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Abstract

Asymptotic approximations for the energy and chemical
potential of the ground state in Bose-Einstein condensates are
presented in the semiclassical regime with several typical trap-
ping potentials. As preparatory steps, we begin with the three-
dimensional (3D) Gross-Pitaevskii equation (GPE), review several
typical external trapping potentials, scale the 3D GPE and show
how to reduce it to 1D and 2D GPEs in certain limiting trapping
frequency regime. For the 1D box potential, we derive asymptotic
approximations up to o(1) in term of the scaled interacting pa-
rameter By for energy and chemical potential of the ground and
all excited states in both weakly interacting regime, i.e. B4 — 0
and strongly repulsive interacting regime, i.e. B4 — 00, respec-
tively. For the 1D harmonic oscillator, double well and optical
lattice potentials, as well as a more general external potential in
high dimensions, we get asymptotic approximations up to o(1) in
term of the scaled interacting parameter 34 for the energy and
chemical potential of the ground state in semiclassical regime, i.e.
Ba — oo. Our extensive numerical results confirm all our asymp-
totic approximations, provide convergence rate and suggest several

very interesting conclusions.

Received December 9, 2004 and in revised form March 29, 2005.
AMS Subject Classification: 35B40, 35P30, 656N06, 65N25, 81V45.

Key words and phrases: Bose-Einstein condensation, Gross-Pitaevskii equation, box
potential, energy, chemical potential, harmonic oscillator potential, double well potential,
optical lattice potential, ground state, excited state, semiclassical regime.

495



496 WEIZHU BAO, FONG YIN LIM AND YANZHI ZHANG [June
1. Introduction

Recent experimental advances in achieving and observing Bose-Einstein
condensation (BEC) in trapped neutral atomic vapors [3, 25] have spurred
great excitement in the atomic physics community and renewed the inter-
est in studying the collective dynamics of macroscopic ensembles of atoms
occupying the same one-particle quantum state [24, 39, 41]. Theoretical
predictions of the properties of a BEC like the density profile [13], collective
excitations [27, 31] and the formation of vortices [26, 42] can now be com-
pared with experimental data [1, 3, 32]. Needless to say that this dramatic
progress on the experimental front has stimulated a wave of activity on both
the theoretical and the numerical front.

The properties of a BEC at temperatures 7" much smaller than the criti-
cal condensation temperature T, [33] are usually well modeled by a nonlinear
Schrodinger equation (NLSE) for the macroscopic wave function [29, 33, 40]
known as the Gross-Pitaevskii equation (GPE) [29, 40], which incorporates
the trap potential as well as the interactions among the atoms. The effect of
the interactions is described by a mean field which leads to a nonlinear term
in the GPE. The cases of repulsive and attractive interactions - which can
both be realized in the experiment - correspond to defocusing and focusing
nonlinearities in the GPE, respectively. The results obtained by solving the
GPE showed excellent agreement with most of the experiments (for a review
see [4, 23]). Thus theoretical and numerical study of GPE is very important
in understanding BEC.

There has been a series of recent theoretical and numerical studies
for understanding BEC. From theoretical point of view, we refer to the
study for properties of the energy functional [24, 35, 36, 41], Thomas-Fermi
(TF) approximation [8, 11], vortex formation [12, 39, 41], solutions of time-
independent and time-dependent GPE [36, 41|, etc. From numerical point
of view, we refer to the study for developing efficient and stable numerical
methods to compute ground state [6, 11, 18, 20, 21] and dynamics of BEC [7,
8, 10, 19], simulating BEC in 3D [9] and multi-component [5, 20], comparing
with experimental data [3, 28], etc. Currently, several important problems
are still open in this field, especially in the semicalssical regime. For exam-
ple, (i) Does the minimizer of the energy functional for GPE correspond to
the minimum chemical potential? (ii) What is the convergence rate of the
TF approximation? (iii) What is the ratio between the energy and chemical
potential when the scaled interacting parameter 5; — co? (iv) What is the
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width of the boundary or interior layers in ground or excited states? (v)
Is there an asymptotic formula for the energy and chemical potential when
the number of atoms in the condensate is very large? In this paper, we will
study these questions by using asymptotic and numerical methods. Since
the experiments are usually done with thousands to millions atoms, i.e. in
the semiclassical regime, we will mainly focus ourselves in this regime. For
box potential, we obtain asymptotic approximations up to o(1) in term of
the scaled interacting parameter By for energy and chemical potential of the
ground and all excited states by applying a matched asymptotic method. For
the 1D harmonic oscillator, double well and optical lattice potentials, as well
as a more general external potential in high dimensions, we derive asymp-
totic approximations up to o(1) in term of B4 for the energy and chemical
potential of the ground state by carefully studying the TF approximation.
These asymptotic approximations are confirmed by our extensive numerical
results and convergence rates are also reported.

The paper is organized as follows. In Section 2 we start out with the 3D
GPE, review several typical external trapping potentials, scale the 3D GPE
and show how to reduce it to lower dimensions. In Section 3 we present
TF and matched asymptotic approximations for the ground state and all
excited states, as well as their energy and chemical potential with a 1D box
potential. In Section 4 we get asymptotic approximations for the energy and
chemical potential of the ground state with nonuniform potentials. Finally,
some conclusions are drawn in Section 5.

2. The Gross-Pitaevskii Equation

At temperature 7' much smaller than the critical temperature T, [33],
a BEC is well described by the macroscopic wave function 1 (x,t) whose
evolution is governed by a self-consistent, mean field nonlinear Schrédinger
equation (NLSE) known as the Gross- Pitaevskii equation (GPE) [29, 40]
0 t ok
APV OEW)

ot ey Y

2
:_%ﬁw@@+v&w@w+N%w&m%@wmm>

where x = (z,y, z)T is the spatial coordinate vector, m is the atomic mass,
h is the Planck constant, N is the number of atoms in the condensate,

Uy = 4mh%as/m describes the interactions between atoms in the condensate
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with as the atomic scattering length (positive for repulsive interaction and
negative for attractive interaction), V(x) is an external trapping potential,
and the energy functional E(v) is defined as

NUy

5 [t dx. (2.2)

2
B = [ | |o [V0R + VGl +

Here we use f* denotes the conjugate of a function f. It is convenient to

normalize the wave function by requiring

w01 = [ e Pax =1 (23

2.1. Different external trapping potentials

In the early BEC experiments, a single harmonic oscillator well was used
to trap the atoms in the condensate [14, 24]. Recently more advanced and
complicated traps are applied in studying BEC in laboratory [15, 18, 38, 41].
In this subsection, we review several typical trapping potentials which are

widely used in current experiments.

I. Three-dimensional (3D) harmonic oscillator potential [41]:
m
Vho(x) = Vho(x)+vho(y)+vho(z)v Xe ng VhO(T) = sz7—2v T=%,Y, %, (24)
where w;, wy, and w, are the trap frequencies in z-, y- and z-direction re-

spectively.

II. 2D harmonic oscillator + 1D double-well potential (Type I) [38]:

Vi (0 = Vi (2)+Vho (9)+ Vio (2), x € B, Vi (@) = T} (22 —%)", (25)

w

where +a are the double-well centers in z-axis, v, is a given constant with

physical dimension 1/[s m]/2.

III. 2D harmonic oscillator + 1D double-well potential (Type II) [16, 30]:

m A
Vi (00 = Vi (@) + Vio(y) + Vio (), X€R, VY (0)= T (jal —a)” . (26)

w
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IV. 3D harmonic oscillator + optical lattice potential [2, 22, 41]:

Vhop (%) = Vio (3)H-Vopt (2)4+Vopt (y HVopt (2), x€ R3, Vopt (T) =5+ E; sin? (Gr7),

(2.7)
where ¢, = 2w/, is fixed by the wavelength A, of the laser light creating the
stationary 1D lattice wave, E, = h?¢2/2m is the so-called recoil energy, and
S, is a dimensionless parameter providing the intensity of the laser beam.
The optical lattice potential has periodicity T, = 7/, = A\;/2 along T-axis

(T =um,y,2).
V. 3D box potential [41]:

0, 0<zy,2<0L,
oo, otherwise.

Vias ) = { (2.8)

where L is the length of the box in the z-, y-, z-direction.
For more types of external trapping potential, we refer to [39, 41].
2.2. Dimensionless GPE

In order to scale Eq. (2] under the normalization (23]), we introduce
t

=L x=X Jad)=dlexy, B@) =22

to xo EO ’

(2.9)

where tg, ¢ and Ej are the scaling parameters of dimensionless time, length
and energy units, respectively. Plugging (29]) into (2.I), multiplying by
t% /mac(l)/ 2, and then removing all  we obtain the following dimensionless
GPE under the normalization (2.3]) in 3D:

DeCet) _ SEW)

ot = opr Y

_ _%vzwx,t) + V(x)(x,1) + Bl (x,1)P¥(x,t), (2.10)

where the dimensionless energy functional E(v) is defined as

B = [ [gIver+veome+ S| e e

and the choices for the scaling parameters ¢y and g, the dimensionless po-
tential V(x) with v, = towy and v, = tow,, the energy unit Ey = h/ty =
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h?/mag, and the interaction parameter 3 = 4masN/x¢ for different external
trapping potentials are given below [37]:

I. 3D harmonic oscillator potential:

1 h
tO == o = ) V(X)
Wy mwy

(2% + vpy® +22%) .

l\DlH

II. 2D harmonic oscillator + 1D double-well potential (type I):

1/3 1/3 N
m h a 1 2 N2, 292, 22
t0:<h—1/§> , x0:< > , a=—, V(X):§ [(aj —a®) 42z }

mu?2 x0

III. 2D harmonic oscillator + 1D double-well potential (type II):

ek e ok v

IV. 3D harmonic oscillator + optical lattice potentials:

27T2 S 21y
to = 7 xTo = =5 o 4r= N T=,Y, %,
T

V(x) =

[(|z] — a)* + vy +227] .

DO | =

2(3: + Wyy + 72 ) + k, sin ( 2 ) + ky Sin2(qyy) + k. sinQ(qzz),

V. 3D Box potential:

mL?

t0:T7 xo =L, V(X):{

0, 0<ux,y,z<1,
oo, otherwise.

Under the external potentials I-IV, when w, ~ 1/ty and w, > 1/t (&
vy = 1 and 7, > 1), i.e. a disk-shape condensation, following the procedure
used in [8, 11, 34|, the 3D GPE can be reduced to a 2D GPE. Similarly,
when wy > 1/tp and w, > 1/ty (& v, > 1 and v, > 1), i.e. a cigar-shaped
condensation, the 3D GPE can be reduced to a 1D GPE [8, 11, 34]. These
suggest us to consider a GPE in d-dimension (d = 1,2, 3):

P 0%, 1) = —%Azp VG 4 Bl x € QCRY, (212
Px1) =0, xeTl =09, (2.13)
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P(x,0) = Pp(x), X € (2.14)

where (4 is the scaled interacting parameter and Vy(x) is the scaled external

potential.

There are two important invariants of (2.12)): the normalization of the

wave function
sz/wwwﬁszwwa/qusztzo (2.15)
Q Q

and the energy functional
_ Lo2 o Bay al o _
Bw) = [ [5IV0F + Vaoolul + 2ot | dx = Blw), 2 0. (210
0

In fact, the energy functional E(1)) can be split into three parts, i.e. kinetic
energy Fyin(1)), potential energy FEpo (1)) and interaction energy Ein(v),

which are defined as

Bun(0) = [ Bl itx, Bav) = [ VitolwexPax, (217
Fran(®) = | SIVHGDI dx, BW) = Fran(t)+ By () + B (). (219

2.3. Stationary states
To find the stationary solution of (2.12]), we write

P(x,t) = ¢(x) et (2.19)

where g is the chemical potential of the condensate and ¢(x) is a func-
tion independent of time. Substituting ([2.19]) into (2.12]) gives the following
equation for (i, ¢(x)):

fp(x) = —%&b(X) +Va(x)o(x) + Balp(x)Po(x), x€Q,  (2:20)
$(X)[r—an = 0, (2.21)

under the normalization condition

H¢u2:=:/£|¢<x>ﬁdx:: 1 (2.22)



502 WEIZHU BAO, FONG YIN LIM AND YANZHI ZHANG [June

This is a nonlinear eigenvalue problem with a constraint and any eigenvalue
i can be computed from its corresponding eigenfunction ¢(x) by

p= 1) = [ [5IV660 + Val o + Aol ax

= B(6)+ | Lo ax = B(@) + B (). (2.23)

Q
Q

The ground state of a BEC is usually defined as the minimizer of the
following minimization problem:

Find (pg, ¢4 € S) such that
Ey = E(¢g) = min E(9),  ng:=pu(dg) = E(dg) + Ein(dg),  (2.24)

where S = {¢ | ||¢|]| =1, E(¢) < oo} is the unit sphere. When 54 > 0 and
is bounded or lim x| V(x) = oo, there exists a unique positive minimizer
of the minimization problem (2.24)) [36].

It is easy to show that the ground state ¢, is an eigenfunction of the
nonlinear eigenvalue problem. Any eigenfunction of (220) whose energy
is larger than that of the ground state is usually called as excited states
in the physics literatures. In the following, we always use E;, = E(¢g),
Eint,g = Eint(‘lsg)y Epot,g = Epot(gbg)y Ekin,g = Ekin(¢g) and Hg = /L(ng) to
denote the energy, interaction energy, potential energy, kinetic energy and
chemical potential of the ground state ¢, respectively. Similarly, we use
E, = E(¢k’)7 EthJi’ = Eint(¢k’)7 Epot,k = Epot(¢k’)v Ekian = Ekin(qbk) and
ur = p(¢r) to denote the corresponding quantities for the kth excited state
Pk

In order to verify our asymptotic approximations provided in the next
two sections numerically, we always solve the minimization problem (2.24]) by
a continuous normalized gradient flow (CNGF) with a backward Euler finite
difference (BEFD) discretization proposed in [6] to compute the ground and
excited states.

2.4. Semiclassical scaling and leading asymptotics
When Q =R, 8;>> 1 and Vy(x) = Vo(x) + W (x) satisfying

1 . W(x)
= — @ @ e 23 a l
Vo) = Joflonl* 4 afled®). im0

=0, (2.25)
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with x = (21,...,24)T, @ > 0,0 < v;, 1 < j < d, another scaling (under the
normalization (ZI5]) with ¢ replacing by ) for ([212]) is also very useful in
practice by choosing t — te(@=2)/(@+2) x _y xe=2/(2H+0) and ¢ = ¢ ¢/ (2H+0)
with e = 1/ﬁéa+2)/2(d+a):

SOV t) OB ())

o - oy AW

2
= —S AU+ (Vo) + WE))UT + [P0, x €RY, (226)

where We(x) = 20/t W (x//(2+2)) and the energy functional E°(¢°) is
defined as

2
Bw) = [ | FIVUP + (o + W)l + 311 ax = O

Similarly, the nonlinear eigenvalue problem (2:20)) (under the normalization

[2.22]) with ¢ = ¢°) reads
2
HEG (x) =~ A + (Vo) + WE))6" + 677, xR, (227)

where any eigenvalue u° can be computed from its corresponding eigenfunc-
tion ¢° by

2
= 1) = [ SV + 000 + WEG)ler + 1671 | dx = 0.

Furthermore it is easy to get the leading asymptotics of the energy functional
E(¢) in (ZI6]) and the chemical potential (2.23) when B4 > 1 from this
scaling:

E()) = €—2a/(2+a)Ea(¢a) -0 (E—2a/(2+a)) -0 (ﬂg/(d+a)> . (2.28)
,u(qzb) _ 6_2a/(2+a)/£€(¢6) -0 (6—2a/(2+a)) -0 (ﬁ;/(d+a)) . (2‘29)

In [17, 43], a different rescaling for the nonlinear schrédinger equation subject
to smooth, lattice-periodic potentials was used in the semiclassical regime.
There they studied Bloch waves dynamics in BEC on optical lattices.

3. Approximations in a Box Potential

In this section, we will present asymptotic approximations for the ground
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and excited states, as well as their energy and chemical potential approxima-
tions up to o(1) in term of f4, in BEC with a box potential, i.e. Vy(x) =0
and Q = [0,1]? in (Z20), in weakly interacting regime, i.e. Bq — 0, and
strongly repulsive interacting regime, i.e. (B3 — 00, respectively. In this
case, we have the following equalities between the energies and chemical
potential:

[1(¢) = Exin(9)],  E(9) = Exin(9) + Eint(9)- (3.1)

DO =

Eint (¢) =

3.1. Approximations in weakly interacting regime

When 3; = 0, the problem (2.20)-(2:22]) reduces to a linear eigenvalue
problem, i.e.

pot) = 3060, x€0,  Shr=0 [ol=1  (32)

By separation of variables, we can find a complete set of orthonormal eigen-
functions:

d
¢3(x) = [[ ¢jon(zm), d1(r) = V2sin(irr), €N, I = (j1,...,ja) € N

m=1
(3.3)
The corresponding eigenvalues are
d 1
py = Zlujm, = 51%2, leN. (3.4)
oo

From these solutions, we can get the ground state solution ¢y(x)=¢(;,. 1)(%).
The corresponding energy and chemical potential E; = pg, = dr?/2. All
other eigenfunctions are excited states. Of course, these solutions can be
viewed as approximations for the ground and excited states when 5; = o(1)
in (2.20) by dropping the nonlinear term on the right hand side of (2.20).

3.2. Thomas-Fermi (semiclassical) approximation

For strong repulsive interacting regime, i.e, 54 > 1, we can drop the
diffusion term, i.e. the first term on the right hand side of (2:20) and get

uIF oTF (x) = By |67 ()| 61" (x),  x € Q. (3.5)



2007] ASYMPTOTICS FOR THE GROUND STATE OF BEC 505

TF py"
g (X) = B x € Q. (3.6)

Plugging ([3.6]) into the normalization condition (2.22]), we obtain

From (B.5]), we obtain

P MTF NTF -
1= TF ()12 dx = D ogx=9 = TF _ 3. 3.7
/Qwsg )| & z W =B (3)

Noticing (2:23]), we get

TF
F r_ Pa F 4 Ba
Bt =py /\¢T [ d =2, (3.8)
Therefore, we get the TF approximation for the ground state, the energy
and the chemical potential when (§; > 1:

b(x) =, (x) =1, x€Q, (3.9)
B
By~ BN =20 g~y = Ba (3.10)

It is easy to see that the TF approximation for the ground state does not
satisfy the boundary condition (2.2I]). This is due to removing the diffusion
term in (2.20)) and it suggests that a boundary layer will appear in the ground
state when Sz > 1. Due to the existence of the boundary layer, the kinetic
energy does not go to zero when 8; — oo and thus it cannot be neglected.
In the next subsection, we will present a better approximation by applying

the matched asymptotic method.

3.3. Approximate ground state in 1D

When d = 1, Vyg(x) = 0 and Q = [0, 1] in (2.20]), since the layers exist
at two boundaries x = 0 and z = 1, we will solve (2.20) near z = 0 and
x = 1, respectively. Firstly, we consider 0 < z < 1/2 and rescale ([2.20) by

introducing

L . |
T = \/,U_gX, o(x) ﬁ1¢>(X), (3.11)

where p, = 1 is the chemical potential of the ground state. Plugging (3.11])
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into (2.20]), a computation shows

1
B(X) = —5Pxx(X) + P3(X), 0<X <oo, (3.12)
®(0) =0, lim ®(X) = 1. (3.13)
X —00
Solving (B.12)-([B13]), we obtain
®(X) = tanh (X), 0< X < oo. (3.14)

Plugging (8.14]) into (3.I1I), we obtain an approximation for ¢4(x) near z =0
when ;1 > 1:

bg(x) ~ \/%tanh (Vigz), 0<z<1/2. (3.15)

Similarly, we can get an approximation for ¢4(x) near = 1 when 8; > 1:

Pg(z) = \/%tanh (Vig(1 —2)), 1/2<x<1. (3.16)

From (BI5) and (3I6]), noticing the boundary condition ([Z21I)) and using
the matched asymptotic method, we get an approximation for the ground

state when §; > 1:

¢g($) ~ ng/IA(:E)

MA

= % [tanh <\/,ugmx) +tanh (\/@(1—:1:)) —tanh (@)} .(3.17)

Substituting (3.17)) into (2.22)), after some computations (see Appendix A1),
we obtain

_ MA/ N2 g0 Pg Hg
1_/0 @) do M -2V (3.18)

Solving (B.I8), we get
pg & pgt = Br+2y/Br+1+2=pl" +2¢/Br +1+2, B> 1. (3.19)

Plugging (3.I7) into (2I7)-(218]), after some computations (see Appendix
A1), we obtain

Eing ~ Eiinyg = \/ﬁ1+ +2, (3.20)
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2
Eint,g ~ Eil\ri[t/}g = % + 3 B1+1, B> 1, (3.21)
4
Eng;\/[A:%—i—g\/ﬁl—l—l—i—Z (3.22)

From the above asymptotic results, we can draw the following conclusions:

(i) The width of the boundary layer in the matched asymptotic approx-
imation is about O(1/y/31) from B.I7)) and (3.19).

(ii) The ratios between the energies satisfy:

E, 1 B By
lim =2 = =, lim —9%0 _ 1 iy

, —0. 3.23
B1—00 /Lg 2 B1—00 Eg B1—00 Eg ( )

To verify B.I7), B20), G.21), B22), B23) and (B.I9) numerically,

Table 1 lists the errors between the ground state and its matched asymptotic
approximation, and Figure 1a shows the ground state for different 5;. In this
table and the following, the convergence rate of a function f(«) as @ — 0 is
computed as: In[f(2a)/f(«)]/In 2.

Table 1. Convergence study of the matched asymptotic approximation for
the ground state with 1D box potential when 57 > 1.

1/, 4/25  2/25  1/25  1/50 1/100 1/400
max |¢, — ¢y~ 8.17E-3 9.24E-4 4.67E-5 SE7T -
gy — #YA 2 6.84E-3 8.05E-4 411E5 6E-7  —— -
|Pring — EMA T 13018 09479  0.6464 0.4340 0.2946 0.1399

kin,
Rate ’ 0.4577  0.5523  0.5747 0.5589 0.5372
|Eintg — Byl 0.5948 04608 0.3218  0.2171 0.1473  0.0701
Rate 0.3683  0.5180 0.5678 0.5596 0.5356
|E, — EMA| 0.7071  0.4871  0.3245 0.2171 0.1472 0.0698
Rate 0.5377  0.5860 0.5799 0.5606 0.5382
g — N 0.1124  0.0263  0.0027 0.0001 - - - -
Ey/ug 0.6854  0.6234  0.5813 0.5543 0.5368 0.5175
BEint g/ E, 0.4591  0.6042  0.7204 0.8042 0.8628 0.9323
Exing/Eqg 0.5409  0.3958  0.2796 0.1958 0.1372 0.0677

From Table 1 and Figure 1a, we can draw the following conclusions:

(1) The matched asymptotic approximation converges to the ground
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state, when 87 — oo, with the convergence rate

max gy — ¢4 = O(e V%), [lgg — ¢y M2 = O(e V), B> 1.

(2) The asymptotic approximations (B.19)-(3.23) are confirmed. Fur-

thermore our numerical results suggest the following convergence rate

Ekimg = Eﬂﬂég + 0(1/ V ﬁl)) Eint,g = Eil\r/lltég + 0(1/ \% 61)7
Ey = By + O(1/v/B1), g = iy +0(e™V0/2), g > 1.

(3) Boundary layers are observed at x = 0 and = = 1 in the ground state
when 1 > 1 and the width of the layers is about 2/4/8;. Here the width
of the layer is measured numerically from the wave function changing from
0 to 0.7.

3.4. Approximate excited states in 1D

Similar as the procedure used in the previous subsection for ground
state, here we construct matched asymptotic approximations for the excited
states in 1D in the semiclassical regime. In fact, when 8y > 1, the kth
(k € N) excited state has two boundary layers located at z = 0 and x =1
and k interior layers located at = = j/(k +1) (j = 1,...,k). Using the
matched asymptotic method, we can obtain an approximation (;SkMA(a;) for
the kth excited states ¢ (kK € N) as:

MA [[(k+1)/2] 9
ou(w) = @) = [ L > e <\/u£“ (—k—j1)>

[k/2]

27 +1
—I-]Z:;)tanh <\/'ukm<k‘—|—1 —:p>> — Cj tanh <\/,uk,m>], keN, (3.24)

where [7] takes the integer part of the real number 7 and the constant Cj, is

chosen as

1, Kk even,
C’“‘{o, k odd, nen.

Substituting (3.24]) into (2.22)), after some computations (see Appendix A2),
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we obtain
MA
2(k +1
1—/ VA2 o o PE | - HEED ] (3.25)
b1 A

Solving (B.25]), we obtain an approximation for the chemical potential of the
kth excited state

e = A = B+ 20k + 1)V/Bi+ (k+1)2+2(k+1)%, keN. (3.26)

Plugging (3:24) into [2I7)-(218)), after some computations (see Appendix
A2), we get

Bying ~ By, = g (k+1Dv/B1 + (k+ 1) +2(k + 1)%, (3.27)
By ~ EMA = 51 k+1\/m keN, 1 >1, (3.28)
Ep ~ EMA = ﬁl k+1 WP+ (k+1)2 +2(k+ 1) (3.29)
From (326)-329) and B.I19)-322]), we can formally draw the following

conclusion when £; > 1:

If all the eigenfunctions, i.e. ¢4, 1, P2, -- -, of the nonlinear eigenvalue
problem (2.23)) are ranked according to their energies, then the corresponding
eigenvalues (or chemical potentials) are ranked in the same order, i.e.

B(dy) < E(d1) < B(d2) < - = nldy) < plé1) < j(ds) < -+ .
(3.30)
This suggests that the two definitions of the ground state used in physics
literatures, i.e. (1) minimizer of the minimization problem (2.24)), (2) eigen-
function of the nonlinear eigenvalue problem (2.20) with smallest eigenvalue,
are equivalent. Furthermore, we have

E FE 1
lim =% =1, lim & =1, lim % =~ (3.31)
B1—o0 Eg B1—00 ,ug B1—00 /Lg 2
Eing . Bungk
1 — =1 1 —~ =0 k € N. 3.32
B1—00 Ek ’ Bllinoo Ek ’ < ( )

Again, to verify the results (3.24]),([3:26))- (3.32)) numerically, Tables 2 and
3 list the errors between the 1st and 5th excited states and their matched
asymptotic approximations, respectively. Table 4 lists the energy and chem-
ical potential of the ground state and first five excited states for different
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(1. Furthermore, Figure 1b and ¢ shows the 1st and 5th excited states for

different 5.

Table 2. Convergence study of the matched asymptotic approximation for

the 1st excited state with 1D box potential when 57 > 1.

1/51 1/25 1/50 1/100  1/400 1/1600 1/6400
max ¢ — oY1 6.44E-3 T7.12E-4 3.54E-5 - - - - -

|¢p1 — M4 2 5.28B-3 6.02E-4 2.99E-5 - - - - -

|Buing — Epayl 52073 3.7918 25854 1.1783  0.5597  0.2700
Rate 0.4577  0.5525  0.5668 0.5370  0.5258
|Biney — BNyl 23788 18432 1.2874  0.5894  0.2804  0.1367
Rate 0.3680  0.5178 0.5636 0.5359 0.5182
|E) — EMA 2.8285  1.9487  1.2981 0.5890 0.2794 0.1333
Rate 0.5375  0.5861 0.5700 0.5380 0.5338
1 — 0.4496  0.1055  0.0106  0.0003  — - -—

Er/m 0.6854  0.6241  0.5813 0.5368 0.5175 0.5085
Bt 1/E1 0.4591  0.6042  0.7204 0.8628 0.9323  0.9664
Exin1/E1 0.5409  0.3958  0.2796 0.1372 0.0677 0.0336

Table 3. Convergence study of the matched asymptotic approximation for

the 5th excited state with 1D box potential when 1 > 1.

1/61 1/50  1/100 1/400 1/1600 1/6400 1/12800
max |¢s — o2 0.1451 0.0437 0.0011  — - - - - -

l¢s — 32 0.1072  0.0337 0.0009 - -— - -

| Exins — Epins|  68.955  60.445 36.230 16.711  7.7560  5.3607
Rate 0.1900 0.3692 0.5582  0.5537  0.5329
|Bints — Byl 25.409  24.679  17.477 83534  3.8300  2.6840
Rate 0.0421 0.2489 0.5325 0.5532  0.5317
|E5 — EMA| 43.546 35.766 18.754 8.3580 3.8760  2.6766
Rate 0.2840 0.4657 0.5830 0.5543  0.5342
s — pdtA| 18.137 11.087 1.2770 0.0046  0.0040 - -

Es/us 0.8541 0.7772 0.6325 0.5581 0.5269  0.5186
Bt 5/Es 0.1708 0.2867 0.5811 0.7919 0.8977  0.9281
Fxins/Es 0.8292 0.7133 0.4189 0.2081 0.1023  0.0719
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i) 0.2 0.4 0.6 0.8 1

() &

Figure 1. Ground and excited states with 1D box potential for increas-
ing (1 (in the order of decreasing peak). a). Ground state for 1 =
0,6.25,25, 100, 400, 6400; b). 1st excited state for 51 = 0,25, 100, 400, 6400;
c). bth excited state for 51 = 0,400, 1600, 12800.

From Tables 2, 3 and 4 and Figure 1b and ¢, we can draw the following

conclusions for the excited states:

(1) The conclusions (1) and (2) for the ground state in the previous

subsection are still valid for the excited states.

(2) Boundary layers at = 0 and z = 1 and interior layers at = =
j/(k+1) (j =1,...,k) are observed in the kth excited state when 1 > 1.
The width of the boundary layers is about 2/4/B; and that of the interior
layers is about 4/+/B.

(3) The conclusions B.31), (3:32)) and ([B.30) are confirmed by our nu-
merical results. In fact, ([8:30) is valid for all g; > 0.
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Furthermore, a by-product observation from our numerical simulation
is that the CNGF and its BEFD discretization [6] can be used to compute
ground and all excited states in box potential provided appropriate initial
data is chosen. To compute the ground state, one can choose the initial
data as ¢o(z) = v/2sin(rz), and for computing the kth excited state, one
can choose initial data as ¢g(z) = v/2sin((k + 1)7z). The reason that the
algorithm can be used to compute any excited state is due to that the roots
of any fixed kth excited state are independent of ;. Extension of this
observation to high dimension is straightforward by tensor product.

Table 4. Energy and chemical potential for the ground state and first five
excited states with 1D box potential.

B1 0 25 100 400 1600 6400 25600
E, 49348 21.623 65.547 228.77 855.38 3308.7 13015
By 19739 37.689 86.493 262.19 915.08 3421.5 13235
Ey 44413 62.765 114.45 300.98 979.42 3538.7 13458
E3 78956 97.473 150.76 345.97 1048.8 3660.3 13686
By 12337 141.97 196.17 397.99 11235 3786.6 13917
Es 177.65 196.30 251.06 457.80 1203.9 3917.7 14153
pg  4.9348  37.201 122.10 442.05 1682.0 6562.0 25922
p1 o 19739 54.990 148.80 488.40 1768.2 6728.1 26248
ne 44413 80.758 180.96 539.34 1858.7 6898.3 26578
p3  78.956  151.77 219.96 595.21 1953.6 7072.8 26912
wa 12337 160.42 267.06 656.48 2053.1 7251.6 27251
ws 177.65 214.83 323.03 723.84 21574 T7434.7 27593

3.5. Extension to high dimensions

In this subsection, we extend the matched asymptotic approximation for
the 1D ground state to high dimensions, i.e d-dimensions (d > 1). Similar
to the 1D case, we can get the approximation for the ground state in d-

dimensions with x = (21, ...,z4)’:

MAd

bg(x) = d) H [tanh (F@)
+tanh (\/@(1—%)) _tanh <\/ugm) ] . (3.33)
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Plugging (3.33)) into (2.22]) and after a simple computation, we obtain
MA 9

1= MA (x)|2dx ~ Ho 1-—
/(0,1)d 19570 Ba ( e

)d. (3.34)

Solving (8.34]), we get an approximation for the chemical potential when
Ba > 1,

= By+2d\/Ba+d2—d)+2d, d>1. (3.35)

Similarly, we can get approximations for different energies of the ground

state:
Eing ~ By = 2—d ,Bd +d(2—d)+ %d (d+2), (3.36)
Bint,g ~ BNy = ﬂd W+ ~d(1— d>1, (3.37)
Eng;VIA_/Bd 4d\/,8d+T+ gd(d+5). (3.38)

4. Approximations in Nonuniform Potentials

In this section, we will find the energy and chemical potential asymp-
totics up to o(1) in term of B3 in BEC with a nonuniform external potential,
ie. Vy(x) # 0 and Q = R? in (Z20), in the semiclassical regime. When
Ba > 1, we can ignore the kinetic term in ([2.20]) and derive the TF approx-

imation:

Byt byt (x) = Va(x)dy" (%) + Baldy" ()" (x),  xeRL (41

Solving (4.]), we obtain the TF approximation for the ground state:

TF (x) = { \/(NEF —Va(x)) /Ba,  Va(x) < pgt, (42)

g .
0, otherwise,

where ,ugF is determined from the normalization condition

g2 o= [ 163F GO dx = 1. (13)

Due to the fact QS;FF(X) is not differentiable at Vy(x) = ,u;FF, as observed in
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[8, 11, 12], E(¢4F) = 0o and Exin(4a") = oo, one cannot use the definition

(216) and (Z.I]) to define the energy and kinetic energy of the TF approx-

imation (Z2]) respectively. Noticing ([2.23]) and (ZI8]), as proposed in [8, 11,
12], here we use the following way to calculate them:

E,T ~ By = E(¢y) = i(dg) — Emi(dg) = p1g" — Eing g, (4.4)
E}?i‘fl‘,g ~ Ekin,g = E(qbg) - Eint(¢g) - EPOt(¢9) ~ EgTF_Eglf:g_EgoFt,gv (45)
where

Eintg = Bue(dg"): Epotg = Epot(dy ).

4.1. Approximation in a harmonic oscillator potential

For 1D BEC with a harmonic oscillator potential, we choose d = 1 and

Vi(z) = 7222 /2 with v, > 0 in (&2). Then plugging ([#2) into (&3], after a
detailed computation (see Appendix B1), we obtain

TF)3/2

') 9 m
1:/ |¢3F‘2 dm:g(gi

— ﬁl/yz (46)

Solving (4.€]), we obtain the chemical potential asymptotics when (1 > 1

1 (3617,
Ng“NgTFzg <%> : (4.7)

Substituting ([2) in this case into (ZIT), after some computations (see
Appendix B1), we obtain

1 3 - 2/3 1 3 - 2/3
Eint7g%E~TF :—< ’B’Y> , Ep0t7ngTF ——< 57) , (4.8)

A PobE 10\ 2
E,~ EIF = 1—30 <3ﬁ2 7”5)2{3 Eing ~ ELE = 0. (4.9)
From (4.7), (£8]) and (4.9), we obtain
lim B _3 lim Bintg _ 2 lim Epotg _ 1 (4.10)

,31—)00 /Lg 57 ,31—)00 Eg 37 ,31—)00 Eg 3

To verify the TF approximation (4.2]) in this case and (£7))-(@I0) numeri-
cally, Table 5 lists the errors between the ground state and its TF approx-
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imation, and Table 6 lists the energy and chemical potential of the ground
and first excited states. Furthermore, Figure 2 shows the ground and first

excited states for different (.

0.8
0.7]
0.6

~—~ 0.5
8

~

R
< 0.4
0.3]
0.2

0.1

0
-16 -12 -8 -4 0 4 8 12 16
T

Figure 2. Ground (left) and first excited (right) states with 1D harmonic
oscillator potential Vi(z) = x2/2 for ;1 = 0,6.25,25,100,400,1600 (in the

order of decreasing peaks).

From Tables 5 and 6 and Figure 2, we can draw the following conclusions:

(1). The TF approximation converges to the ground state, when 8; —

oo, with the convergence rate 6; = 2/5
In S In £y
max ¢y — g | =O< & ) lbg — ¢ llz2 = O <—9)
1 1

(2) The TF approximation (£2]) in this case and (£7)-(4.I0]) are con-
firmed. Furthermore our numerical results suggest the following convergence
rate 6 = 2/3

In 51 In ,81
Ekimg =0 <—62) ) Eint,g = EE]EQ +0 <W )
1 1

In In
EpOt,g:Eg()Ft7g+O<—ﬁ£1) s Eg:EgF+O<ﬁ£1) ;
1 1

In
:ug:MgTF_‘_O( £1>7 ﬁ1>>1
1
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(3) Interior layer is observed at z = 0 in the first excited state when

B1 > 1 and the width of the layer is about O(l/ﬁll/g).

(4) The energy and chemical potential of the ground and first excited

states are in the same order for any 57 > 0, i.e.

E(¢g) < E(¢1) = ul(og) < p(o1).

Table 5. Convergence study for the TF approximation with 1D harmonic

oscillator potential Vi (z) = z%/2.

1/61 1/100  1/200  1/400 1/800 1/1600 1/6400
max [¢g — 57| 0.0788  0.0605 0.0464 0.0355 0.0272  0.0159
Rate 0.3807 0.3836 0.3840 0.3852  0.3872
log — g Iz 0.0571 0.04230 0.0312 0.0230 0.0170  0.0092
Rate 0.4350  0.4371 0.4389 0.4404  0.4427
|Epot.g — Epor gl 0.0246  0.0171  0.0118 0.0080 0.0054  0.0023
Rate 0.5238  0.5383 0.5528 0.5687  0.6196
|Bintg — B, 0.0204 00144 0.0101 0.0070 0.0047  0.0021
Rate 0.4980 0.5167 0.5348 0.5531  0.6051
Exing — 0 0.0350  0.0245 0.0170 0.0117 0.0080  0.0037
Rate 0.5134 0.5267 0.5381 0.5478  0.5599
|E, — E;F| 0.0392 0.0272 0.0187 0.0128 0.0087  0.0039
Rate 0.5280  0.5394 0.5492 0.5582 0.5725
g — g ™| 0.0188  0.0128 0.0086 0.0058 0.0039  0.0019
Rate 0.5613  0.5651 0.5659 0.5638  0.5329
Ey/ug 0.6020  0.6009 0.6004 0.6002 0.6001  0.6000
Eint.g/ Ey 0.6612 0.6643 0.6656 0.6662 0.6665 0.6666
Epot.g/Ey 0.3347  0.3339  0.3336 0.3334 0.3334 0.3333

Table 6. Energy and chemical potential of the ground and first excited

states with 1D harmonic oscillator potential V;(x) = 22/2.

B1 0 25 100 400 1600 6400 25600
E, 0.5000 3.4402 8.5085 21.360 55.786 135.51 341.46
Ep 15000 4.2115 9.2419 22.078 54.497 136.22 342.17
tg 0.5000 5.6421 14.134 35.578 89.632 225.85 569.10
p1 o 1.5000 6.3732 14.850 36.288 90.340 226.56 569.80
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2. Approximation in a double-well potential

For 1D BEC with a double well potential, we choose d =1 and Vj(x) =

yi(x? — a?)?/2 with 4, > 0 and @ > 0, in (&2). Then plugging (A.2) into
([@3), after a detailed computation (see Appendix B2), we obtain

= [ as

4 TF |, 2.2 4.4
= 5. (6,ug + a0 /208 — 2a ’y$> \/ 208 + a2 (4.11)

Solving (.11]), we get the TF approximation for the chemical potential

Ta'yy

= (4.12)

2 2
a
py = ¥ = S(508192)° — T2 (50832)1 +

Plugging(4.2]) in this case into ([2.17]), after some computations (see Appendix
B2), we get

2/5 1 5
Eint7g ~ EmFg = (50/82 2) / (50/82 2) / (413)
2/5 a7 15 Tatyl
Epotg ~ ETE = (50ﬁ2 2%/ 11 (508242)"° + 1—;’ (4.14)
b 2/5 9D 15 Tatyl
E ~ ETF 2 2 2 2 2 X 41
) =0 (50,8 D)= 50t (508) U+ gt (415)
Fing ~ ELE = 0. (4.16)
From (£12), (£13), (£14) and (£I5), we obtain
E Em 4 . E le} 1
im — = §7 lim b = ) lim —2%9 o -. (417)
B1—00 [hg 9 B1—00 Eg 5 B1—00 Eg 5

To verify ([4.2) in this case and (£12])-(@.I7) numerically, Table 7 lists
the errors between the ground state and its TF approximation and Table 8
lists the energy and chemical potential of the ground and first excited states
when we choose d = 1 and Vi(z) = (2% — 3%)2/2 in 220). Furthermore,
Figure 3 shows the ground and first excited state for different f;.

From Tables 7 and 8 and Figure 3, the conclusions (1)-(4) in §4.1 are

still valid except that we need to replace 61, 63 by 61 = 2/5, 65 = 2/5 and
the width of the interior layers by O(1/ ﬁz/ 5).
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Figure 3. Ground (left) and first excited (right) states with a type I double-
well potential V;(x) = (22 — 32)/2 for B; = 0,12.5,50, 200, 800, 6400 (in the

order of decreasing peaks).

Table 7. Convergence study of the TF approximation with a type I double-

well potential Vi (z) = (2% — 32)2/2.

1/B: 1/100 1/400 1/1600 1/6400 1/25600 1/51200
max|gy — ¢iF| 01260 0.0915 0.0634 0.0420 0.0286  0.0233
Rate 0.2312 0.2638 0.2824  0.2921  0.2950
by — &1z 0.2238 0.0495 0.0254 0.0149  0.0087  0.0066
Rate 1.0888 0.4806 0.3865 0.3892  0.3958
[Bopotg — Eoh | 18824 87812 4.0019 2.0167 L0758  0.7963
Rate 0.5500 0.5669 0.4943  0.4533  0.4340
|Bintg — Bof,| 60436 3.1554 13080 0.6176 0.3157  0.2303
Rate 0.4688 0.6347 0.5418  0.4841  0.4550
FEiing — 0 0.3982 0.1460 0.0854 0.0565 0.0376  0.0306
Rate 0.7238 0.3868 0.2980  0.2938  0.2972
|E, — EXF| 12.382 54797 26076 1.3426 0.7225  0.5355
Rate 0.5880 0.5357 0.4788  0.4470  0.4321
g — 2" 6.3386 23244 1.2986 0.7249 04067  0.3051
Rate 0.7237 0.4180 0.4206 04169  0.4147
E, /g 0.6212 0.6182 0.5671 0.5482 0.5465  0.5476
Eintg/E, 0.6099 0.6175 0.7632 0.8240 0.8297  0.8263
Epot.g/E, 0.3674 0.3789 0.2359 0.1758  0.1703  0.1737
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Table 8. Energy and chemical potential of the ground and first excited
states with a type I double-well potential V;(z) = (2% — 3%)2/2.

B1 0 25 100 400 1600 3200 25600
E, 29716 7.8639 17.555 40.357 105.56 320.41 1011.3
By 29716 7.8639 17.555 40.790 107.05 323.06 1015.3
g 29716 11.990 28.261 65.277 186.14 584.43 1850.4
w1 29716 11.990 28.261 66.396 188.42 587.99 1855.5

Remark 4.1. In physics literatures [16, 30], another type double well
potential, i.e. d =1 and Vj(x) = v2(|z| — a)?/2 with 7, > 0 and a > 0 in
([212)) is also used. Similarly, for this case, we have

1 (3687 \**  av (3613 \"* 3
By & pgt = B <Tx> - Tm — - + §a2’7§, (4.18)
B ~ptF L (3000w (310" (4.19)
int,g int,g 5 9 3 B s .
1 /3817 \"?  ave (3B17.\"> 3
Epot,g = EpT(ig =10 < ;%> - % ;% + ga%g, (4.20)
3 3 2/3 3 3 1/3 3
Exing ~ Eggy, 4 =0, (4.22)
E, 3 E, 2 E 1
9 -2 lim —=bg — 2 lim —2%9 — = (4.23)

Blli)noo /L_g 5 ’ ,81—)00 Eg 3 ’ ,81—)00 Eg 3

4.3. Approximation in an optical lattice potential

For 1D BEC with an optical lattice potential, we choose d = 1 and

Vi(x) = 7222 /2 + kg sin®(g,x) in (@2). Then plugging (A2 into (@3], after
some computations (see Appendix B3), we obtain

_ [T tF .. B
1= /_Oo 69" (@) da 7 25— (2/ g% = ko f2u07) . (429)

Solving (4.24]), we get

136\ ki
#QQMTF:§< ”) + =2, (4.25)

g 2 2
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Substituting ([.2) in this case into (ZI7), after some computations (see
Appendix B3), we obtain

1/3 2/3 1 /3 213
Eint7g%E£tF79:5< 5;”) , Epot,ngg(i’gzl—()( 5;“) +7‘”, (4.26)

3 (3617 \ 7 ks
~ TF _
B, ~ ! _1_0< . ) v

Exing ~ Egy, 4 = 0. (4.27)

From (£25)), (£26) and (£27), we obtain

ﬁ}iinoo f_j - g’ ﬁ}i—r>noo E%;g - g’ ﬁ}iinoo EPE—O;g - % (4.28)

To verify (4.2]) in this case and (£.25])-(4.28]) numerically, Table 9 lists the

errors between the ground state and its TF approximation and Table 10 lists

the energy and chemical potential of the ground and first excited states when

we choose d = 1 and V;(z) =2%/2 + 25sin?(7x/4) in [220). Furthermore,
Figure 4 shows the ground and first excited states for different ;.

0.4
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4 0.3
~ 0.8 ~0.25 —_ 0-2
: 0 0
> = 0.2 0.
$0.6 $ S0.15
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Figure 4. Ground (upper row) and first excited (lower row) states with
an optical lattice potential Vi (z) = 2%/2 + 25sin?(nz/4) for: 81 = 0 (left
column), f; = 400 (middle column) and 3; = 1600 (right column).
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Table 9. Convergence study of the TF approximation with an optical lattice
potential V; (z) = 22/2 + 25sin?(rx/4).

/6 1/100 17400 1/1600 1/3200 1/25600
max [¢g — ¢yt | 0.3963 0.1544  0.0699 0.0366  0.0190
Rate 0.6800 0.5717 0.9334  0.3647
log — g Iz 0.8257 03471 0.1569  0.0952  0.0313
Rate 0.6251 0.5728 0.7208  0.5305
|Epotg — Epor gl 58815 22310 0.7943  0.3403  0.0857
Rate 1.1282  0.3160 1.2229  0.5203
|Bintg — Bty 1.8585 0.6681 0.1102  0.0638  0.0282
Rate 0.7380 1.3000 0.7885  0.8623
Bxing — 0 0.2928 0.0727 0.0193 0.0103  0.0022
Rate 1.0049 0.9567 0.9060  0.7357
|E, — E;F| 3.7301 1.4902 0.6648 0.3936  0.1117
Rate 0.6619 0.5823 0.7562  0.6188
g — g™ | 1.8716 0.8222 0.5547 0.4571  0.1400
Rate 0.6340 0.5934 0.5678  0.1793
Ey/pg 0.6967 0.6847 0.6460 0.6316  0.6086
Eint g/ Ey 0.4353 0.4604 0.5481 0.5832  0.6433
Epot.g/Ey 0.5477 0.5373 0.4516 0.4167  0.3567

Table 10. Energy and chemical potential of the ground and first excited
states with an optical lattice potential V;(x) = 22/2 + 25sin?(rz/4).

B1 0 25 100 400 1600 6400 25600
E, 27447 9.7896 17.239 32.351 65.612 147.75 353.85
By 80708 12.382 18.884 33.438 66.468 148.51 354.58
fg 2.7447 13.595 24.744 47247 101.57 237.99 581.46
p1 80708 15.192 25.868 48.041 102.34 238.72 582.18

From Tables 9 and 10 and Figure 4, the conclusions (1)-(4) in §4.1 are
still valid except that we need to replace 61, 03 by 61 = 2/5, 6, = 2/3 and
the width of the interior layers by O(1/ ﬁ% / 3)

4.4. Extension to general case

In d-dimensions with a general potential, e.g. Vj(x) chosen as in ([2.25]),
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plugging ([42]) into (3], after some computations (see Appendix B4), we
obtain
(2M;1‘F)(a+d)/a

256[ H;’lzl ’Yl‘j

where C, 4 is given in (B.II). Solving (£29)), we get

J o/(a-+d)
TF _ 1 (2@1 [T 'ij>

1= /d g+ (x)[Pdx ~ Cods (4.29)
R

= 4.

Plugging (£.2) into (2.1I7), after some computations (see Appendix B4), we
get

a/(a+d)
gy ~ BIF — Daa (208 o1, 431
int,g ~ Hint,g — 4Ca7d Oa7d ’ ( . )
d a/(a+d)
pot,g ~ “pot,g — 2Ca,d Ca,d ) ( . )
/(a+d)
G 284 1oy 7y \
By~ ByF = 15 < L L)L Gaa =200 - Dag. (439
a, Q,
where D, 4 is given in (B.I3). From {30), @3I), (A32) and 33), we
obtain
m ﬂ = M lim % = Da,d lim Lpot,g _ 2(Ca,d - Da,d)
Ba—00 g 2Co¢,d7 Ba—oo  Ey Ga,d7 Ba—roo  Ey Ga,a

5. Conclusion

We presented asymptotic approximations up to o(1) in term of the scaled
interacting parameter By for the energy and chemical potential, as well as
their ratio, of the ground state in Bose-Einstein condensates in the semiclas-
sical regime with several typical trapping potentials. For a uniform box po-
tential, the approximations were obtained by a matched asymptotic method;
while for nonuniform potentials, e.g. harmonic oscillator, double well and
optical lattice potentials, they were derived from the TF approximation.
These asymptotic approximations were confirmed by our extensive numeri-
cal results.
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Furthermore, based on our asymptotic and extensive numerical studies
for the nonlinear eigenvalue problem (2.20))-([2.22]) with 5; > 0, 2 is bounded
(or §2 is unbounded but limy|_, Va(x) = o0), we can draw the following
conjectures:

(i) It admits infinitely many eigenfunctions which are linearly independent.

(ii) If all the eigenfunctions are ranked according to their energies, ¢4, ¢1,
-+ -, then the corresponding eigenvalues (or chemical potentials) are in
the same order, i.e.

E(¢g) < E(¢1) S B(g2) <--- = p(dy) < plé1) < pulg2) < - .

(iii)) When B4 — oo, the ratios between energy and chemical potential are
constants, i.e.

E(¢y)
Ba—ro0 N(¢g)

E(¢x) o p(or)

= const, Bignoo Bo,) =1, Bili)noo () =1, keN.

(iv) When Q is bounded, in the semiclassical regime, i.e. 84 > 1, boundary
layers with width O(1/1/4) are observed at 92 in both the ground and
excited states, and interior layers with width O(1/y/B,) are observed in
the excited states. When = R? and V/(x) is chosen as (Z25), interior
layers with width O(1/ ﬁéﬂa)/ 4(a+d)) are observed in the excited states.

(v) For box potentials, the CNGF and its BEFD discretization, proposed
in [6], can be directly applied to compute the ground and all excited

states provided appropriate initial data is chosen; for nonuniform even
potentials, it can only be directly applied to compute the ground and
first excited states provided that the initial data is chosen as even and
odd functions respectively.

Appendix A. Computations for 1D box potential in §3

A.1. For ground state in §3.3

Plugging (317 into ([2.22]), we obtain

1
1= [ AP do

= NgilA [/1tanh2 <\/,ugma:) dxr + /1 tanh? <\/,ugm(1 - :1:)) dz
0 0
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ey (ltanh<m> oy )

here we use e~ ~ 0 when « > 1. Similarly, plugging (8I7) into (2.17]), we

obtain

Ewg - BN =5 [ [l @)
- SR o ) e ()

O [ (o )+sech4 (im0 o)

ot () sec? ]

- 5 [ (e <r> s (7)o )
s e ) e P )

34/ uitA
ooy

T3 B1

d:n

(A.2)
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Thus (B3:20) is a combination of (A.2) and ([B19). Furthermore, (3:2I) and
B22) can be derived from (B19), (320) and B.1]) with ¢ = gbg/IA.

A.2. For excited states in §3.4

Plugging (3.24)) into (2.22)), we obtain

1

1= / YA ()2 da
0

A { [(k+1)/2] 9 [k/2] 9

> F>Z<r>

/61
k+1)/2] [(k+1)/2 .

Q

S k+1
{(k+1>/2] r , [k/2) ,
2[2(j—s)—1] 2[2(s—j)+1]
S {— o3 [t
]:0 L s=0 S:]+1
[(k+1)/2] [k/2] .
j 2(2j+1)
+CF—2C, | > <1——>+Z[—1+7]
= k+1 = k+1
/2] [k/2] )
2y 3 - %))
7=0 s=j+1
MA
Mg B 2(k+1)
~ (1 ) (A.3)

\

Similarly, plugging ([3.24)) into (2.I7)), we obtain

Ekmk: = Fkin ¢ / | MA |2 dx
MA)2 [(k+1)/2]
B (™) 2 MA (2%
- /0 S s (i (= 225

[k/2]

St (i (35 -0))] o

k+1)/2 k/2
_ (N%Af [( iz)/} 4 +[ /2] 4
261 A

=0 3y /A =03
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2(k + 1)t ™ a4)
361 ' '

Thus [3:27) is a combination of (A4]) and ([B:26). Furthermore, (:28]) and
[3:29) can be derived from (3.26), (.27) and (B.I) with ¢ = ¢}14.

Appendix B. Computations for nonuniform potentials in §4

B.1. For 1D harmonic oscillator potential in §4.1

Plugging (£2) with d = 1 and Vj(z) = 722%/2 into ([&3) and using
V2

TF .
~ ¢ ¢, we obtain

=

change of variable z =

00 TF _ 1 22
1 = / |(;5;FF(:L’)‘2 dr :/ :ug 2 Vz dx
—00 Y22 <2uTF B

QMTF 1 ) TF\3/2
—1

B17Ve 3 P17

Similarly, plugging (4.2)) with the setup into (2.I7]), we obtain

TF _ 1.2.2\ 2 TF\5/2
— =vix 4 (2
ETF - /81/ Hg 2z do — (Ng ) . (B2
7 Y22 <2uf¥

2 B1 15 Bive
2.2(, TF 1.2 2 TF\5/2
pot.g V%IQS2MEF 2/81 15 /Blf}/:c

Thus (A8) is a combination of (A7) and (B.33). Furthermore, (LJ) is a
combination of ([A.8]), (44]) and (L5]).

B.2. For 1D double well potential in §4.2

Plugging (&2)) with d = 1 and Vi(z) = vi(2? — @?)?/2 into (@3] and

using change of variable x = % a?y2 + /2ulF't, we obtain

00 TF 1.4 (.2 . 2\2
1= [ P | by —a o d) )
—00 wﬁ(xz—a2)2§2u;rF B
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1 1 2
=3 a?y2 + -3 (( 2,ugF+a273) t2—a27§) ] dt
1Yz

4 TF 2.2 F 4_4 F
— 550, (6,ug +a v /20T — 2a yx) a?y2 +4/2pgF. (B.4)

Similarly, plugging (£2) with the setup into (2I7)) and using change of

variable, we get

TF _ 1.4(,2  2\2\ 2
int,g 2 V%(x2_a2)2S2MgF /B].

1 [64 0 qp2 704 4, 3128 4 4 1p
8517z [45 (ug") = 51507 (V25" + gt (2i”)

1024 472
e a®ySy/2uTF + %a&yﬁ] a?y2 + 4/ 2pdt. (B.5)
2
w, - | @ @) (g — i (= a?)’)
= X
pot,g 7;1(%2—&2)2 S2H;FF 251
1 4 TR\2 _ 44 5 o 58 4 a(y TF
=~ B [E (i) = gtz (V2 + gpetas ()
64 128
—I——315a672 QMQTF——315a87§] a?y2 + \/2uF. (B.6)

Thus (£I3)) is a combination of (£12)) and (B.5), and (£I4)) is a combination
of (412) and (B.6). Furthermore, combining (L13), [EI12), (£I14), (£4) and
(&5), we get (4I5) and (4.I16) immediately.

B.3. For 1D optical lattice potential in §4.3

Plugging (42 with d = 1 and V;(z) = 722%/2 + k, sin?(g,z) into (@3,
we get

oo

1 = / |<;S;FF(:E)\2 dx

—00

1 TF 1 2,2 102
_ (= k d
081 /1%%:22_,’_]% sz(qzw)g;ngF [Ng <2’7z517 + Ry sin (qxx) x

2
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1 1
N o— / pX¥ — (24222 + ky sin®(gu)
A1 Y22 <2ulTr I 2

Lo V25", ZMQTF 1 . . G /Z,ugTF
S / pd® = |l 4 hpsin? (Y —t) ) | a
-1

61 Vax Vax

~ wi% [2/(@FF) — o 20T (B.7)

Similarly, substituting (4.2]) with the setup into (2ZI7), we obtain

dx

1 1 . 2
ng,g = !—/ [,ugF — <—7§:1:2 + k, smz(qmw))] dx
281 J 19202 4k, sin? (qow) <pF 2

1 TF L o5 o .2 ?
YR B Y kx T d
2/8]_ /y%x2<2MgF |::u'g (2 ’Yx‘x + Sin (q .T) X
1 1 5k 3 3k2 k2
_ 2 (/o TF) __w< /o TF) Oz FaVa ) [y TF
4517 [30 ( Hg W) Tl ~ g Hg
2 4y, /2pTF 3 2 2qz+/2uTF
kzve . ( \ “Hg > N (kﬂm B /‘Cﬂw) sin <7g> (B.8)

Q

+ sin
84 Yz A4z dx

Y

ETF  _ / (V22?4 2k, sin? (¢, ) (M;F—(%’yﬁxz—l—kx sin2(qxa:)))d$
potg Vi (2) <pIF 26
L[ i) O i)
222 <2TF 25

1 5
~ TF TF 2
~ S (4 (,/2% ) + 10k, (211, )+45l<:x>. (B.9)

Thus (£.20) is a combination of (£25]), (B.9) and (B.8). Furthermore, com-
bining (£26]), (4.25)), (A4) and (£5]), we get ([4.27)) immediately.

B4. For general potential in §4.4

Plugging ([4.2)) into (£3]) and using change of variables, we obtain

TF
-V

- / |61 () 2dx = / Hy' —Va(x)

RY Va(x)<pTF Ba

TF TF d a |
/ I —VO(X)dX:/ Py —2j=1 7,17l dx
VO (X)S/J' Z?:l Yz

e Pa o loslo <2uf Ba

Q
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2, TF\(a+d)/a
= % Ca,da (BlO)
284 Hj:l Va;

where

d
Cod = / (1 9 |xj|a) dx. (B.11)
S5 sl <1 ;
Similarly, plugging (£.2]) into ([2.I7)), we obtain

TF _ Vv 2
R AAC R 264

TF _ 2 TF (20-+d) /o
% 2
N / g” —VoI® , _ (ng )d Do (B.12)
S e lagld<zur 2P 864 [15=1 Ve,
where
d 2
Dyg4= / 1—-2% |z;]*) dx. (B.13)
Z?:1 lzj]><1 ( ]z:; >

TF _ Vv TF—V
BT = / Vit =V e / Vo) o0
Va(x) <pIF Ba Vo(x)<plF Ba

(2Iu”g[‘F)(2a+d)/a / Zd:| | zd:| |
T il (32 0) (123 )t
4034 Hj:l Va; POLIRREILES] j=1 =1
(2MTF)(2a+d)/a
= B T i D). (B.14)
Thus ({31 is a combination of ([#30) and (B.I2), (£32) is a combination
of ([£30) and (BI4). Furthermore, combining ({3T)), ([E30), [@4), we get

(A33) immediately.
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