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Abstract

In the present paper we give a theoretical background of

the Stochastic Weighted Particle Method (SWPM) for the classical

Boltzmann equation. This numerical method was developed for

problems with big deviation in magnitude of values of interest.

We describe the corresponding algorithms, give a brief summary

of the convergence theory and illustrate the new possibilities on

hand of numerical tests.

1. Introduction

The object of our considerations is the classical Boltzmann equation for

a monoatomic, dilute gas

∂

∂t
f + (v, gradxf) = Q(f, f) (1)

which describes the time evolution of the particle density

f = f(t, x, v) : R+ × Ω× R
3 → R+.

Here R+ denotes the set of non-negative real numbers and Ω ⊂ R
3 is a

domain in physical space. The right-hand side of the equation (1), known

as the collision integral or the collision term, is of the form

Q(f, f)(v) =

∫

R3

∫

S2

B(v,w, e)
(

f(v′)f(w′)− f(v)f(w)
)

de dw. (2)
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Note that Q(f, f) depends on t and x only as parameters, so we have omitted

this dependence and written (2) in order not to overload the formulae. The

following notations have been used in (2): v,w ∈ R
3 are the pre-collision

velocities, e ∈ S2 ⊂ R
3 is a unit vector, v′, w′ ∈ R

3 are the post-collision

velocities and B(v,w, e) is the collision kernel. The operator Q(f, f) rep-

resents the change of the distribution function f(t, x, v) due to the binary

collisions between particles. A single collision results in the change of the

velocities of the colliding partners

v,w → v′, w′. (3)

The collision transformation (3) conserves the momentum and the energy

v + w = v′ + w′, |v|2 + |w|2 = |v′|2 + |w′|2 (4)

and can be written in the following form

v′ =
1

2
(v + w + |u|e), w′ =

1

2
(v + w − |u|e), e ∈ S2, (5)

where u = v − w denotes the relative velocity of the colliding particles. We

will deal with the following classical models for the collision kernel B(v,w, e).

The particles of the hard spheres model are assumed to be the ideally elastic

balls. The corresponding collision kernel takes the form

B(v,w, e) =
1

4
√
2 πKn

|u| (6)

where Kn denotes the dimensionless Knudsen number. We will also consider

the collision kernel of the form

B(v,w, e) =
1

4π
(7)

which corresponds to the Maxwell molecules. The Boltzmann equation (1)

is subjected to an initial condition

f(0, x, v) = f0(x, v), x ∈ Ω, v ∈ R
3

and to the boundary conditions on Γ = ∂Ω. If the domain under considera-

tion is unbounded we have to pose an additional condition at infinity

f(t, x, v) → f∞(t, v) for |x| → ∞ . (8)
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In this paper we apply the Stochastic Weighted Particle Method (SWPM)

to the numerical solution of the Boltzmann equation (1). This method was

introduced in [10], where we presented first numerical results for the one-

dimensional heat exchange problem. The convergence of the method was

investigated in [11], where we were also able to show a drastic reduction of

the stochastic fluctuations using the SWPM for one model kinetic equation.

In [9] we presented a detailed study of different effects of the numerical

solution of this equation. The computation of the macroscopic quantities

in the regions with low particle density was of special interest. In [8] the

reduction of particles was investigated. The SWPM was applied to the

numerical solution of the spatially two-dimensional Boltzmann equation in

[12]. The main difference between the SWPM and other particle schemes

for the Boltzmann equation [1, 4, 7], is the idea of a random weight transfer

between particles during collisions.

The paper is organised as follows. In Section 2. we describe the SWPM

procedure, give two examples for the reduction of particles and formulate the

convergence theorem. Some numerical examples for spatially homogeneous

and for spatially two-dimensional Boltzmann equation will be presented in

Section 3. Finally we draw some conclusions.

2. Description of the SWPM

2.1. The algorithm

The main idea of all particle methods for the Boltzmann equation (1) is

an approximation of the sequence of measures

f(tk, x, v)dxdv, tk = k∆t, k = 0, 1, . . . , ∆t > 0,

by a sequence of point measures

µ(tk, dx, dv) =

n(tk)
∑

j=1

gj(tk)δ(xj(tk), vj(tk))
(dx, dv), k = 0, 1, . . . , (9)

defined by the families of particles

(

gj(tk), xj(tk), vj(tk)
)n(tk)

j=1
, k = 0, 1, . . . . (10)
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The behaviour of the system (10) can be described as follows. The first

step (k = 0) is an approximation of the initial measure f0(x, v)dxdv by

a system of particles (10) for t0 = 0. Usually, one uses constant weights

gj(0) = g, j = 1, . . . , n(0). Then the particles move according to their

velocities, i.e. xj(t) = xj(tk) + (t − tk)vj(tk), t ∈ [tk, tk+1]. If a particle

crosses the “outflow boundary” during this step then this particle will be

removed from the further simulation. The velocity of a particle changes

according to the boundary condition if this particle hits the “boundary of

the body”. Then the particle continues its motion with a new velocity for the

rest of the time interval. The weights of particles remain the same during

this “free flow step”. Through the “inflow boundary” new particles enter

the computational domain. The “collision step” can be described as follows.

First, all particles are sorted in the spatial cells Ωℓ, ℓ = 1, . . . , Nc. These

cells define a non-overlapping decomposition of the computational domain

Ω =

Nc
⋃

ℓ=1

Ωℓ.

In each cell Ωℓ, ℓ = 1, . . . , Nc, collisions of nℓ(tk) particles are simulated.

This is the most crucial part of the whole procedure. Here we also have the

main difference between the SWPM and other particle methods which use

constant weights. The collision simulation step in one spatial cell Ωℓ, ℓ =

1, . . . , Nc, corresponds to the mollified equation [3]

∂f

∂t
(t, x, v) =
∫

Ω

∫

R3

∫

S2

hℓ(x, y)B(v,w, e)
(

f(x, v′)f(y,w′)− f(x, v)f(y,w)
)

de dw dy,

where

hℓ(x, y) =
1

|Ωℓ|
χΩℓ

(x)χΩℓ
(y), (11)

is a spatial mollifier, |Ωℓ| denotes the volume of the cell Ωℓ and χΩℓ
(x) is the

indicator function of the set Ωℓ.

The stochastic process of the collisions is

Z(t) = {(gj(t), xj(t), vj(t)) , j = 1, . . . , n} , t ≥ tk. (12)
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Here we now use the local numbering of particles in the cell Ωℓ and denote

n = nℓ(tk). Let Z be the state space of the process (12), i.e. the union of

all possible particles systems of the form (10). The infinitesimal generator

of the process (12) is given by

A(Φ)(z) =

∫

Z

(

Φ(z̃)− Φ(z)
)

Q(z; dz̃) (13)

where Q denotes the transition measure

Q(z; dz̃) =
1

2

∑

1≤i 6=j≤n

∫

S2

δJ(z;i,j,e) q(z; i, j, e) de, (14)

Φ is a measurable function of the argument

z = ((g1, x1, v1), . . . , (gn, xn, vn))

and

(

J(z; i, j, e)
)

k
=



























(gk, xk, vk) , if k ≤ n, k 6= i, j,

(gi −G(z; i, j, e), xi , vi)) , if k = i,

(gj −G(z; i, j, e), xj , vj) , if k = j,

(G(z; i, j, e), xi , v
′
i) , if k = n+ 1,

(G(z; i, j, e), xj , v
′
j) , if k = n+ 2,

(15)

where v′i, v′j are defined as in (5). The function G(z; i, j, e) is called “weight

transfer function”. This function, the intensity kernel q(z; i, j, e) of the gen-

erator (13) and the collision kernel of the Boltzmann equation (1) are con-

nected via the basic relationship

q(z; i, j, e)G(z; i, j, e) = hℓ(xi, xj)B(vi, vj , e) gi gj (16)

which has been proved [9] to be sufficient for the convergence of the method.

The behaviour of the process (12) is as follows: The waiting time τ̂(z) be-

tween process jumps can be defined either as a random variable with the

distribution

Prob {τ̂(z) ≥ t} = exp(−π̂(z) t),

where

π̂(z) =
1

2

∑

1≤i 6=j≤n

q̂max(z; i, j) (17)
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and
∫

S2

q(z; i, j, e) de ≤ q̂max(z; i, j) (18)

or as a deterministic object by

τ̂(z) = π̂(z)−1. (19)

Then the collision partners (i.e. the indices i and j) must be chosen. The

distribution of the parameters i and j is determined by the probabilities

q̂max(z; i, j)
∑

1≤i 6=j≤n q̂max(z; i, j)
. (20)

For given i and j, the jump is fictitious with probability

1−
∫

S2 q(z; i, j, e) de

q̂max(z; i, j)
. (21)

Otherwise the process (12) jumps to a new state z̃ = J(z; i, j, e) as described

in (15). The distribution of the parameter e is

q(z; i, j, e)
∫

S2 q(z; i, j, e) de
. (22)

There is a degree of freedom in our method, namely an appropriate choice

of the weight transfer function G. This function should always fulfil the

condition

G(z; i, j, e) ≤ min(gi, gj)

in order to avoid negative weights in (15). We consider the function G in

the form

G(z; i, j, e) =
min(gi, gj)

1 + γ(z; i, j, e)
, (23)

where γ(z; i, j, e) ≥ 0 is a parameter of the method which can be chosen

arbitrarily, depending on our interest. The parameter γ can vary in different

regions of the flow (cell Ωℓ), for different collision partners i and j or even

as a function of the unit vector e. The jump intensity function q is then

defined by the basic relationship (16) as

q(z; i, j, e) = (1 + γ(z; i, j, e)) max(gi, gj)hℓ(xi, xj)B(vi, vj , e). (24)
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According to (18), we need a majorant for the function (24). Note that the

function (11) is now just a constant, i.e.

hℓ(xi, xj) =
1

|Ωℓ|
,

because we have assumed that all particles are sorted in cells. Furthermore,

we use the majorants

1 + γ(z; i, j, e) ≤ 1 + Cγ,max, (25)
∫

S2

B(vi, vj , e) de ≤ CB,max,

max(gi, gj) ≤ gi + gj − gmin(z),

where

gmin(z) = min
1≤i≤n

gi, (26)

to obtain

q̂max(z; i, j) = (1 + Cγ,max)CB,max
1

|Ωℓ|
(gi + gj − gmin(z)) .

Now we are able to compute the waiting time parameter via (17)

π̂(z) =
1

2
(1 +Cγ,max)CB,max

1

|Ωℓ|
(n− 1) (2gsum(z)− ngmin(z)), (27)

where

gsum(z) =

n
∑

i=1

gi, (28)

as well as all other parameters of our process. The probability of the param-

eters i and j is determined via (20)

gi + gj − gmin(z)

(n− 1) (2 gsum(z)− n gmin(z))
. (29)

The parameter i is then to be chosen according to the probability

(n− 2) gi + gsum(z)− (n− 1) gmin(z)

(n− 1) (2 gsum(z)− n gmin(z))
.
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Given i, the parameter j is chosen according to the probability

gi + gj − gmin(z)

(n− 2) gi + gsum(z)− (n− 1) gmin(z)
.

Given i and j, the jump is fictitious with probability (21)

1−
∫

S2(1 + γ(z; i, j, e))B(vi , vj , e) de

(1 + Cγ,max)CB,max

max(gi, gj)

gi + gj − gmin(z)
, (30)

otherwise the distribution of the parameter e is (22),

(1 + γ(z, i, j, e))B(vi , vj , e)
∫

S2(1 + γ(z, i, j, e))B(vi , vj , e) de
, (31)

and the new state is z̃ = J(z; i, j, e) as defined in (15). For the Boltzmann

equation (1) with the collision kernel (6) we obtain for the constant CB,max

∫

S2

B(vi, vj , e) de =
|vi − vj|√

2Kn
≤ Uℓ√

2Kn
= CB,max, (32)

where Uℓ denotes the maximum relative velocity in the cell Ωℓ which has to

be estimated in every time step. The corresponding estimate for the Maxwell

molecules is trivially
∫

S2

B(vi, vj , e) de = 1 = CB,max. (33)

2.2. Examples of the SWPM

In this subsection we consider three examples for the particular choice

for the parameters of the SWPM.

Example 1. Consider the special case gi = g = const and γ = 0.

The parameter gmin remains constant gmin = g. The parameter gsum is

gsum = g n. The waiting time parameter π̂(z) is for the hard spheres model

π̂(z) =
1

2
√
2Kn

Uℓ

|Ωℓ|
g n (n− 1)

and for the Maxwell molecules

π̂(z) =
1

2

1

|Ωℓ|
g n (n− 1).
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The deterministic time counter τ̂(z) is nothing else than Bird’s well-known

“no time counter”

τ̂(z) =
2
√
2Kn|Ωℓ|

g n (n− 1)Uℓ
.

For the Maxwell molecules we obtain

τ̂(z) =
2|Ωℓ|

g n (n− 1)
.

The index i is uniformly distributed on {1, . . . , n}. Given i, the index j is

uniformly distributed on {1, . . . , n} \ {i}. Given i and j, the weight transfer

function G is G = g. For the hard spheres model the jump is fictitious with

probability

1− |vi − vj|
Uℓ

.

There are no fictitious jumps for the Maxwell molecules.

The parameter e is uniformly distributed on the unit sphere S2.

There is no increase in the number of particles in the system. The

particles for k = i and k = j in (15) have zero weights and should therefore

be removed from the system. Here we would like to point out that our

SWPM is a generalisation of the Bird’s DSMC method.

Example 2. Consider the second special case gi − arbitrary and γ =

0. The parameter gmin should be updated after every collision gmin =

min1≤i≤n gi. The parameter gsum is gsum =
∑n

i=1 gi. The waiting time

parameter π̂(z) is for the hard spheres model

π̂(z) =
1

2
√
2Kn

Uℓ

|Ωℓ|
(n− 1) (2 gsum(z)− n gmin(z))

and for the Maxwell molecules

π̂(z) =
1

2

1

|Ωℓ|
(n − 1) (2gsum(z)− ngmin(z)).

The deterministic time counter is always τ̂(z) = (π̂(z))−1. The index i is to

be chosen according to the probability

(n− 2) gi + gsum(z)− (n− 1) gmin(z)

(n− 1) (2 gsum(z)− n gmin(z))
.
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Given i, the index j is chosen according to the probability

gi + gj − gmin(z)

(n− 2) gi + gsum(z)− (n− 1) gmin(z)
.

Given i and j, the weight transfer function G is G = min(gi, gj). The jump

is fictitious with probability

1− |vi − vj |
Uℓ

max(gi, gj)

gi + gj − gmin(z)

for the hard spheres and

1− max(gi, gj)

gi + gj − gmin(z)

for the Maxwell molecules.

The parameter e is uniformly distributed on the unit sphere S2.

The number of particles increases by one in each collision with unequal

weights, according to (15). If all initial particles and all inflow particles have

the same weight then this case is identical to the previous one.

Example 3. Consider the third special case gi − arbitrary and γ =

const > 0. In this case the waiting time parameter π̂(z) for the hard spheres

model is

π̂(z) =
1 + γ

2
√
2Kn

Uℓ

|Ωℓ|
(n− 1) (2 gsum(z)− n gmin(z))

and for the Maxwell molecules

π̂(z) =
1 + γ

2

1

|Ωℓ|
(n− 1) (2gsum(z)− ngmin(z))

leading to the corresponding change for the deterministic time counter τ̂(z) =

(π̂(z))−1. All other parameters of the process remain the same.

In this case the number of particles increases by two in each collision.

This procedure can be used efficiently to reduce stochastic fluctuations aris-

ing in computation of the macroscopic quantities in regions with low particle

density, as we showed in [9].

But the new small particles move and will probably reach the region

where the particle density is normal. There it is necessary to use the second
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special case (Example 2) for the collisions, which means that the number of

particles will increase further without any advantage being gained. The best

situation is, of course, if the particles disappear through the “outflow bound-

ary” of the computational domain at a rate corresponding to the “production

rate” there. In such a situation we will still be dealing with an asymptoti-

cally constant number of particles, but with more small particles in the low

density regions (this is our improvement) which are producing more small

and probably useless particles on the way to the “outflow boundary” (this

is the price). In all other situations reduction of the number of particles is

necessary.

2.3. Reduction of particles

In [8] we give a systematic study of the theoretical and numerical aspects

of reducing the number of particles including the theoretical estimates for

the error of the reduction in the bounded Lipschitz metric as well as in the

Sobolev space H−2. In [6] the authors introduce a purely stochastic reduction

procedure and prove the convergence of the SWPM with such reductions. In

the present paper we give a short summary of these results. First of all we

introduce an additional parameter nmax > 0 which determines some bound

for the number of particles in the system. Then we change the transition

measure (14) to

Q(z; dz̃) =

{

Qcoll(z; dz̃), if n < nmax

Qred(z; dz̃), if n ≥ nmax
. (34)

The transition measure, corresponding to collisions, remains unchanged (cf.

(14))

Qcoll(z; dz̃) =
1

2

∑

1≤i 6=j≤n

∫

S2

δJ(z;i,j,e) q(z; i, j, e) de,

while the transition measure, corresponding to reductions, has the following

form

Qred(z; dz̃) = λredPred(z; dz̃), (35)

where λred > 0 is some waiting time parameter and Pred is the reduction

measure. The procedure of reduction contains two steps. The first step is

the dividing of the whole particle system (10) in a set of clusters in velocity
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space, i.e. groups of particles having almost the same velocities. Then

the reduction of particles takes place clusterwise, i.e. each cluster will be

replaced by few (one or two as a rule) particles. The construction of the

clusters we use completely deterministic recursive procedure which can be

explained as follows. Let

z =
(

gj , xj , vj

)nc

j=1
(36)

be a cluster of particles which is identical at the beginning of the recursion

with a given system (10). Then we compute the mass, the mean velocity

and the covariance matrix of this cluster

̺(z) =

nc
∑

i=1

gj ∈ R+, (37)

V (z) =
1

̺(z)

nc
∑

i=1

gj vj ∈ R
3, (38)

M(z) =
1

̺(z)

nc
∑

i=1

gj (vj − V )(vj − V )⊤ ∈ R
3 × R

3. (39)

Then we divide the cluster (36) in two sons using the criterion

(vi − V, emax)
≤
>

0. (40)

Here emax denotes the eigenvector of M corresponding to its largest eigen-

value. Then we continue dividing the sons of the initial cluster in the same

manner. This procedure stops if an admissible cluster has less particles as

will be required by the reduction or if the desired number of clusters is

reached and all of them are admissible. There are several possibilities to

reduce the number of particles in an admissible cluster

z =
(

gj , xj , vj

)nc

j=1

to one or two. Here we give two examples.

Example 4. The cluster is admissible for the reduction if its “mass”

̺(z) is less then some global upper bound for the particle weight gmax.

Choose the index i corresponding to discrete probabilities gi/̺(z) and re-

place the cluster by one particle z̃ = Jred,1(z; i) = (̺(z), xi, vi). In this case
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we have

pred,1(z; dz̃) =
1

̺(z)

nc
∑

i=1

δJred,1(z;i)(dz̃).

This reduction conserves the mass of the cluster while the momentum

and the energy are not conserved. However, the expectation of all linear

functionals of the form
∫

Z
Φ(z̃) pred,1(z; dz̃) (41)

with

Φ(z) =

nc
∑

i=1

gi ϕ(xi, vi) (42)

for an arbitrary test function ϕ does not change
∫

Z
Φ(z̃)pred,1(z; dz̃)

=

nc
∑

i=1

gi
̺(z)

Φ
(

Jred,1(z; i)
)

=

nc
∑

i=1

gi
̺(z)

̺(z)ϕ(xi, vi) = Φ(z). (43)

Thus this reduction procedure conserves the mass exactly and in average all

other usual moments.

Example 5. The cluster is admissible for the reduction if its “mass”

̺(z) is less then 2 gmax. Choose the unit vector e ∈ S2 corresponding to the

uniform measure on S2 and replace the cluster by two particles

(Jred,2(z; i, j, e))1 =
(̺(z)

2
, xi, V +

√
trM e

)

,

(Jred,2(z; i, j, e))2 =
(̺(z)

2
, xj , V −

√
trM e

)

.

In this case we have

z̃ =
(

(Jred,2(z; i, j, e))1 , (Jred,2(z; i, j, e))2
)

and

pred,2(z; dz̃) =
1

̺2(z)

nc
∑

i,j=1

gi gj

∫

S2

δJred,2(z;i,j,e)(dz̃) de.
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Note that two particles are produced. Each of them is given half of

the weight of the original cluster. Their velocities are determined by the

conservation of momentum and energy up to a random vector e ∈ S2. Thus

this reduction procedure is full conservative. However, the expectation of

the general functionals (42) will differ from the exact value.

We refer to [13] and [8] for more examples of reductions.

The global reduction measure (35) is then defined as product of the

cluster reduction measures which are assumed to be independent of each

other.

2.4. Theoretical foundation and convergence

We consider the bounded Lipschitz metric

̺L(m1,m2) = sup
‖ϕ‖L≤1

∣

∣

∣

∫

Ω×R3

ϕ(x, v)m1(dx, dv) −
∫

Ω×R3

ϕ(x, v)m2(dx, dv)
∣

∣

∣

on the spaceM(Ω×R
3) of finite Borel measures on Ω×R

3. Here the notations

‖ϕ‖L = max

{

‖ϕ‖∞, sup
(x,v)6=(y,w)∈Ω×R3

|ϕ(x, v) − ϕ(y,w)|
|x− y|+ |v − w|

}

(44)

and

‖ϕ‖∞ = sup
(x,v)∈Ω×R3

|ϕ(x, v)| (45)

are used.

Let n ∈ N be some parameter connected to the number of particles in

the system which will be now denoted by n
(n)
s . Thus all parameters of the

SWPM are now assumed to be functions of n.

The following assumptions have to be made in order to formulate the

convergence result of the SWPM with reductions.

1. The physical domain Ω is assumed to be compact.

2. The global particle weight bound satisfies

lim
n→∞

g(n)max = 0. (46)
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3. The particle number bound indicating reduction (cf. (34)) satisfies

lim
n→∞

n(n)
max = ∞. (47)

4. The parameter of the waiting time before reduction (cf. (35)) satisfies

lim
n→∞

λ
(n)
red = ∞. (48)

5. The reduction effect is sufficiently strong, i.e.

P
(n)
red (z;Z(n)(δ)) = 1, ∀ z ∈ Z(n) \ Z(n)(0), (49)

for some δ ∈ (0, 1), where the notation

Z(n)(δ) =
{

z ∈ Z(n) : ns ≤ (1− δ)n(n)
max

}

is used. Note that

Z(n) \ Z(n)(0) =
{

z ∈ Z(n) : ns > n(n)
max

}

is the set of all possible starting points of a reduction jump.

6. The reduction is sufficiently precise, i.e.

lim
n→∞

sup
ϕ∈Dr

sup
z∈Z(n)\Z(n)(0)

∑

i∈I
(n)
r (z)

∣

∣

∣

∣

∣

Φ(zi)−
∫

Z(n)

Φ(z̃i)P
(n)
red,i(zi; dz̃i)

∣

∣

∣

∣

∣

=0, (50)

for any Φ of the form (42) and for any r > 0. The set Dr in (50) is

defined as follows

Dr =
{

ϕr : ‖ϕ‖ ≤ 1
}

(51)

where

ϕr(x, v) =







ϕ(x, v) , |v| ≤ r,

(r + 1− |v|)ϕ(x, v) , r < |v| ≤ r + 1,

0 , |v| > r + 1.

(52)

The particle system z is decomposed in clusters. The index set I
(n)
r (z)

contains the indices of only such clusters which contain particles having

velocities within the ball Br(0)

I(n)r (z) =
{

i : zi ∩ {(x, v, g) : |v| < r} 6= ⊘
}

(53)
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Note that this technically complicated assumption is trivially fulfilled for

the stochastic reduction from Example 4 because of the property (43).

7. The reduction conserves the mass, i.e.

̺(z̃) = ̺(z). (54)

8. The energy of the system after every reduction fulfils
∫

Z(n)
trM(z̃) p

(n)
red(z; dz̃) ≤ c trM(z)

for some constant c > 0.

Now we are able to formulate the convergence theorem.

Theorem 6. Let F be a function of time t ≥ 0 with values in M(Ω×R
3)

satisfying the equation

∫

Ω×R3

ϕ(x, v)F (t, dx, dv) =

∫

Ω×R3

ϕ(x, v)F0(dx, dv)+

1

2

∫ t

0

∫

Ω×R3

∫

Ω×R3

∫

S2

(

ϕ(x, v′) + ϕ(y,w′)− ϕ(x, v) − ϕ(y,w)
)

×

h(x, y)B(v,w, e) deF (s, dx, dv)F (s, dy, dw) ds,

for all test functions ϕ on Ω× R
3 such that ‖ϕ‖L < ∞.

Assume that the solution satisfies

sup
t∈[0,S]

F (t,Ω× R
3) ≤ c(S)F0(Ω× R

3)

and

sup
t∈[0,S]

∫

Ω×R3

|v|2 F (t, dx, dv) ≤ c(S)

∫

Ω×R3

|v|2 F0(dx, dv),

for arbitrary S ≥ 0 and some constants c(S) > 0.

Assume that the process parameters satisfy all assumptions formulated

above.

Let

µ(n)(t, dx, dv) =

n
(n)
s (t)
∑

i=1

g
(n)
i (t) δ

x
(n)
i (t)

(dx) δ
v
(n)
i (t)

(dv), t ≥ 0
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denote the sequence of empirical measures of the processes (12). If

lim
n→∞

E ̺L(µ
(n)(0), F0) = 0

and

lim sup
n→∞

E

∫

Ω×R3

|v|2 µ(n)(0, dx, dv) < ∞

then

lim
n→∞

E sup
t∈[0,S]

̺L(µ
(n)(t), F (t)) = 0, ∀S > 0.

3. Numerical Examples and Tests

3.1. Statistical notions

First we introduce some definitions and notations that are helpful for

the understanding of stochastic numerical procedures. Functionals of the

form

F (t) =

∫

R3

ϕ(v) f(t, v) dv (55)

are approximated by the random variable

ξ(n)(t) =
1

n

n
∑

i=1

ϕ(vi(t)), (56)

here (v1(t), . . . , vn(t)) are the velocities of the particle system. In order to

estimate and to reduce the random fluctuations of the estimator (56), a

number N of independent ensembles of particles is generated. The corre-

sponding values of the random variable are denoted by ξ
(n)
1 (t), . . . , ξ

(n)
N (t).

The empirical mean value of the random variable (56)

η
(n,N)
1 (t) =

1

N

N
∑

j=1

ξ
(n)
j (t) (57)

is then used as an approximation to the functional (55). The error of this

approximation is e(n,N)(t) = |η(n,N)
1 (t) − F (t)| and consists of the following

two components.
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The systematic error is the difference between the mathematical expec-

tation of the random variable (56) and the exact value of the functional, i.e.

e
(n)
sys(t) = Eξ(n)(t)− F (t). The statistical error is the difference between the

empirical mean value and the expected value of the random variable, i.e.

e
(n,N)
stat (t) = η

(n,N)
1 (t)−Eξ(n)(t). A confidence interval for the expectation of

the random variable ξ(n)(t) is obtained as

Ip =

[

η
(n,N)
1 (t)− λp

√

Var ξ(n)(t)

N
, η

(n,N)
1 (t) + λp

√

Var ξ(n)(t)

N

]

, (58)

where

Var ξ(n)(t) := E
[

ξ(n)(t)− Eξ(n)(t)
]2

= E
[

ξ(n)(t)
]2

−
[

Eξ(n)(t)
]2

(59)

is the variance of the random variable (56), and p ∈ (0, 1) is the confidence

level. This means that

Prob
{

Eξ(n)(t) /∈ Ip

}

= Prob

{

|e(n,N)
stat (t)| ≥ λp

√

Var ξ(n)(t)

N

}

∼ p.

Thus, the value

c(n,N)(t) = λp

√

Var ξ(n)(t)

N

is a probabilistic upper bound for the statistical error.

In the calculations we use a confidence level of p = 0.999 and λp =

3.2. The variance is approximated by the corresponding empirical value (cf.

(59)), i.e.

Var ξ(n)(t) ∼ η
(n,N)
2 (t)−

(

η
(n,N)
1 (t)

)2
,

where

η
(n,N)
2 (t) =

1

N

N
∑

j=1

(

ξ
(n)
j (t)

)2

is the empirical second moment of the random variable (56).

3.2. Spatially homogeneous Boltzmann equation

In this subsection we consider two examples for spatially homogeneous
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Boltzmann equation

∂

∂t
f = Q(f, f) (60)

for the distribution function f : R+ × R
3 → R+ in the case of Maxwell

molecules, i.e. for the constant collision kernel (7).

We consider first the most simple example if the initial distribution is a

normalised Maxwell distribution

f0(v) =
1

(2π)3/2
exp

(

−|v|2
2

)

, v ∈ R
3. (61)

Since this function exactly solves the Boltzmann equation (60), i.e. f(t, v) =

f0(v), ∀ t ≥ 0 all its moments and functionals remain constant in time.

Using SWPM we are able to resolve the velocity space much better than

using particles with constant weights. For example, we are able to compute

very small functionals using relatively low number of particles. As a model

of such small functionals, or “rare events”, we will consider “tail” functionals

Tail(t, R) =

∫

|v|≥R
f(t, v) dv, (62)

describing the portion of particles outside the ball of radius R centred in the

origin at time t. If f is a Maxwell distribution (61) then its tail functional

is constant in time and can be computed analytically

Tail(R) = 1− erf
( R√

2

)

+
2√
π

R exp
(

− R2

2

)

. (63)

In the next figures we illustrate how the particles occupy a bigger and bigger

part of the velocity space during the time. We use

n(0) = 1 024, nmax = 4096, gmax = 2/n(0),

and generate one ensemble of particles by the SWPM algorithm with stochas-

tic reduction (see Example 4) on the time interval [0, 16].

The left plot of Figure 1 shows the projections of three-dimensional

velocities of 1024 particles into the plane v1 × v2 while the right plot shows

the “final” picture after 64 reductions for n(t) = 1234 particles.

It is clear to see that having almost the same number of particles the

new system is rather different from the initial picture. Now only half of all
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particles is responsible for the resolution of the main stream within the ball

|v| ≤ 4 while the second half of particles is more or less uniformly distributed

within much bigger ball |v| ≤ 8. Thus the new system of particles can be

successfully used for the estimation of very rare events, e.g. for the tail

functionals (63). The 4th and the 64th reductions of particles are illustrated

in Figures 2-3. It is important that the “useful” but small particles living

in the plotted tails will be not destroyed during the reduction. Thus the

system of particles uniformly occupies bigger and bigger part of the velocity

space during the collisions.

-7.5

-7.5

-5

-5

-2.5

-2.5

2.5

2.5

5

5

7.5

7.5

0.00012

0

0

-7.5

-7.5

-5

-5

-2.5

-2.5

2.5

2.5

5

5

7.5

7.5

0

0

Figure 1. Initial and “final” distributions of SWPM particles.
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Figure 2. 4th reduction of particles.
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Figure 3. 64th reduction of particles.

Now we are going to illustrate the numerical computation of the tails

Tail(4) = 0.113398 · · · × 10−3, Tail(6) = 0.748837 · · · × 10−7 (64)

using both DSMC and SWPM methods. We solve the Boltzmann equation

with DSMC using n = 65536 particles and generating N = 4096 indepen-

dent ensembles. Using SWPM, we start with n(0) = 16 384 particles and

reduce the number of particles corresponding to Example 4 at each time

point t with n(t) = 65 536. The computational time for N = 4096 indepen-

dent ensembles is then similar to the corresponding time of DSMC. Figures 4

and 6 show the analytical values for the tails (64) (thick solid lines), the con-

fidence intervals obtained using DSMC (thin solid lines) and the confidence

intervals obtained using SWPM (thin dotted lines). Figures 5 and 7 show the

average number of particles forming the tails. Here the left plots correspond

to DSMC and the right plots to SWPM. We can see that at the begin of

the simulation the width of the confidence intervals is better for DSMC due

to the higher number of particles. The number of particles forming the tail

remains almost constant for DSMC. The corresponding number increases us-

ing SWPM leading to smaller confidence intervals. The width of the DSMC

confidence intervals is four-five times larger for R = 6. Thus SWPM can be

considered 16-25 times “faster” computing this tail with similar accuracy.
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Figure 4. Tail functional for R = 4.
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Figure 5. Number of particles in the tail for R = 4.
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Figure 6. Tail functional for R = 6.
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Figure 7. Number of particles in the tail for R = 6.

In the next example we study the famous exact solution found by Bobylev

[2] and Krook and Wu [5]

f(t, v)=
1

(2π)
3
2

(

β(t)+1
) 3

2

(

1 + β(t)
(β(t)+1

2
|v|2− 3

2

)

)

e−
β(t)+1

2 |v|2 , (65)

where

β(t) =
2 e−t/6

5− 2 e−t/6
.

Note that the tail functional (62) can be given for the solution (65) in the

closed form

Tail(t, R) = 1− erf
(

√

β(t) + 1

2
R
)

+
2√
π

√

β(t) + 1

2
R
(

1+β(t)R2β(t)+1

2

)

exp
(

− β(t)+1

2
R2

)

. (66)

We study the time relaxation of the tail functional (66) on the time interval

[0, 32] using both DSMC and SWPM algorithms. The number of particles

for DSMC is n = 65536. SWPM (with the stochastic reduction algorithm

from Example 4) is started using n = 16384 particles. We reduce the num-

ber of particles at each time point t with n(t) = 65 536. The number of

independent ensembles is N = 16384. The computational time is similar for

both methods.

In the figures confidence intervals obtained using DSMC are shown by

thin solid lines, while confidence intervals obtained using SWPM are shown

by thin dotted lines. The analytical curves of the tails (66) are displayed

by thick solid lines. In the figures showing the average numbers of particles

forming the tails, the left plots correspond to DSMC and the right plots to
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SWPM. The resolution of the tail with R = 5 is already better for SWPM as

shown in Figure 8. In other words, SWPM is two-three times “faster” com-

puting this tail with similar accuracy. Figure 9 displays the corresponding

numbers of particles.
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Figure 8. Tail functional for R = 6.
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Figure 9. Number of particles in the tail for R = 6.

Figures 10 and 11 show the results obtained using SWPM for the tail

with R = 7. There are no stable DSMC results for this very small tail, while

SWPM reproduces the analytical curve on the whole time interval.

3.3. Spatially 2-dimensional Boltzmann equation

In this chapter we shall consider some steady state problems for the

spatially 2−dimensional Boltzmann equation

(v, gradxf) = Q(f, f), (67)
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Figure 10. Tail functional for R = 6.
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Figure 11. Number of particles in the tail for R = 6.

i.e. the problems in which the distribution function

f : Ω×R
3 → R+, Ω ⊂ R

3

depends only on two Cartesian coordinates x1 and x2 as well as on three-

dimensional velocity variable v. Now we consider the hard spheres model

(6)

B(v,w, e) =
1

4
√
2 πKn

|v − w|.

There are no analytical solutions of the Boltzmann equation in spatially

non-homogeneous case. Thus we consider first the free flow equation (i.e.

the case Kn → ∞)

(v, gradxf) = 0 (68)
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in order to obtain some analytical information. Let Ω be a half space

Ω =
{

x ∈ R
3 : x1 > 0

}

The equations (67), (68) are subjected to the following boundary condition

f(x, v) = fin(x, v), x ∈ Γ, (69)

where

Γ = {x = (x1, x2, x3) ∈ R
3, x1 = 0} (70)

and the inflow function vanishes outside the strip

Γin =
{

x ∈ R
3, x1 = 0, −b ≤ x2 ≤ b, x3 ∈ R

}

(71)

and is defined for (v, nx) = v1 > 0 on Γ as follows

fin(x, v) =

{

fM(v) , x ∈ Γin

0 , otherwise
. (72)

The Maxwell distribution function fM having constant physical parameters

̺in, Vin = (V, 0, 0)T and Tin is

fM (v) =
̺in

(2π Tin)3/2
exp

(

−|v − Vin|2
2Tin

)

. (73)

Furthermore we assume that the distribution function f vanishes at infinity

lim
|x|→∞

f(x, v) = 0

uniformly with respect to v. The solution of the boundary value problem

(68),(69) is given by the formula

f(x, v) = fin(x+ t v, v), t ∈ R, (74)

where

t = t(x, v) = −x1
v1

is chosen such that x+ t v ∈ Γ.

The spatial density for this example has been analytically obtained in
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[12] in the following form

̺(x)=
̺in
2
√
π

∫ ∞

0
exp

(

−(z1−ξ)2
)

(

erf

(

x2+b

x1
z1

)

−erf

(

x2−b

x1
z1

))

dz1. (75)

Note that the density is a symmetric function with respect to the plane

x2 = 0. We calculate the density along the vertical straight line

x =





1

0.005

0



+ λ





0

1

0



 , 0 ≤ λ ≤ 0.99. (76)

We assume b = 0.4, ̺in = 1, Tin = 10 and define the inflow velocity in the

form

Vin = Mach

√

5

3
Tin





1

0

0



 . (77)

The inflow Mach numberMach will vary in the subsequent numerical experi-

ments. First we choose the inflow Mach number in (77) equal to 5.0 and solve

the the Boltzmann equation within the square Ω = (0.0, 2.0) × (−1.0, 1.0).

Thus we restrict the unbounded half-space domain to this square. The square

Ω will be uniformly discretised in Nc = 200 × 200 spatial cells. Since in the

collisionless case there is no mechanism to produce more particles within the

computational domain we start the better resolution of the velocity space

directly on the inflow boundary (71). To this end we generate only a portion

0 < cin < 1 of particles corresponding to the boundary condition (72) while

the remaining part 1 − cin of particles will be generated corresponding to

the Maxwell distribution of the form (61) but with higher temperature

f τ
M (v) =

̺in

(2π τ Tin)3/2
exp

(

−|v − Vin|2
2 τ Tin

)

, (78)

where τ > 1 is an additional parameter. Thus we are able to place artificially

more particles in the tail region of the prescribed distribution function. The

parameter cin ∈ [0, 1] controls the proportion of such particles. The particles

generated will have different weights corresponding to the following formula

gi = g
1

cin + (1− cin)f τ
M (vi)/fM (vi)

. (79)

We will use cin = 1/2 and τ = 8 in all subsequent examples.
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Figure 12. “High” density region, Mach = 5.0.

0.88 0.92 0.94 0.96 0.98

0.0005

0.001

0.0015

0.002

0.0025

0.003

0.0035

0.9 0.88 0.92 0.94 0.96 0.98

0.0005

0.001

0.0015

0.002

0.0025

0.003

0.9

Figure 13. “Low” density region, Mach = 5.0.

Figure 12 shows the analytic expression for the density (75) (thick

dashed line) and the confidence bands (thin lines) of the numerical solu-

tions obtained with DSMC (left plot) and SWPM (right plot) on the interval

x2 ∈ [0.005, 0.6]. We see very good agreement of the numerical solutions in

the “high” density region for both methods. In Figure 13 we show the same

values in the “low” density region x2 ∈ [0.88, 0.995]. Here we can see that

the results obtained using DSMC are reasonable but the confidence bands

of SWPM are better. Thus some reduction of the variance is achieved using

weighted particles. The relative accuracy (i.e. the quotient of the thickness

of the confidence bands and of the exact solution) is presented in Figure 14.

Thus the DSMC scheme is slightly better in the “high” density region and

SWPM accuracy becomes much higher in the “low” density region, i.e. for

x2 > 0.8. Now we choose the inflow Mach number equal to 7.0 and show

the results in the subsequent Figures 15–17. In the “low” density region we

see only some fluctuations obtained using DSMC while the confidence bands

for SWPM are still good. Thus an enormous reduction of the variance is

achieved using weighted particles. Note that the plot for the relative accu-

racy is restricted to the interval x2 ∈ [0.005, 0.8] because the DSMC results

do not allow one a stable computation of the confidence bands behind this
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point. Thus the DSMC scheme is again slightly better in the “high” density

region while it becomes unacceptable for x2 > 0.8. In the next Figure 18 we

show the results for Mach number equal to 10.0 in the “low” density region

x2 ∈ [0.88, 0.995] only for SWPM. The DSMC results were identical to zero

there. The confidence bands of SWPM is still rather good. Thus we have

illustrated how an extremely low density can be resolved using weighted

particles.
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Figure 14. The relative accuracy, Mach = 5.0.
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Figure 15. “High” density region, Mach = 7.0.
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Figure 16. “Low” density region, Mach = 7.0.
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Figure 17. The relative accuracy, Mach = 7.0.
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Figure 18. “Low” density region, Mach = 10.0.
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Figure 19. The course of the density, Mach = 7.

There is no analytic information in the presence of collisions. Thus in

the last Figure 19 we show only the confidence bands of DSMC (thin lines)
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and of SWPM (thick lines) for Mach number equal to 7.0 and for Knudsen

number equal to 0.1 (c.f. (6)).

The left plot shows the situation in the “high” density region x2 ∈
[0.005, 0.6]. The low density region x2 ∈ [0.88, 0.995] is presented in the right

plot. The results were obtained using 1 000 smoothing steps. The number of

particles in the DSMC computation was 200 in spatial cells having density

1.0. The corresponding number was 50 for SWPM having in mind that the

number of particles will increases during the collision simulation step. The

computational time for SWPM was about a half of the DSMC time. Thus we

see a considerable advantage of SWPM when computing small functionals.

The spatial distribution of particles within the computational domain

Ω = (0.0, 2.0) × (−1.0, 1.0)

can be seen in next Figures 20–21. The first figure shows 25% randomly

chosen particles for DSMC (left plot) and for SWPM (right plot) for Mach

number equal to 5 while the second figure demonstrates those particles for

Mach number equal to 10. The thick solid vertical line indicates in these

pictures the line (76).

The effect of better resolution in the physical space due to a better

resolution in the velocity space can be clearly seen for SWPM and for Mach

number equal to 10 in Figure 21 while for Mach number equal to 5 the

situation is rather similar.
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Figure 20. Particles within the computational domain, Mach = 5.0.
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Figure 21. Particles within the computational domain, Mach = 10.0.
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