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Abstract

We consider a supply chain consisting of a sequence of
buffer queues and processors with certain throughput times and
capacities. In a previous work, we have derived a hyperbolic con-
servation law for the part density and flux in the supply chain.
In the present paper, we introduce internal variables (named at-
tributes: e.g. the time to due-date) and extend the previously
defined model into a kinetic-like model for the evolution of the
part in the phase-space (degree-of-completion, attribute). We re-
late this kinetic model to the hyperbolic one through the moment
method and a 'monokinetic’ (or single-phase) closure assumption.
If instead multi-phase closure assumptions are retained, richer dy-
namics can take place. In a numerical section, we compare the
kinetic model (solved by a particle method) and its two-phase ap-

proximation and demonstrate that both behave as expected.

1. Introduction

This paper is a follow-up of a previous work [2] where a fluid-like model
for supply chains was derived. We consider a chain of suppliers or processors
So,---,Spm—1. Each of them processes a certain good (measured in units of
parts) and passes it to the next supplier. A given processor is characterized
by its thoughput time 7'(m) (the time needed to process a single part) and
by its capacity or release rate p(m) (the number of parts which can be
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processed per unit of time). Each processor has a queue and the parts are
processed on a ’first come first served basis’. The queues are supposed of
infinite length and therefore there is no limitation in the number of parts
in the queues. This leads to the following rule, for the the time 7(m,n) at
which part number n passes from supplier m — 1 to supplier m:

_
p(m,n —1)°""
m=0,....M -1, n>1, (1.1)

7(m+1,n) = max{r(m,n) + T(m),7(m+1,n—1) +

where we allow the capacity to depend on the part number as well. Formula
(LI) expresses that the time at which part n leaves processor m is at least
equal to the time at which it entered its queue plus the throughput time (the
first argument of the max) and also at least equal to the time the previous
part n — 1 left processor m plus the inverse of the machine capacity p(m).
That it must be equal to the max of these two times follows from the fact
that the machine queue is either empty (in which case the max is equal to
its first argument) or non-empty (in which case it is equal to the second
one). We refer to [2] for details. In using formula (1), there is no room for
a policy, since the parts are supposed to be processed on a ’first come first
served basis’. The operator is not supposed to take a part at the end of the
queue and to put it in front. Obviously, this is a shortcoming of the model
which we shall try to circumvent in the present work.

In [2], the limit M — oo of the automaton (I.I]) was explored. Introduc-
ing the continuous variables = € [0, 1] as a continous version of the processor
index m/M, the density of parts n(z,t) and the flux of parts ¢(z,t), we
showed that in this limit, the automaton (1) can be approximated by the
following conservation law:

o + 0,q =0, (1.2)
g = min{on, u}. (1.3)

where v = T~1. Note that, because the capacity and throughput time are
processor dependent, v and p are functions of z. In realistic cases, these
functions are piecewise constants because the number of processors is finite
and not large. The apparent paradox of taking the asymptotic limit M — oo
while keeping the total number of processor finite is waived by the method
discussed in [2] which involves the decomposition of each processor into many
virtual 'subprocessors’.
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The interpretation of (L2]), (L3 is as follows: the density of parts solves
a linear convection equation with given velocity v as long as the queues are
empty (the first argument of the min). When the particle flux vn wants
to exceed the capacity u, queues starts to build up and the flux eventually
saturates to the capacity value (the second argument of the min). Note that
the 'min’ makes this hyperbolic problem non linear. The derivation method
makes use of the concept of 'N-curve’ originally developed by Newell in the
context of traffic [20].

Our goal is to extend the fluid-like model (L.2)), (L3) so that it can
incorporate the possibility of defining priorities in serving the parts. This is
desirable in the so-called ’hot lot’ situation, in which a certain lot of parts
requires a faster treatment than the average. Instead of using the discrete
model (IJ]) once again, we shall use the fluid-like model as a starting point.
To each part, we attach an attribute, which is a real variable y and defines its
priority. Parts with lower values of y have larger priorities. We shall denote
by f(x,y,t) the quantity such that fdzdy represents the number of parts
with attributes in [y,y + dy| currently processed by processors with index
lying in [z, z + dz]. Our first task will be to write an evolution equation for
f which supports a flux constraint of the same kind as that expressed by
([L3]). We shall refer to this model as the ’kinetic model’.

Among particular solutions of the kinetic model are distributions of the

form
f(@,y,t) =n(z,t)é(y — Y(z,1)). (1.4)

Such distributions describe the case where all parts at a given location x bear
the same attribute Y (z,¢) at time ¢ and will be referred to as ’single-phase
distributions’. Of course, n(x,t) is the number density of these parts. We
shall show that single-phase distributions are solutions of the kinetic model
provided that n satisfies the fluid model (L2]), (I3]), which for this reason
will be later on referred to as the ’single-phase fluid model’ or 'SP’ fluid
model in short. In this case, the equation for Y (x) is decoupled from that of
n and simply translates the evolution of the part attributes in the absence

of any policy.

Of course, single-phase solutions such as (4] are of limited interested
but we would like to retain the idea that instead of being continuous, the
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attribute distribution is best represented by a sum of delta distributions,
i.e. by

K

f(:L",y,t) :an(:v,t)cS(y—Yk(:n,t)). (15)

k=1
where ng(z,t) and Yy(z,t) represents the density and attributes of lot k
at point z and time ¢. For instance, in the case of two lots, the normal
one and the ’hot lot’, we would have k = 2. We shall derive a system of
fluid equations for the multiphase case which will later be referred to as the
‘multiphase fluid model or "MP’ fluid model in short.

In a last part, we shall develop particle approximations of the kinetic
model and of the MP fluid model. These simulations are based on the
particle method.

We conclude this introduction by some references. The time discrete
system (LI) is an example of a 'Discrete Event Simulator’ (see [8] for an
overview). Fluid models of the type (L2)), (L3]) have been previously pro-
posed and investigated in [1], [10] and in [3, 4, 5, 6]. These models bear
strong analogies with traffic flow fluid models, which are quite extensively
used (see e.g. [7, 9, 11, 19, 24]). Kinetic models have been fruitfully used in
the context of supply chain modeling as well as in traffic flow (see e.g. [5, 6,
13, 14, 17, 21, 22, 23]).

In particular, the relations between the SP fluid model and the traffic
model of [9] should be pointed out. The SP fluid model encompasses a flux
constraint (the flux cannot exceed the upper bound ), while the traffic flow
model of [9] imposes a density constraint (the car density cannot exceed that
corresponding to a bumper to bumper situation). These two types of con-
straints are kind of dual to each other. The flux constraint produces queues
which in a certain sense can be viewed as concentrations of the solution
(even if initially the solution is smooth), while the density constraint pre-
vents concentrations but instead produces jams, i.e. stretches of space where
the density coincides with the maximal allowed density. We could imagine
supply chain models incorporating a density constraint (that could be for
instance a limitation of the size of the queue in front of each processor).
In this case, the model would exhibit simultaneously a flux and a density
constraint and would combine the features of the SP model and that of [9].

The paper is organized as follows: in Section 2, the kinetic model is
introduced. The multiphase model is derived in Section 3. Section 4 is
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devoted to the presentation of the particle method which solves the kinetic
model. Numerical results are discussed in Section 5. Lastly, a conclusion is

drawn in Section 6.

2. The Kinetic Model of Supply Chain with Policy Attributes

In order to motivate the introduction of the kinetic model, we first give
a particle interpretation of the SP fluid model (L2]), (L3]). We can define
the characteristics of this first order system separately in each of the regions

vn < p and vn > p. They are defined by:

X =0, ifon<uy,
X =0, ifon>yu,

where the dots indicate time derivatives. Now, supposing for a while that v

and p are smooth functions, an easy computation shows that

d —(noyv)(X(t),t), ifvn < p,

En(X(t)’t) - { =0 (X (1)), if vn > p. (2.1)

Obviously, this dynamics is quite singular and the kinetic model can be
viewed in a first instance as a way to express it in a less singular way. Let
us suppose that parts located at time ¢ and point x have different attributes
y. For instance, attributes can be arrival times in the queue ; we shall come
back to this point later on. Then, a way to achieve this dynamics is to
say that all parts are moving with an actual velocity V(z,y,t) below the
processor defined velocity v(z) (i.e. 0 < V(x,y,t) < v(x)) and V(z,y,t) is
chosen such that the total flux does not exceed p(z). We now develop such

a possible choice of V (z,y,1).

First, we define f(z,y,t) the density of parts which at time ¢ are found
at position z with attribute y (i.e. f(z,y,t)dxdy is the number of such
particles in a volume of size dx dy about the point (z,y)). Obviously, the
density n(z,t) and flux ¢(z,t) in the sense of the SP fluid model are related

with the distribution function f by integration w.r.t. y:

n(w,t)z/Rf(w,y,t)dy, q(x,t)=/RV(x,y,t)f(x,y,t) dy. (2.2)
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We also define
Q= /Rv(ﬂf)f(:c,y,t) dy = vn,

the value of the flux if there would be no capacity limitation.

Our aim is at modeling a policy giving higher priority to parts with
lower attributes y and allowing them to be processed faster. The most
simple policy consists in processing parts by increasing attribute number
and moving them along the processor chain with the processor speed v until
the machine capacity u is reached. The number of parts having attributes
below « at position z and time ¢ is given by [ f‘oo f(x,y,t) dy and accordingly
the flux of such parts, i.e. the number of such parts crossing x per unit of

time is:
8(z.0,t) = v(z) [ "yt dy. (2.3)

In other words, 5 is the y-antiderivative of vf. 3 is a non-negative non-
decreasing function of « from R onto [0,Q(x,t)]. We temporarily assume
that f is a locally integrable function of y (note that this excludes solutions
of the form (LH])). In this case, § is also a continuous function of «. It may
be non-strictly increasing but we can still define its functional inverse 5~ as
an increasing, possibly discontinuous function from [0, Q(z,t)] onto R. To fix
the ideas, we suppose that 37! is left-continuous at any discontinuity point
(it can easily be checked that the model is independent of this particular
choice). We have u = 3(z,y,t) &y = B~ (z,u, t).

According to the above-defined policy, the processor standing at position
x will process all parts with attributes y below the critical attribute value
a(z,t) such that the flux of such parts exactly equals p(x) or in other words,
such that

Blx,ont) = p(x) e oz, t) =B, p(x),t). (2.4)

Of course, if p(z) > Q(x,t), all parts can be processed without any limitation
and in this case, we can set up o = +00. the critical value « is thus given
by:

{ a(m,t) = /B_I(IL’,,U(IL’),t), if Q(:L’,t)
().

<
a($7t) = 00, if Q(ﬂj‘,t) >
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From (2.5), it is readily checked that
Bla, afz,t),t) = min{pu(z), Q(z,1)}. (2.6)

With this expression at hand, we can easily extend our theory to the
case where the nominal processor velocity v also depends on the attribute
v =wv(z,y), in which case, § and @ must be defined according to

st = [ iy, Q= [ ety oy

—00

With the rule given above, the actual part velocity V(z,y,t) at point
(z,y,t) is given either by the nominal processor velocity v(z,y) if the part
moves, i.e. if y < a(z,t), or by 0 if the part stays blocked i.e. if y > a(z,1t).
Therefore, denoting by H(y) the Heaviside step function:

0, ify<0,
H(y)_{l, ify >0,

we can write
V(z,y,t) =v(x,y)H(a(x,t) —y). (2.7)

Since  is a non-decreasing function of o, we can equivalently write in view

of (2.0):

V(xayat) = 'U(.’L’,y) H(,B(x,a(x,t),t) _/B(xayat))
= v(z,y) H(min{u(z), Q(z, 1)} — B(z,y,1)). (2.8)

Note that this expression also simply equals
Via,y,t) = v(z,y) H(u(z) = B(z,y,1)). (2.9)
Now, we consider the dynamics associated with V (z,y,t):
X =V(X,y,1) = (X, 9) H(p(X) = B(X, y,1)). (2.10)

By analogy with the SP fluid model, we suppose that f varies along the char-
acteristics (2.10) in a way defined by the first equation [2.1]), i.e. f(X(¢),y,t)
satisfies

%f(X(t),y,t) = —(f0:(V(z,y,1)))(X(t),y,t). (2.11)
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Obviously, f must then satisfy the following equation:
of+0,(Vf)=0. (2.12)

However, it might be desirable to make the part attributes vary with time
as this obviously allows a much broader range of possible policies. Denoting
by r(z,y,t) the attribute variation rate, we finally end up with the following

kinetic model:
of+0,(Vf)+0y(rf) =0, (2.13)

with V' given by (2.9). It is a simple matter to show that, in the case where
v(x,y) = v(x) does not depend on y, the density n and flux ¢ obey the SP
fluid model (L2, (I3)). Indeed, integrating (ZI3) w.r.t. y leads to (L2
while multiplying (29]) by f, integrating w.r.t. y and using the change of
variables u = [(z,y,t) leads to (L3). On the other-hand, when v(z,y)
depends on g, the moment model for n, ¢ is not closed as we cannot express

Q@ in terms of a closed expression involving n and q.

Let us now propose a possible definition of part attributes and a possible
policy for varying it. Suppose each part enters the supply chain at z = 0
and initial time t; with a tagged due-date tp (hopefully larger than ¢;). The
due-date is the latest date at which the part should be delivered, i.e. the exit
time g at which the part exits the supply chain at z = 1 should ideally be
less than ¢p. Then let us define the attribute as the time left to due-date
i.e. tp —t. As time proceeds, the time to due-date diminishes (it may even
become negative if the part is late), thus increasing its priority level in the
chain. In this case, the attribute variation rate is obviously » = —1 and the
initial value of y at the entry of the supply chain is tp — t;. However, we
can also think of other possible policies such as increasing the priority level

faster when time approaches due-date.

To complete the model, we need initial and boundary conditions. We
make no assumption on the initial state of the supply chain. On the other
hand, since V' > 0, we only need to specify boundary conditions at x = 0.

Therefore, we specify:

f(l',y,O) :fl(l'vy)7 f(07y7t) :g(yvt)a
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where fr and g are given. Finally, we suppose that there are no parts with
arbirtrary large attributes, hence:

lim f(z,y,t) =0.

ly|—o0

3. The Multi-Phase Model

From the kinetic model (2.13]), we would like to deduce a model for
distributions of the form (IL5]). This would indeed lead to a reduction of the
problem from a 2-dimensional one (in z and y) plus time into a 1-dimensional
one (in z only). However, we cannot just insert solutions of the form (L35l
into (2I3) because the product V f would be undefined (it would involve
products of discontinuous functions at the points Y with delta functions
d(y — Yi) which is undefined).

Rather, we take another route. We first write the system satisfied by
the moments [ y? f dy for a convenient set of power functions y’/. As often in
kinetic theory (see e.g. [18], the moment system is not closed. To express the
various unknown fluxes in terms of the moments, we close the expressions
by a smoothed version of (LEI]), where the delta functions are replaced by
smoothed approximations. We show that in the limit of vanishing smoothing,
well-defined closed expressions of the moment fluxes can be recovered, which
gives rise to what we shall call the Multi-Phase fluid model, or MP fluid

model.

According to the previous section, the kinetic model can be written in

the form

O f 4 0:[H (u(x) — Bla,y,t))o(z,y) f] + Oy[r(z,y, 1) f] =0, (3.1)
B(x,y,t) = /H(y =y )(z, ' t) f(z, 9, t) dy. (3:2)

To define the moment equations, we integrate ([3.1) against y/, j =

0,...J — 1. This gives the following set of moment equations:

Oymj + 0,Fj — jRj1 =0, j=0,... J —1 (3.3)
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where the moments m;, moment fluxes F; and acceleration terms R; are
given by

mj(z,t) = /yjf dy, (3.4)
Fy(a, 1) = / W (H(u(x) — Ba,y, Oo(e, v, ) f (2, 9,1) dy,  (3.5)
Rj(z,t) = /yjr(:c,y,t)f(w,y,t) dy. (3.6)

This gives J equations for the 3J unknowns m;, Fj, R;, j = 0,...J — L.
Some Ansatz must be made to find 2J relations among these 3.J data.

For that purpose, we are going to close the expressions in (3.4)-(B.6]) by
an Ansatz of the form

IS

= 1
oy, t) =) nu(a,t) -6 ( ) (3.7)
k=1

where e71¢/(y/e) is a smoothed out version of §(y), i.e. ¢(y) is a strictly
monotone function such that ¢(—o0) = 0, ¢(co) = 1 holds, and ¢'(y) is
compactly supported. In the limit ¢ — 0, we find back a multi-phase Ansatz
of the form (LE). Note that this method is somehow similar to that of [15]
for closing the semi-classical limit of the Schrédinger equation.

Remark. As we already pointed out, we need to smooth out the J-
function, since we actually will integrate J-functions against Heaviside func-
tions, which is ill defined. The question is whether the evaluation of the
d-function at the discontinuity of the Heaviside functions happens on a set
of measure 0 (and therefore it does not matter) or not. The answer to this
question will be given by whether our final result depends on the choice of
the function ¢ or not. We now are going to see that this result is actually
independent of ¢.

Proposition 3.1. Using the Ansatz B.7), the moments fluzes and ac-
celeration terms in [B.4)-B.6) are given asymptotically by

K

mi(z,t) = Y np Y +0(e), (3.8)
k:Kl

Rj(z,t) = Y np Y r(2,Yi,t) + O(e), (3.9)

k=1
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K
Fi(z,t) = > m Y] o Zp+ 0(e),  vp(x,t) = v(z, Vi, 1) (3.10)
k=1
() = Xy, 2y, nsVs H(Ye — Y5)
Uk 2 y,—y;, Ms

1+0(e). (3.11)

Zy = max{0, min{1,

Proof. Eq. (3.8)) and (8.9) are immediately obtained by substituting
y — Yy + ey, dy — edy in the integrals. For instance, for (3.8]), this gives

K .
mlet) = 3om [+ i) d

= nk/Y]¢> ) dy + O(e anY]-i-O()
1

k= k=1
Eq. B3)(b) can be obtained in the same way. To prove ([3.I0) we start

similarly:

y—Y
£

(1) an/ TH () — B, ,0)) (e, 0) 26 (L—E)dy

K

= nk/(YkJrsy)jH(u(ﬂf)—ﬁ(:v,Yk+6y,t))v(af,Yk+6y,t)¢'(y)dy-
k=1

The dependence of the terms (Y + ey)? and v(z, Y + €y,t) on y can be

neglected again because they are smooth functions. The dependence of

B(z, Yy + €y, t) on y cannot be neglected, since f is actually discontinuous

at Y. This gives:

K
Fj(z,t) = an Y] v(z, Vi, t) Z5 + O(e), (3.12)
with
Zi(x,t) = /H B(x, Yy, +ey,t))¢' (y) dy. (3.13)

This yields (3.10) with Z;, = lim._0 Z;. It remains to compute the limiting

expression Zj. Computing S we obtain

z2 =Y

K
Bz, Yy + ey, t) = ;nS/H(Yk—i—sy—z)v(az,z,t)é(ﬁ’( ) dz
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K

— Zns/HYk+5y Ys —ex)v(z,Ys +ez,t)¢ (2) dz
s=1

:Zns a;Ys,t/HYk+z—:y Y, — e2)¢/(2) dz + O(e).

s=1

Now for Ys # Y) the dependence on (y — z) disappears when ¢ — 0. For
Ys = Yi however, the e scales out because of the scaling invariance of the

Heaviside function. This gives for 5:
B Yitept) = 3 nov(z, V1) /H(Yk ~Y) () de

Yo #Y),

+Zns :EYs,t/H —2)¢'(2) dz + O(e),
or, integrating out ¢:

B(z,Yy, +ey,t) = Z nsv(z, Ys, t) H(Y; — Ys)
+ Z nsv(z, Ye, )d(y) + O(e). (3.14)

The terms Z} in ([B12) are therefore given by

Zi = /H Bla, Yy, + ey, )¢ (y) dy

= /H(,u(m)— Z nsv(z,Ys,t) H(Y — Y5)

— > nsv(@, Ye,t) $ly) + O(E)) ¢'(y) dy.
By the change of variables ¢(y) = u, we obtain:
1
Z5 = / H(u(m) - Z nsv(z,Ys, t) H(Y; — Y5)
0

YA
—u Z nsv(x,Ys,t)—i—O(E)) du

Yo=Y}
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Now, let b > 0 hold. Then we have the relation

= ol O
S
=
(]
A\

/1 H(a —bu) du = <1 | = max{0, min{1, %}} (3.15)
0

(3.15)) holds for b = 0 formally as well if we define § = sign(a)oc in this case.
Thus we obtain in the limit € — O:

(%) = Dy, s Vs H(Vi = Y5
Uk 2y,—y, Ms

Zy, = max{0, min{1, a

H

and therefore (3.11]), which ends the proof. O

Now, we use the closure [B.8)-(B3.II) (with ¢ = 0) to close the moment
system (33]). By using ng, Yi, k = 1,..., K, we have introduced 2K addi-
tional unknowns, making the total count of unknowns to 3J+2K. Addition-
ally, we have obtained 3.J additional equations (B.8])-(B3.10), making, together
with (B3], the total count of equations to 4.J. In order to get the same num-
ber of equations as unknowns, we obviously need J = 2K. We review the
cases K =1 (single-phase closure) and K = 2 (two-phase closure).

In the case K = 1, the unknowns are mg, Fp, n1 and Y;. We obtain:

Z1 = max{0, min{1, @}},
ving

with vy (x,t) = v(z, Yi(x,t)). However, the second argument of the 'max’ is
always non-negative and therefore Z; is always equal to it. It follows that

niv1Z1 = min{pu(z), njv1 },
and

mo =ny, mp=niYy,
FO = min{,u(:n),nlvl}, F1 = FOY1.

In this case, denoting n := mg = ny, q := Fo, Y =Y, v =v1 = v(z,Y (2,1)),
the moment system leads to

on + 0.q =0, (3.16)

q = min{u(x),nv(x,Y)}, (3.17)
h(nY) + 0,(qY) = nr(z,Y,t). (3.18)
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If v = v(x) is independent of y, the system for n, ¢ decouples from the
equation for Y: we get on the one-hand

on + 0,q = 0, (3.19)
q = min{u(x), nv(z)}, (3.20)

which is nothing but the Single-Phase fluid model (I.2]), (I.3]), followed by
(BIR]) for the determination of Y. If however v = v(z,y) is truely dependent
on y, the evolution of (n,q) cannot be decoupled from that of Y.

Now, we investigate the case K = 2, i.e. J = 4. In that case, eliminating
mj, Fj and rj, 7 =0,...,3 by using ([B.8)-(311), we obtain the following set
of equations for ng, k =1, 2:

8t(n1Y1j + 7”L2Y2]) + 8x(n1U121Y1j + 7’L2’L)222Y2j) = nlrlYlj + ’I’L2’r'2Y2j, (3.21)

with vg(z,t) = v(z, Yi(z,t)) and ri(z,t) = r(x, Yi(x,t),t), k = 1,2. The
issue is now the computation of Z, k = 1,2. Let us suppose that Y7 < Y5
to fix the ideas. Then, (B.I1]) leads to the following discussion :

(i) ifp<mnivy then nynZy=p and ngveZy =0, (3.22)
(ii)) if njvy < p < nyvy +ngue  then njv1Z; = njv;
and  n9vedy = U — Ny, (3.23)
(iii) if njvy + novy < then nyv1Z; = nyvy

and naoveZy = navs. (3.24)

Of course, the roles of 1 and 2 must be exchanged in the case Y7 > Y5. When
Y7 = Y5, then

e b, ngueZs = min{ngvg, p }. (3.25)

. ng
nyv1Z1 = min{nqvy,
ny + N9 ni + n9

What formulas (3.22))-(B.24]) express is very simple. npvy is the ’free
flux’ of parts k and njv; + novy is the total ’free flux’ (we call ’free fluxes’
the fluxes if there would be no flux limitation). In the first case, the flux
limitation p is already below the free flux of parts 1 and therefore, the actual
flux of these parts is equal to the flux constraint and parts 2 simply do not
move. In the second case, the flux constraint y is larger than the free flux of
parts 1 but below the total free flux. Therefore, the flux constraint does not
apply to parts 1 which move with actual flux equal to their free flux. The
actual flux constraint which applies to parts 2 is the total flux constraint p
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diminished by the flux of parts 1 and therefore, parts 2 move under this flux
constraint. In the last case, there is no flux constraint at all because the flux
constraint is above the total free flux and each part actually moves according
to its own free flux. Clearly, this is consistent with the policy consisting in
processing parts with lower attributes first. Again, the role of 1 and 2 must
be exchanged in the case Yy < V7.

In the case Y7 = Y5, (B:25]) expresses that the flux constraint is dis-
patched onto each part according to the ratio of their part number to the
total number of parts. Then, each part moves independently according to
the same rule as in the single-phase case.

We expect system ([B.2I]) to be hyperbolic, i.e. to have all its character-
istic velocities real and the corresponding jacobian diagonalizable. In fact,
we have a more general result, valid for any system of the form (B.3]) with
fluxes of the form (B.I0). More precisely, we have the following:

Proposition 3.2. We consider the following system of unknowns {ny,
Yi} fork=1,...,K:

Qumj + 0pF; =0, j=0, ... 01, (3.26)
K . K .

m;(z,t) = Z neY?, Fj(x,t) = Z a Y, (3.27)
k=1 k=1

with J = 2K and q, = qi({nw, Y }ir=1,..x). Then, as long as the phases Y},
are mutually distinct, this system is equivalent (at least for smooth solutions)
to the following system:

Ong +0:q, =0, k=1, ... K, (3.28)
O(nYe) + 0u(qiYe) =0, k=1, ... K, (3.29)

An example of such a system is system ([B.3]), (B.10), where g = npvp Zg
and Zj, is given by (3.IT]).

Corollary 3.3. System [B.20), B27)) is hyperbolic about a state {ny,
Yitk=1,. K such that the Yy’s are all distinct if and only if system (B.28))
alone (with frozen Yy ’s) is hyperbolic. The characteristic velocities of (3.26]),
B217) are those of [B:28]) on the one hand and the quantities uy = qi/ny for
k=1,...,K on the other hand.
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Proof of Corollary 3.3. By combining it with (3.:28)), eq. (3:29) is equiv-

alent (at least for smooth solutions) to the following transport equation:

Yy +up0:Y, =0, wu = q—k, k=1,...K. (3.30)
ng

An easy computation shows that the characteristic velocities of system (B.28]),
B30) are those of the system (B3.28) alone (considering that the Y’s are
frozen), supplemented with the characteristic velocities of system (3.30)),

which are nothing but the u’s. O

Remark 3.1. This result generalizes the hyperbolicity result proven in
the appendix of [15] by extending it to a large class of systems. Indeed, the
hyperbolicity of (8:28]) is just an hypothesis on the fluxes g’s which depends
on the considered model. We shall prove below that for the fluxes given by
(B10]), the model is hyperbolic.

Proof of Proposition 3.2. We shall restrict ourselves to the case J = 4,

K = 2, the general case being an easy extension of it. We first show that if

{(ng, Yi) }r=1,2 is a solution of (3.28)), (B.30), it is a solution of (3.26]), (3.27).
Indeed, multiplying (330) by ij_l, j=1,...J —2, we find

Y +upd Y] =0, j=0,...0 -1,
and consequently, using ([3.28)),
(i Y)) 4+ 0u(quY) =0, j=0,...0—1.

Then adding the equations for the two phases, we find
a0 YD)+ 0.0 aY])=0, j=0,...0-1,
k=1 k=1

which is nothing but system (3.26]), (3.27)).
Conversely, let {(ng, Yx)}k=1,2 be a solution of [3.26]), (3.27). Then, we

can write:
ong + Opqr. = Sk, k=12, (3.31)
Yy +up0, Y, =T, k=12 (3.32)
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with appropriate definitions of S, 7. We wish to prove that necessarily,
S,=T,=0, k=1,2. (3.33)

First, adding (831]) for the two phases and using ([B.26]) for j = 0, we get

S1+ .59 =0. (3.34)
Then, combining (3.31)) with ([3.32), we get,
Ou(niYe) + Ou(qiYs) = Ty + YiSk,  k=1,2. (3.35)

Addding ([3:38)) for the two phases and using ([3.26]) for j = 1, we get:
n1Th + noTh + Y151 + Y255 = 0, (3.36)
Now, multiplying [3:32]) by Y}, we obtain:
Y2 +upd, Y2 =2V, Ty, k=1,2. (3.37)
Proceeding like in the previous case, we deduce that
2m Y1 Ty + 2noYo Ty + Y£S1 + Y5, = 0. (3.38)
Finally, multiplying (8.32) by Y]f and proceeding as previously leads to

3n1Y12T1 + 3n2Y22T2 + Y1351 + Y2352 =0. (3.39)

Collecting (3.34)), (3:36]), (B:38) and (B.:39), we deduce that the vector

(S1,52,T1,T5) is a solution of a homogeneous linear system the matrix of
which is given by:

1 1 0 0
Yi Yo m n2
Y2 YE 2mY1 2n2Ys
Y3 Y3 3n1Y? 3noYE

It is a matter of elementary algebra to show that this matrix is non singular
as soon as Y] # Y,. Therefore, in this case, we deduce ([3.33]), which shows
the equivalence of the two systems. This result is easily extended to an
arbitrary number of phases. O

Lemma 3.4. System ([B.28) with the specific form (BI0) of the fluzes
in the two-phase cases (i.e. with Zy given by 3.22)-(B.24))) is hyperbolic.
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Proof. We denote the two characteristic velocities of system (3.28]) by
A1, A2. An easy computation shows that:

(i) if g <mivy then M =X=0, (3.40)

(ii) if myvy < p < mnivy +ngvy  then A\y = vy, A2 =0, (3.41)
(iii) if n1v] + navg < p then M =v1, Ay =19. (3.42)
This proves that all the eigenvalues are real and ends the proof. O

The lemma can be easily extended to an arbitrary number of phases.
Of course, all this discussion is dependent on the hypotheses that the phases
do not meet. When some phases are equal, the fluxes have discontinuous
derivatives and are also space dependent through the threshold p which
can itself be space (and time) dependent. A more detailed study of this
system requires a theory for hyperbolic systems with space-dependent, non-
differentiable fluxes. Such a theory is still in progress (see [12, 16]).

4. Particle Discretization of the Kinetic Model

In this section we derive a particle model for the kinetic equation (2.13])
(alternatively we could start from this particle model and derive the corre-
sponding kinetic equation). We suppose that part number n enters the chain
at time a, with attribute b,,. The particle trajectory x = &,, y = n,, for this
part is then given by

d d
Egn = V(ﬁmﬁmt), &ﬁn = T(fmﬁmt), gn(an) = 07 Un(an) = bTL (41)
where V(x,y,t) is given by (2.7)), i.e.
V(:L‘ayat) = U(x‘,y)H(Oé(l‘,t) - y)v (42)

v(x,y) being the nominal processor velocity and r is the attribute rate-of-
change. Indeed, an expression of the form

flaoy,t) = 8@ = &)y — na(8)H(t - an), (4.3)

(where again, ¢ stands for the Dirac delta measure and H for the Heaviside
step function) provides an exact measure solution of (ZI3)) if and only if

(A1) is satisfied.



2007] KINETIC AND FLUID MODELS FOR SUPPLY CHAINS 451

The density and flux corresponding to (4.1l are given by
n(e.t) = [ Favt) dy= 306~ €0~ m)H(E ~ a),
alast) = [ Vi pt)fe,.0) dy = 3Vt 030 — € H(E — an),

while the total flux in the absence of flux constraint Q(x,t) would be equal
to

Qat) = [ ole)f(@0.0) dy = 3 vl6nsma)bl — E)H(E - an).

n

The threshold value « is determined such that q is the maximal flux satisfying

the flux constraint q(z,t) < p(z). This gives
alevt) = [ H(a(o.0) = 9)o(o. )] (2,0:1) dy = min{u(e). Q(w. 1)} (4.0)

However, as pointed out in Section 2, « is well-defined by (£4) only
under some smoothness assumptions on f which are not satisfied by parti-
cle distributions like ([4.3]). Indeed, for a particle model (4.4) cannot hold

pointwise, since the flux ¢ will be a superposition of — functions. We have

Q(x’ t) = Z H(O‘(gm t) - nn) U(gm nn) 5($ - gn)

d d
_ ;5@ — &) bn = ﬁgﬂ@ 1),

where we dropped the H(t—a,,) terms (for the sake of simplicity, we suppose
that there is no part entering the supply chain between ¢ and ¢t + At). We
replace (4.4) by an integrated constraint of the form

t+AL
/ q(z,s) ds < At p(z)
t

or

D [H Gt + At) — 2) = H((1) — )] < Atu(x) (4.5)

n

and such that the Lh.s. is 'maximal’ in a sense to make precise later on.

Next we make a(x,t) a piecewise constant function in space. We define a
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mesh by 0 =z9 < ... <zp =1 and
a(z,t) = xm(z)am(t),

where Xy, is the indicator function on [, Zpy+1]. The particle motion (A1)
is then replaced by

=3 xmlE) H(0m (1) — )0 (Enm)

and we enforce the flux constraint (4.5]) at the discrete points x,.

To compute the flux constraint, we make the particle motion linear in
between discrete times tg. So we get

Enlti +1) = &0+t xm(E)H (g, —ni)oy, vy = o(&h,my),  (4.6)

(b +8) =y + tr, = (60 ), (47)
and the values o, have to be chosen such that

DOIHE ALY xs(ENH () =)oy —2m) = H(E = 2m)] < At iy, (4.8)

n

holds for all m = 0,..., M, where we let i, == p(zy). If €& > 2, holds,
the argument of both Heaviside functions in (4.8]) will be positive and there
is no contribution to the sum. If ¢&¥ < x,,_; holds, and we assume that
vEAt < Az, i= Ty — 21 ¥m holds (CFL condition) then the arguments
are both negative and, again, there is no contribution. So we can add the
indicator function of the interval (z,,_1,z,,) without changing the value of
the sum and write (4.8)) as

Z Xm—1 (fﬁ)[H(fﬁJrAt Z Xs(fﬁ)H(ag—ﬂz)vz—mm)—H(fﬁ—mm)] < Atﬂmy

which means that now only the term for s = m — 1 in the inner sum remains
and the second Heaviside function drops out, giving

> xm-1(&n) H(E + AtH (g, g = ily)vy — 2m) < At pi, (4.9)

(4.9) has the following interpretation: we count only the particles which are
in the interval (2,1, %) and which would cross x,, within the next time
step, thus contributing to the flux at x,,.
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Let us now assume that the n¥ are ordered in ascending order, i.e. s <
[ = nfj < nf holds. This implies that we sort the particles at each time step
but this can very quickly be realized with a fast-sorting procedure. Doing
so, we will lose the identification of the particles. To maintain the identity
we can always add an additional attribute to each part (i.e. an additional
component of y and 7), which is the original part number and which does
not change in time. So assume that

k k k
771/(mJ<:) <, < nu(m,k)-‘,—l

holds. For n > v(m — 1,k) + 1 we have H(ak | —n¥) = 0 and there is no
contribution to the sum. So we get

Z Xm—l(dfb)H(gﬁ + Atvfl/ — Tpn) < Atpiy. (4.10)
n<v(m—1,k)

and the flux (the Lh.s. of (410])) is the maximal one if

Z Xm—l(gg)H(gg + Atvg - l‘m) > Atﬂm-
n<v(m-—1,k)+1

Therefore, we define

v(m, k) = max{w : Z Xon (EFVH (EF + AtoF — 2 i1) < Atpngr}  (4.11)
n<w

and if
Z Xm(glrf)H(glg + Atv’ﬁ — Tmy1) < Atpimgt,

we let
v(m, k) = oo

With the definition (ZIT)) for v we now can define the o, and, more impor-
tantly, the term H(a¥, —n¥) in (@8] according to:

1 1
Oéﬁq, = 5[77];(77171@) + n',f(m,k)ﬂ], H(afn - 777]3) =H(v(m, k) —n+ 5) (4.12)

Our particle discretization of the kinetic equation thus consists of ([@.1l),
(#2) with the approximation (£I2) of a.
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5. Numerical Results

We have implemented the particle model of Section 4 and the 2-phase
model (K = 2) of Section 3. Our test example is intended to highlight the
features of the two models. In our example, the attribute is identified as the
due-date (see the discussion at the end of Section 2).

We consider a chain of 20 stations, all with throughput time =1. So the
total minimal throughput time is 20. They all have a capacity of u = 160
parts per unit time, except for number 5, which has y = 80 and number 15
which has g = 40 (two bottlenecks). We consider a constant influx of "low
priority’ parts, i.e. with a due date far in the future, of 60 parts per unit
time. At time ¢ = 40 ’hot lots’ (parts with a much closer due date) arrive at
a rate of 60 parts per unit time. With these data, the first bottleneck with
p = 80 can accommodate the flow of one of either parts (hot or low) but not
both together. The second bottleneck (p = 40) cannot even accommodate
one single flow. Within the low priority lot and the hot lot population the
due dates are chosen randomly in a given interval.

The phenomena we expect to see are the following. The low priority
lots pass freely through the first bottleneck but start to pile up at station
15. This is the picture until the hot lots arrive at ¢ = 40. Once the hot lots
arrive, they pass freely through the first bottleneck, but constrict the flow
of the low priority lots there. As soon as they reach the second bottleneck,
they start to pile up and strangle the low priority flow there completely.
Once the hot lots have passed through, the queues start to dissolve. The
simulation runs from ¢ = 0 to ¢ = 140 using 8000 particles for the particle
model.

To compare the 2-phase simulations with the particle ones, we have arti-
ficially generated particles from the solutions of the 2-phase model. Indeed,
as an output of the 2-phase model, we have the values of the attributes Y;
and Y5 and of the densities ny, ny. For each of the phases, we generate
Azng(x,,) particles in the interval (x,,x,+1) with attribute values ran-
domly set around y = Y. We insist on the fact that these are not real
computational particles but only an artifact which is aimed at facilitating
the comparisons with the particle model. Figure 1 shows a comparison be-
tween the particle and 2-phase models on snapshots of the particle locations
for different times. In the first snapshot (at ¢ = 50) the hot lots have already
constricted the flow of the regular lots at the first bottleneck, but have not
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reached the second bottleneck yet. Regular lots are already piling up at the
second bottleneck since it cannot even accommodate the flow of the regular
lots. In the second snapshot (at ¢ = 70) the hot lots have strangled the flow
of regular lots at the station 15 completely. Finally in the third snapshot
(at t = 90) all the hot lots have passed through the first bottleneck and the
regular lots start to flow again through station 5. Note, that the bottlenecks
at station 5 and 15 have the effect of ordering the particles. That is, once
particles have been held back at a bottleneck they will leave strictly in the
order of their due date. Therefore, the 'cold’ particles in the left panel of
Figure 1 reduce to a straight line (one particle per z— value) as soon as they
leave the bottleneck. This effect is not visible, of course, in the right panel
since the artificial particles, generated from the two phase model, are always
generated with a certain bandwidth.
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Figure 1. Comparison of the particle picture, left panel: particle model,
right panel: pseudo particles generated from the 2-phase model.

To give a more quantitative comparison, we have also performed the
reverse transformation, i.e. generate 2-phase solutions out of particle solu-
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tion. Given the particle solution, we first compute its first four moments
my, ..., m3 and compute a corresponding phase and density according to
([B:8). The corresponding result is compared with the solution of the 2-phase
model in Figure 2 for different times. The solid and the dashed lines denote
the hot and the cold phase of the 2-phase model. The triangles and Xx’s
denote the data points for the corresponding phases extracted from the par-
ticle model. (Note, that, numerically, there will always be two phases!). The
left panel shows the values of the attributes Y7 and Ys, and the right panel
shows the densities n; and ne. The densities are plotted on a logarithmic
scale. So, for perfect agreement, the x symbols, the values for the ’cold’
phase of the particle model, should be on top of the dashed line, the ’cold’
phase of the two phase model. The triangles, the values for the ’hot’ phase
of the particle model, should be on top of the solid line, the ’hot’ phase of

the two phase model.
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Figure 2. 2-Phase picture, left panel = attributes Y7, Yo, right panel =

)

densities, x, A = particles, -,-.” = 2phase model.
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Finally, we compare the expectation of the time to due date in the last
m1

cell (i.e. m_o) in Figure 3. Again, the dots are the particle solution and the
solid lines are the 2-phase model.

120

100

80r

60

40r

20r

average time to due date on output
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time
Figure 3. Expected time to due date in the last station (on time perfor-

’.’=particles,

9

mance) =2phase model.

Figures 1, 2 and 3 show a reasonable agreement between the parti-
cle solution and the 2-phase model, although the latter underestimates the
throughput time somewhat (see Figure 3). The obvious question arises why
there is any discrepancy between the models at all. Since there are basically
two phases (hot lots and regular lots), and there is no passing within the
two groups, the 2-phase model should actually be exact. The reason for this
paradox can be found in the boundary conditions and, as a matter of fact,
points to a fundamental difficulty in comparing multi-phase closures to par-
ticle based solutions of kinetic equations. In order to obtain a meaningful
quantitative comparison the influx data for the particle solution, which con-
sist of a superposition of §— functions in time concentrated at the discrete
arrival times, have to be smoothed out to provide a smooth influx density
for any differential equation model. Because of this smoothing, the resulting
kinetic equations will not have an exact 2-phase solution, even at the left
boundary point, as can be seen in Figure 2. In the left upper panel, for
t = 33.75, there are two phases at station 1 although at this point no hot
lots have arrived yet. In order to obtain an exact 2-phase solution the time
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scale of the intervals between individual arrivals would have to be resolved,
which would result in an unacceptably small time step.

Now, we comment on the computing efficiencies of the various models.
The particle scheme requires about the same CPU time as the Discrete
Event Simulator (II)). More importantly, the CPU time for the kinetic
model scales at least linearly with the number of parts, which is comparable
with a DES simulator. On the other hand, the numerical complexity of
the multiphase fluid model is independent of the number of parts, which
is an enormous advantage for the simulation of large systems. Typically,
the kinetic simulations which have been described in this section take a few
hours of CPU time on a current size PC, while the multiphase models give
almost instantaneous answers. In both cases, the codes have been developed
using MATLAB®,

6. Conclusion

In this paper, we have presented several models of a supply chain. The
distinctive feature of these models is that they incorporate part attribute
numbers (such as time to due-date) which allow to define processing policies.
In this paper, we have considered a policy consisting in processing parts by
increasing attribute number. We have derived a first model of kinetic type
and have proposed a particle discretization of it. We also have derived fluid-
type models from a moment expansion of the kinetic model. The moment
models are closed by by a multiphase ansatz which has been shown to behave
satisfactorily on a typical test problem.

One main deficiency of these models are their fully deterministic char-
acter, while in practice, many parameters are incompletly known, and the
characteristics of the processors themselve involve some statistical fluctua-
tions (some may undergo breakdown, or scheduled maintenance, and so on).
In future work, we shall propose probabilistic versions of the present models
which, to some extent, remedy to the deficiencies of the present model.
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