vn given

by (37) and consider the approximation T of the integral operator T defined

by (41). Under these notations, we introduce the following operator on the

space Vn

Q(f) = −D∗[(Dln(f))⊗ f ⊗ (T f)− f ⊗ T ((Dln(f))⊗ f)], (43)

where D is the derivative operator (38) and D∗ its adjoint operator. The

operator (43) is an approximation (on Vn) of
√
εQ(f) given by (39), that

satisfies the following weak discrete formulation

∑

I∈I

[Q(f)]IΘI = −1

2

∑

I,J∈I2

TI,Jf IfJ
[ 1

αn,i
(DΘ)I −

1

αn,j
(DΘ)J

]

×
[ 1

αn,i
(Dln(f))I −

1

αn,j
(Dln(f))J

]

, (44)
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for any element Θ ∈ Vn. In particular, it satisfies the conservation of the

discrete mass and energy, and the discrete entropy dissipation property re-

spectively given by

∑

I∈I

[Q(f)]IΘI = 0, for Θ = 1, ε

and
∑

I∈I

[Q(f)]I(ln(f))I ≤ 0, ∀f ∈ Vn, f i ≥ 0, (45)

with equality for this last relation if and only if f is a maxwellian: f =

exp(Aε +B1), where (A,B) ∈ R
2.

Scheme (44) can be viewed as a generalization of that obtained in [9].

Indeed, taking M = 1 in the definition of the approximation space Vn, (44)

coincides with the finite difference scheme developed in [9]. The scheme (44)

allows high accuracy on a non-regular grid.

Let us now analyse the numerical complexity of the so obtained dis-

cretisation. Of course, a direct evaluation of T f would require O(N2) oper-

ations, where N = 2n(M + 1) = dimVn. However, this cost can be reduced

to O(N) operations using standard wavelet techniques that are based on a

multiscale algorithm [13] with suitable successive approximations. More pre-

cisely, instead of computing T f in the scaling basis
(

ϕ
(n)
I

)

I∈I
, we perform

this calculation on a basis of Vn−1 ⊕Wn−1 that mixes the scaling functions

and the multiwavelets
(

ψ
(n−1)
I

)

I∈I
. Indeed, many coefficients of the matrix

T , when written in this new basis, can be neglected. This is due to the

vanishing property (35) of the multiwavelets ψ. We then repeat recursively

the same procedure for Vn−1, Vn−2, ... ,V1. In other words, a suitable choice

of the basis of Vn mixing the scaling functions with the multiwavelets at

successive levels of resolution m = n, n − 1, ..., 0 yields a new matrix repre-

sentation of T that can be well approximated by a sparse one. We refer to

[1] for a detailed presentation of this algorithm and for some error estimates.

We also note that such a procedure does not affect the conservation property

of the original discretisation since it preserves the symmetry of the matrix

T . However, we are not able to prove whether the entropy dissipation is still

satisfied or not, even if the numerical tests show that this property remains

true.

Now, we point out that a ’non-log’ multiwavelet approximation can be

obtained similarly. Using the same notations as previously the ’non-log’
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analogous of (43) writes

Qnonlog(f) = −D∗[(Df ⊗ (T f)− f ⊗ (T Df)]. (46)

This approximation satisfies the following weak formulation

∑

I∈I

[Qnonlog(f)]IΘI = −1

2

∑

I,J∈I2

TI,J [
1

αn,i
(DΘ)I −

1

αn,j
(DΘ)J ]

×[
1

αn,i
fJ(Df)I −

1

αn,j
f I(Df)J ], (47)

which, in particular, proves the conservation of mass and energy. Again, the

entropy property is only checked numerically.

Consequently, we have a discrete collision operator that possesses all

desired properties (both in “log” and “non-log” forms). Our implicit schemes

can now be derived exactly as in the continuous case, as it is illustrated in

the next section.

3.3. Completely discretized implicit schemes

In this section, we give completely discretized implicit schemes in both

time and velocity variables.

3.3.1. Using finite difference discretisation

For the sake of simplicity we only present the case of a regular discretiza-

tion. The case of an irregular grid can be treated in the same way. The

different implicit schemes are given by equations (7, 13, 16, 20, 21), where

the discrete collision operators are the N -vectors defined as follows:

• contracted scheme: qci (f, g) = − 1
ωi
(D∗Fc(f, g))i, for i = 1 : N , where

the flux Fc is

Fc
i (f, g) =

N−1
∑

j=1

Kij

(

fj(Dg)i − fi(Dg)j

)

, i = 1 : N − 1.

• θ-scheme: qi(f, g) = qci (f, g) + qci (g, f), i = 1 : N .

• log-linear scheme: qli(f, g) = − 1
ωi
(D∗F l(f, g))i, for i = 1 : N , where the
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flux F l is

F l
i (f, g) =

N−1
∑

j=1

Kijfifj

[

(

D

(

g

f

))

i

−
(

D

(

g

f

))

j

]

, i = 1 : N − 1.

For all these definitions, the numerical fluxes are zero for i = 0 and i = N ,

and D and D∗ are the finite difference operators defined in Section 3.1.

Following the same strategy as in the continuous case, we can write the

discrete versions of equilibrium schemes (20) and (21). In that case, the

discrete equilibrium is the discrete Maxwellian feq,i = exp(α + βεi) whose

coefficients α and β are computed so as feq has the same discrete mass and

energy as f .

3.3.2. Using multiwavelet approximations

The different implicit schemes are given by equations (7, 13, 16, 20, 21),

where a function f is replaced by its approximation f ∈ Vn, and where the

discrete collision operators are the N -vectors defined as follows:

• contracted scheme: The contracted operator qc is now replaced by its fol-

lowing approximation on Vn, according to the scheme and the notations

presented in section 3.2,

qc(f , g) = −
( 1√

ε

)

⊗D∗Wc(f , g),

where the flux Wc is

Wc(f , g) = Dg ⊗ (T f)− f ⊗ (T Dg) (48)

• θ-scheme: the operator q is now replaced by its approximation on Vn

q(f , g) = qc(f , g) + qc(g, f)

.

(1) log-linear scheme: In Vn, the operator ql is approximated by

ql(f , g) = −
( 1√

ε

)

⊗D∗W l(f, g),

where the flux W l is

W l(f, g) = D
( g

f

)

⊗ f ⊗ T f − f ⊗ T
(

f ⊗D
( g

f

))

. (49)
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It is now an easy matter to prove that these discrete collision operators

satisfy weak formulations similar to those satisfied by the continuous model.

Hence the discrete analogous properties of Propositions 2.1, 2.2 and 2.4 are

satisfied by all these discrete schemes.

4. Linear Solvers

In this section, we present a strategy to solve the linear implicit schemes

(7, 13, 16, 20, and 21), the unknown being fn+1. The present method obeys

the conservation properties as soon as the approximation of the collision

operator Q is conservative. Here, we deal with both the FPL equation (1)

with d = 2 or 3 and the isotropic case (22). In this section, these models

only differ by the dimension of the integration domain: d = 2 or 3 for (1)

and d = 1 for (22). We only develop the strategy for the finite difference

discretisations of the collision operator since the multiwavelet approach can

be used in a similar way.

We first assume that the collision operator is discretized with N velocity

points and write the schemes (7, 13, 16) in the following matrix-forms:

contracted scheme (7) Lc(fn)fn+1 = fn,

θ-scheme (13) Lθ(f
n)fn+1 = fn +∆t(1− 2θ)Q(fn),

log-linear scheme (16) Ll(fn)fn+1 = fn +∆tQ(fn),

where Lc(f), Lθ(f) and L
l(f) are the N ×N -matrices defined by

Lc(f)g = g −∆t qc(f, g), (50)

Lθ(f)g = g −∆t θq(f, g), (51)

Ll(f)g = g −∆t ql(f, g), (52)

for every vector g in R
N .

We can also consider the following equivalent (and more convenient)

δ-form

Lc(fn)δfn = ∆tQ(fn), (53)

Lθ(f
n)δfn = ∆tQ(fn), (54)

Ll(fn)δfn = ∆tQ(fn), (55)
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where δfn = fn+1 − fn. Equilibrium implicit schemes (20) and (21) are

defined in δ-form by

Lθ(feq)δf
n = ∆tQ(fn), (56)

Ll(feq)δf
n = ∆tQ(fn). (57)

Before going to the resolution of these linear systems, we give some of

their important algebraic properties.

Proposition 4.1.

• For all ∆t > 0 and all f > 0, Ll(f) is a positive definite self-adjoint

matrix for the inner product with weight 1
f , and, in particular, it is in-

vertible.

• For all ∆t > 0, θ ∈ [0, 1], and all discrete Maxwellian feq, Lθ(feq) is a

positive definite self-adjoint matrix for the inner product with weight 1
feq

,

and, in particular, it is invertible.

• For all f > 0, Lc(f) and Lθ(f) are invertible if ∆t is small enough.

Proof. We do not give the proof of this proposition, since it is a direct

consequence of the discrete versions of the properties of qc, q, and ql given

in Propositions 2.1, 2.2 and 2.4. �

These linear systems are non sparse, with generally large dimension.

For a numerical resolution, one can mainly investigate three classes of meth-

ods: direct (as LU), iterative non-stationary (as Krylov methods), iterative

stationary (as relaxation methods).

Direct methods have been used by Epperlein [10] for the isotropic FPL

equation with LU factorization. However, it is clear that such solvers are

not usable in multidimensional cases. The complexity of the algorithms is

O(N3), and the memory storage for the matrices is O(N2). Even in the

one dimensional case as isotropic equation, the total complexity for a given

simulation time is asymptotically the same as the simple explicit scheme (see

Section 5).

Consequently, it is clear that iterative methods must be considered. At

this stage, we want to point out a crucial fact: since iterative methods gen-

erally construct an approximate solution to the linear system, it should be

investigated whether conservation properties of the implicit schemes are pre-

served or not. Indeed, it is questionable to construct perfectly conservative

schemes if that property is destroyed by the linear solvers.
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To make this point more precise, we define the (d+2)×N matrixM that

associates to every vector f ∈ R
N its corresponding (d+2)-vector of moments

Mf (i.e an approximation of
∫

Rd(1, v,
1
2 |v|2)T f dv). For instance, we can set

Mf =
∑N

i=1(1, vi,
1
2 |vi|2)T fi∆vd for a regular discretization and d = 2 or 3.

For the isotropic case, a possible definition is Mf =
∑N

i=1(1, εi)
T fi

√
εi∆ε.

Since we assume the discrete collision operator Q to be conservative, the

following relations are satisfied for every f and g in R
N :

Mqc(f, g) = 0, Mq(f, g) = 0 and Mql(f, g) = 0.

This implies the following relations for the matrices (50,51,52)

MLc(f) =M, MLθ(f) =M and MLl(f) =M.

Multiplying byM the δ-forms (53-57) of our implicit schemes is another way

to check the conservation property Mfn+1 =Mfn.

Consequently, the implicit schemes written under the δ-forms (53-57)

are of the same type as the following general linear system in R
N

Ax = b,

where the N ×N -matrix A and N -vector b satisfy

MA =M and Mb = 0. (58)

Then we consider the following problem: find an iterative solver such that if

we start with an initial vector x(0) satisfyingMx(0) = 0, then any iterate x(k)

also satisfies Mx(k) = 0. Such solvers will be called conservative iterative

linear solvers. They guarantee that the implicit scheme is still conservative

even if convergence to the exact solution of the linear system is not achieved.

In the sequel, we claim that Krylov subspace methods are conserva-

tive iterative linear solvers. In our study, these methods can be set in the

following general frame (see [23] for an introduction to Krylov solvers).

Algorithm 4.1.

1. give x(0) such that Mx(0) = 0 and set r(0) = b−Ax(0);

2. for k = 1 to K, find x(k) in the affine subspace x(0) +Kk, where

Kk = {r(0), Ar(0), . . . , Ak−1r(0)}.
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The different versions of Krylov methods arise from different choices of

x(k) in Kk. We now state the following

Proposition 4.2. All iterative methods that can be set under the form

of Algorithm 4.1 are conservative. This means that we have Mx(k) = 0 for

every k.

It is remarkable that this conservation property holds even if the linear

system is not exactly solved. Another advantage of these methods is well

known: they are “matrix-free”, i.e. the matrix A only appears in matrix-

vector products Ay in the solver. Thus we do not need to form and store

the matrix A. Moreover in our case, if the quantities qc(f, g), q(f, g) and

ql(f, g) can be computed in O(N) operations, then this is also possible for

productsAy in Krylov solvers, since A = Lc(fn), Lθ(f
n), or Ll(fn) which are

given by (50,51,52). Finally, we just emphasize that all iterative solvers not

necessarily conservative, and refer to [19] for some remarks on this subject.

Among the above Krylov methods, we mainly use the GMRES and

the Conjugate Gradient (CG) methods. The CG method is used to solve

linear systems whose matrices are positive definite self-adjoint. As stated

in Proposition 4.1, this is the case for the log-linear and equilibrium log-

linear schemes (16, 21), and the equilibrium θ-scheme (20). This is a real

advantage, since the CG method is one of the most efficient Krylov solver (in

terms of CPU cost and memory storage). For the other schemes, we simply

use the GMRES method.

5. Complexity of the Algorithms

In this section, we assume that for an arbitrary number of dimensions

d ≥ 1, the number of operations for computing qc(f, g), q(f, g), and ql(f, g) is

O(N). This is true for d = 1 in the case of isotropic equation with Coulomb

or Maxwell potential using finite difference approximations, and for other

potentials using multiwavelet algorithms [2]. For d ≥ 2, cost reductions to

O(N logN) can be obtained through rapid algorithms as Multipole meth-

ods [17] and spectral methods [21]. The cost O(N) could be reached by an

extension of the isotropic wavelet methods [2] to the multi-dimensional case.

We also assume that the velocity domain is discretized with a step ∆v or

∆ε = 1
n in each directions and a total number of points of N = nd. For

a problem with a time scale τ , we want to compare the complexity of the

usual Euler explicit scheme (5) and our linear implicit schemes for a given

simulation time T .
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For the explicit scheme, one iteration requires only one evaluation of

Q(f), which costs O(N). Assume that the CFL condition imposes a time

step ∆t = O( 1
n2 ) (this seems to be true from numerical experiments and

has been proved in the isotropic case [5]). Then the number of iterations is
T
∆t = O(n2). Consequently, the total complexity is O(N1+2/d).

For linear implicit schemes with Krylov solvers, the cost of one Krylov

iteration is O(N) (since only evaluations of qc(f, g), q(f, g), and ql(f, g) are

needed). We assume that K iterations of the Krylov solver are necessary to

get a correct approximation of the time iterate. Thus the cost of one time

iteration is KO(N). Finally, if the time step can be set to τ , the number of

time iterations is T
τ , and therefore, the total complexity is KO(N).

In Table 1, we give a comparison of these complexities for d = 1, 2, 3.

Table 1. Complexity of explicit and linear implicit schemes for d = 1, 2, 3.

d = 1 d = 2 d = 3

explicit O(N3) O(N2) O(N5/3)

implicit KO(N) KO(N) KO(N)

We can see that for d = 1, there is an important gain even if K = N .

For d = 2, there is still a gain if K << N . If K = O(N), the explicit and

implicit schemes have the same asymptotic cost O(N2). For d = 3, we have

a significant gain only if K << N2/3. Therefore, the efficiency of the implicit

schemes decreases as the dimension increases. Consequently, the reduction of

the number K of Krylov iterations becomes necessary in multi-dimensional

cases. This could be done by using adapted preconditioning techniques. As

noted by [8], such techniques can render K virtually independent of N . In

that case, our implicit schemes would always be advantageous as compared

to the explicit scheme. This is the subject of a future work.

6. Numerical Tests

In order to check the properties of the implicit schemes that we in-

troduced in this work, we present various numerical tests with both the

Maxwellian and Coulombian potentials.

First, in the case of Maxwellian potential, it is well known that the FPL

operator reduces to the so-called Ornstein-Uhlenbeck operator [11] and that
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the homogenous FPL equation can be exactly solved for any initial data. In

particular, an explicit and practical example of solution is given in [16] by

f(t, ε) =
ρ

(2πT )3/2
exp(− ε

2T
)

(

1 +
11

120

(

( ε

T

)2
− 10

ε

T
+ 15

)

exp(−8ρt)

)

.

In Figure 1 and 2, we compare the numerical solution obtained with the

second-order θ-scheme (13) to this exact solution, using finite difference ap-

proximation. The energy domain is [0, 2] discretized with 500 points. The

parameters of the exact solution are ρ = 2 and T = 0.01. The time step

used with the implicit scheme is about 300 times the time step required by

an explicit computation. In Figure 1, we plot f as a function of v =
√
ε at

different time steps. We observe that the numerical solution is very close to

the exact one, and the equilibrium is reached in only ten time steps. This

corresponds to a final physical time equal to tmax = 10. This shows that the

dynamics described by the exact FPL equation can efficiently be simulated

with a much larger time step than those of usual explicit schemes. This is

also clear on Figure 2 where the kinetic entropy is plotted. The slight dif-

ference that can be observed in the stationary regime is due to the velocity

discretization itself. In fact the discrete Maxwellian is different from the

exact one.
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Figure 1. Exact solution and implicit scheme for Maxwellian potential:

distribution function at different time steps (finite difference approximation).
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Figure 2. Exact solution and implicit scheme for Maxwellian potential:

entropy.

The second test case uses Coulombian potential with the so called Rosen-

bluth initial data:

f0(ε) = 0.01 exp(−10((
√
ε− 0.3)/0.3)2).

On Figure 3, we plot the kinetic entropy obtained by the explicit scheme (5)

with time step ∆texp, which is the largest step ensuring the stability of the

scheme. This entropy is compared with that obtained by the contracted

implicit scheme (7). For this last scheme, we take a time step ∆timp =

50∆texp. We use a regular energy discretization of [0, 2] withN = 100 points.

Tolerance for GMRES algorithm is 10−6. The dynamics is well described by

the implicit scheme even if the time step is much larger. However the gain

in terms of CPU time is not obtained unless the number of energy points

is sufficiently large. Indeed, the implicit scheme is really advantageous for

N ≥ 500 only. This is clearly shown by Figure 4 where the CPU time

versus N is plotted for explicit and implicit schemes. According to what

we explained in Section 5, the CPU time of the explicit scheme behaves as

O(N3). A contrario, the implicit scheme only requires O(nKN) operations,

where nK is the number of iterations in the Krylov procedure. It is known

that nK ≤ N , and we observe that on this test case, nK is much smaller



2007] THE FOKKER-PLANCK-LANDAU EQUATION 561

Figure 3. Kinetic entropy for explicit (-) and contracted implicit scheme (7)

(o) for Coulombian potential. Case of a regular grid.

Figure 4. CPU cost of explicit (+) and contracted implicit scheme (7) (o)

versus the number N of energy points in a logarithmic scale (Coulombian

potential). Tolerance for GMRES is 10−6, time step in implicit scheme is

0.3.
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than N . The test on Figure 4 confirms that the numerical complexity of the

implicit scheme behaves like O(N2). Indeed, for N ≥ 500, the slope of the

curve is 1.95 for the implicit scheme whereas it is 2.8 for the explicit scheme.

Then, we perform the same test case with an irregular energy discretiza-

tion where the discrete energy points are εi = 2( i
100 )

3 for i = 1 to 100. First,

we observe that the entropy is almost the same as for the regular grid (see

Figure 5). However, it is remarkable that even with only 100 points, the

implicit scheme is less expensive in terms of CPU time (it requires 0.12 s)

than the explicit scheme (which requires 0.5 s).

For the same initial data, we compare the different implicit schemes

studied in this work to the explicit one: contracted (7), θ-scheme (13), log-

linear implicit scheme (16), equilibrium θ-scheme (20), equilibrium log-linear

scheme (21). On Figure 6 we plot the fourth order moment
∫

f(ε)ε2
√
ε dε

as a function of time. We only compare first order (in time) schemes with

∆timp = 50∆texp and N = 100 on a regular grid. We observe that the

equilibrium θ-scheme with θ = 1 is the most accurate in this case. Despite

its good mathematical properties, the log-linear scheme is not sufficiently

accurate. This is probably due to the linearization of the log function.

Figure 5. Kinetic entropy for explicit (-) and implicit scheme (7) (o) for

Coulombian potential. Case of an irregular grid.
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Figure 6. Fourth order moment for different implicit schemes.

On Figure 7, we compare our second order (in time) θ-scheme (with

θ = 0.5) to a second order explicit scheme (Runge-Kutta scheme). We use

the same parameters as on Figure 6. We can see that the two results are in

a very good agreement.

Figure 7. Fourth order moment for second order (in time) schemes.

As a prototype for the multidimensional case, in which simple acceler-
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ation techniques as (31) or (33) cannot be used, we consider the isotropic

FPL equation derived from (1) for a general parameter γ. In that case, the

FPL equation still has the form (22), but the kernel K has now the following

extended normalized expression:

K(ε, ε′) =
−1

(γ + 2)(γ+4)(γ+6)

(

(ε1/2+ε′1/2)γ+4(ε−(γ+4)ε1/2ε′1/2 + ε′)

−|ε1/2 − ε′1/2|γ+4(ε+ (γ + 4)ε1/2ε′1/2 + ε′)
)

. (59)

In this case, we use a more elaborated technique to accelerate the computa-

tion of the collision operator. The method uses the wavelet approximation

theory and is summarized in section 3.2. To illustrate this strategy, we

give a numerical test and plot the entropy on Figure 8. Again, the implicit

scheme gives the same accuracy as the explicit scheme with a cost reduction

comparable to the previous cases.

Finally, we point out that all the schemes proposed in this paper are

perfectly conservative, up to the machine error. For instance, on the second

test case, the variation amplitude of density and energy during the time

evolution is about 10−16, as for the explicit scheme. This confirms that the

approximate resolution of the linear systems does not affect the conservation

properties.

Figure 8. Kinetic entropy for explicit (-) and implicit scheme (7) (o) for

Coulombian potential, with wavelet approximation presented in Section 3.2.
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7. Conclusion

In a first part of this paper, we have constructed various linear time-

implicit schemes to solve the homogeneous FPL equation, reviewing the

results in [18, 19]. These strategies are shown to satisafy important physical

properties of conservation and entropy for arbitrary dimension of the space

variable. Then, in a second part, we present some discretisations and develop

some fast algorithms to evaluate the collision part in the isotropic case,

preserving the above physical properties. Moreover, numerical tests in the

isotropic case have shown a significant gain in terms of CPU time with the

same accuracy as that obtained by usual explicit schemes.

As we pointed out in the introduction, the time-implicitation strategy

applies to multidimensional collision operators, but still an important point

must be investigated in that case. Indeed, the involved linear systems are

much larger, and suitable preconditioners are required. We recall that, in a

Krylov method with a good preconditioner, the number of iterations is inde-

pendent of N . Thus the complexity of our implicit schemes could be reduced

to O(N). Moreover, the rapid matrix-vector product (partial summations

techniques or multiwavelets) that has been used in the isotropic case cannot

be directly applied to the multidimensional cases. Therefore, to get a fast

implicit solver in several dimensions, more adapted acceleration techniques

are required. A first step will be to use some existent fast algorithms such

as the multipole method [17]. This task is under investigation. The second

step is to extend the multiwavelt strategy to the 3D case and find systematic

and suitable preconditionners. This will be the subject of a futur work.

Note that for the inhomogeneous (space dependent) case, our implicit

schemes should be more efficient. Indeed, in many inhomogeneous situations

the transition phase is rapid and does not need to be accurately described.

In such cases, our implicit schemes allow to directly reach the hydrodynamic

behavior with a few time steps.

Finally, the extension of our strategy to other collision operators (in-

cluding the relativistic and quantum effects for instance) is the subject of a

future work.
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