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Abstract

The subject of this work are one-dimensional kinetic BGK

models, regarded as relaxation models for genuinely non-linear

scalar conservation laws. Kinetic profiles of shock waves in the

form of travelling wave solutions of the kinetic model are studied.

In particular, recent results on the existence and dynamic stability

of small amplitude travelling waves are reviewed, and a new result

on the existence of big travelling waves is proven.

1. Introduction

We consider the following one-dimensional BGK type equation

∂tf + v∂xf =M(ρf , v)− f for all (t, x) ∈ [0, T ]× R =: QT , v ∈ Ω (1.1)

here f(t, x, v) can be interpreted (in analogy with the Boltzmann equation)

as a probability density of particles that move with velocity v ∈ Ω at the

time-space position (t, x) ∈ QT . We shall assume that (Ω, dv) is a measure

space with Ω ⊂ R. In particular, discrete velocity models, where (1.1) is a

hyperbolic system, are included in our assumptions.

The function ρf (t, x) in (1.1) is the macroscopic density corresponding

to the distribution f , i.e., the zeroth order velocity moment

ρf (t, x) =

∫

f(t, x, v)dv for all (t, x) ∈ QT (1.2)
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where here and in the following we omit Ω under the integral sign in all

integrations with respect to v. The ‘Maxwellian’ M(ρ, v) is an equilibrium

distribution satisfying the moment conditions
∫

M(ρ, v)dv = ρ, and

∫

vM(ρ, v)dv = a(ρ), (1.3)

for a macroscopic flux function a(ρ) that will be assumed smooth and gen-

uinely non-linear, actually (without loss of generality) concave: a′′(ρ) < 0.

The properties (1.3) ensure, at least formally, that the macroscopic limit

equation (scaling with (t, x) → (t/ε, x/ε) and taking ε → 0) of (1.1) is the

scalar conservation law

∂tρ+ ∂xa(ρ) = 0. (1.4)

Weak solutions of initial value problems for (1.4) can be made unique by

an entropy condition. Thus, it would be desirable to introduce an entropy

already on the kinetic level. This is possible under an additional structure

condition on the Maxwellian: We shall assume that the Maxwellian is a

smooth and strictly increasing function of ρ:

∂ρM(ρ, v) > 0 . (1.5)

Then there exists a function φ(f, v) such that f = M(ρ, v) is equivalent

to ρ = φ(f, v). With the primitive Φ(f, v) (∂fΦ = φ), solutions of (1.1)

formally satisfy the entropy inequality

d

dt

∫

R

∫

Φ(f, v) dv dx =

∫

R

∫

(M(ρf , v)− f)(φ(f, v)− ρf )dv dx ≤ 0 .

The condition (1.5) can be seen as a subcharacteristic condition. It can be

used for proving stability results such as a TVD property corresponding to

entropy solutions of the macroscopic equation (1.4), see [1], [6].

Examples of Maxwellians M(ρ, v) that satisfy the moment conditions

(1.3) for a given flux function a (satisfying a(0) = 0) as well as (1.5), are

given by

M(ρ, v) =

∫ ρ

0
ψ(v − a′(r)) dr , v ∈ Ω = R , (1.6)

where ψ is a positive even function such that
∫

ψ dv = 1. For example,

for the Burgers flux a(ρ) = ρ2/2, choosing ψ(v) = π−1/2 exp(−v2), gives
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M(ρ, v) = 1
2 (erf(v) − erf(v − ρ)). A well known kinetic model for scalar

conservation laws is the Perthame-Tadmor model, see [10] reading

∂tf + a′(v)∂xf = χ(ρf , v)− f, (1.7)

with

χ(ρ, v) =







1 if 0 < v < ρ,

−1 if ρ < v < 0,

0 otherwise.

In this case the Maxwellian is a discontinuous function. This lack of smooth-

ness is an obstacle for the study of small waves by perturbation arguments

as carried out here for the BGK model (1.1). Existence of big travelling

waves has been studied by Golse [4].

It is well-known that equation (1.4) exhibits shock wave solutions, i.e.

solutions of the form

ρ(t, x) =

{

ρ− if x− st < x0,

ρ+ if x− st > x0,

where the constants ρ± and the wave speed s are related by the Rankine-

Hugoniot condition

s =
a(ρ+)− a(ρ−)

ρ+ − ρ−
. (1.8)

The admissibility condition

a(ρ)− a(ρ−)

ρ− ρ−
− s > 0 for all ρ ∈ (min(ρ+, ρ−),max(ρ+, ρ−)), (1.9)

can be derived by a vanishing diffusion argument (cf. [11]), for example by

constructing viscous profiles, i.e. travelling wave solutions of the regularized

parabolic conservation law

∂tρ+ ∂xa(ρ) = µ∂2xρ . (1.10)

In this framework (1.9) gives a necessary and sufficient condition for existence

of travelling wave solutions connecting the values ρ± at (x − st)/µ = ±∞.

For the concave flux functions a(ρ) considered here, (1.9) reduces to the

condition ρ− < ρ+.
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In this work, instead of (1.10), the kinetic regularization (1.1) is stud-

ied, in particular the questions, whether (1.1) permits travelling waves, and

whether these are selected in the macroscopic limit. Stability of these solu-

tions is therefore an issue.

The travelling wave problem follows by changing to the travelling wave

variable ξ = x− st, with s being the wave speed:

(v − s)∂ξf =M(ρf , v)− f , ξ ∈ R, v ∈ Ω, (1.11)

subject to the far-field conditions

f(±∞, v) =M(ρ±, v) , v ∈ Ω . (1.12)

The Rankine-Hugoniot condition (1.8) is derived as a necessary condition

for existence by integrating equation (1.11) with respect to v and by (1.3).

In Section 2, we review our recent results [3] on the existence and sta-

bility of small amplitude travelling waves assuming

ρ+ − ρ− = ε with 0 < ε << 1. (1.13)

It turns out that it is appropriate to rescale the travelling wave variable by

ξ → ξ/ε, to get

ε(v − s)∂ξf =M(ρf , v) − f ξ ∈ R, v ∈ Ω. (1.14)

To prove existence, f is constructed as a small perturbation of the Maxwellian

M(ρ−, v). Partially, our existence proof adapts ideas from Caflisch and Nico-

laenko [2], where existence of weak shocks for the Boltzmann equation of gas

dynamics has been proven. We shall only outline the proof here. Details can

be found in [3].

In Section 2 we also sketch the proof of stability of small amplitude

travelling waves. The idea is to decouple the equation into a macroscopic

part and a small microscopic part. Then we use L2-type energy (actually

entropy) methods for the macroscopic equation, which can be extended to

also control the microscopic part. Similar techniques have been used by Liu

and Yu [8] for the Boltzmann equation. For the Broadwell model, a discrete

velocity model for the Boltzmann equation, energy estimates have also been

used in [7].
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In Section 3 we prove existence of what we call big travelling waves, i.e.

the smallness assumption on the amplitude of the wave is removed. Here we

shall only consider the continuous velocity case v ∈ R. The existence proof

is non-constructive and, consequently, the result is somewhat weaker than

for small waves, since the far-field conditions (1.12) are only satisfied in a

weak sense. The main ideas of the proof are similar to Golse’s work [4] on

the Perthame-Tadmor model (1.7).

2. Small Amplitude Travelling Waves: Existence and Stability

In this section we shall be concerned with the existence of solutions of

(1.14) subject to (1.12). We start with a formal derivation of an approxima-

tion for travelling waves. We set

f =M(ρf , v) + ε2f⊥,

∫

f⊥dv = 0,

with

ρf = ρ− + εu , s = a′(ρ−) + εσ . (2.1)

Then integration of (1.14) with respect to v and ξ gives

a(ρf )− a(ρ−) + ε2
∫

vf⊥ dv = s(ρ− ρ−) .

Comparing O(ε2)-terms in this equation, we derive

a′′(ρ−)

2
u2 − σu = −

∫

(v − a′(ρ−))f
⊥ dv .

On the other hand, from the O(ε2)-terms in (1.14) we get

f⊥ = −(v − a′(ρ−))∂ρM(ρ−, v)∂ξu ,

leading to

a′′(ρ−)

2
u2 − σu = A∂ξu (2.2)

with the diffusion coefficient

A :=

∫

(v − a′(ρ−))
2∂ρM(ρ−, v) dv > 0 , (2.3)
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which is positive by (1.5). Observe that σ must be negative, since a′′(ρ−) <

0, this way u connects 0 at −∞ to a larger value at +∞. Then, formally,

the perturbation u, that carries the profile of the small wave, is a travelling

wave solution of the viscous Burgers equation corresponding to (2.2). In

this section we sketch how to make this argument rigorous, we also explain

stability in the subsequent section.

We shall work in the weighted Hilbert space Hv, in the v -direction,

defined by the scalar product

〈f, g〉v =

∫

fg

F
dv and norm ‖f‖v = 〈f, f〉

1

2

v .

The inverse of the weight being F (v) := ∂ρM(ρ−, v). We also consider the

L2-norm and H1-norm in the x direction, and we denote their norms by

‖ · ‖x and ‖ · ‖H1 , respectively. Finally we define the Hilbert space Hv by the

scalar product

〈f, g〉x,v =

∫ ∫

fg

F
dv dx,

and denote the corresponding norm by ‖ · ‖x,v.

Finally, we shall denote by Hk
v the space of functions which derivatives

in the x-direction up to order k are in Hv, and the corresponding norm by

‖f‖Hk
v
=

(

‖f‖2x,v + · · ·+ ‖∂kxf‖
2
x,v

)
1

2

.

Existence and stability of small waves rely on the following assumptions

on M . For ρ in R, we assume that M is a smooth, at least C2, function of

ρ. Moreover, for a given ρ, the moments of ∂ρM(ρ, v) are bounded up to the

third moment, i.e.
∫

(v − s)k∂ρM(ρ, v) dv <∞ with k = 0, 1, 2, 3. (2.4)

And finally, for given ρ1 and ρ2 the following holds

∫

(∂2ρM(ρ1, v))
2

∂ρM(ρ2, v)
dv <∞. (2.5)
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2.1. Existence

As for the formal argument we want to expand f in ε-powers. Instead

of taking the leading order to be M(ρf ), we take fas, which is constructed

as follows

fas := M(ρ, v) + ε2f⊥. (2.6)

The argument ρ of M satisfies an ODE that can be regarded as an approx-

imation of (2.2). In particular ρ satisfies the conditions

ρ(−∞) = ρ− and ρ(+∞) = ρ+. (2.7)

The function f⊥ is chosen in such a way that

ρ⊥ = O(ε) and that ε(v − s)∂ξfas =M(ρfas)− fas +O(ε3).

The conditions (2.7) satisfied by ρ, also imply that fas approaches M(ρ±, v)

as ξ → ±∞. We have the following existence result.

Theorem 2.1. Under the assumptions (2.4) and (2.5), and for ε small

enough, there exists a solution f of (1.14) unique in a ball in H1
v with center

fas.

Next we review the main ideas of the proof of Theorem 2.1. We introduce

g such that ε3/2g = f − fas. The power 2 turns out to be the right scaling in

order to get small non-linear and residual terms, since fas solves (1.14) up

to order ε3. We then seek a g that solves

ε(v− s)∂ξg+ g−Fρg =
1

ε2
{M(ρas+ ε

2ρg)−M(ρas)− ε
2Fρg)}+ ε

2h, (2.8)

and satisfies

g(±∞, v) ≡ 0, for all v ∈ Ω. (2.9)

Here

h :=
1

ε3
{M(ρas)− fas − ε(v − s)∂ξfas} = O(1) . (2.10)

We also observe that the condition (2.9) implies the orthogonality con-

dition
∫

(v − s)g dv = 0. (2.11)
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The next step to get existence of equation (2.8) is to decompose g into

a macroscopic part and a microscopic part, this reads

g(ξ, v) = z(ξ)Φ(v) + εw(ξ, v), (2.12)

where Φ := F
(

1 + ε σ
A(v − s)

)

, and z is defined by the condition
∫

(v −

s)Φw/F dv = 0. A similar projection was introduced in [2]. This way, we

linearise g around the limiting state M(ρ−, v) with a small correction. The

choice of the coefficient σ/A, in front of the correction term, guarantees that
∫

(v − s)Φ dv = 0. This, (2.9) and (2.11) imply that

w(±∞, v) ≡ 0, z(±∞) = 0, (2.13)

and consequently also that
∫

(v − s)w dv = 0,

∫

(v − s)2w dv = 0. (2.14)

Next we write down an equation for z (macroscopic equation) and an

equation for w (microscopic equation). First, substituting (2.12) into (2.8),

dividing by ε, and using ρg = zρΦ+ερw. The resulting equation is multiplied

by (v − s) and integrated with respect to v, this giving the macroscopic

equation

Ã ∂ξz = αz + εβ + εγ (2.15)

which is, in a sense, a linearised version of (2.2); here α = ρΦ(a
′(ρas)−s)/ε =

O(1), and Ã :=
∫

(v − s)2Φ dv = A+ O(ε) 6= 0. We do not write the terms

β and γ explicitly, instead we observe that α = O(1), β = O(ρ2g + ε) and

γ = O(ρw), or more precisely

‖β‖x ≤ C‖ρg‖∞ ‖ρg‖x +O(ε), ‖γ‖x ≤ C ′‖ρw‖x, (2.16)

for some constants C and C ′. Equation (2.15) gives an expression for ∂ξz,

which substituted into the expanded version of (2.8) gives the microscopic

equation

ε(v − s)∂ξw = Fρw − w + α̃z + εβ̃ + εγ̃. (2.17)

here the coefficients formally satisfy α̃ = O(1), β̃ = O(ρ2g + εh) and γ̃ =

O(ρw), and with the aid of assumptions (2.4) and (2.5), they also satisfy

‖α̃‖x,v <∞, ‖β̃‖x,v ≤ C‖ρg‖∞ ‖ρg‖x + ε‖h‖x,v , ‖γ̃‖x,v ≤ C ′‖ρw‖x, (2.18)
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for some constants C, C ′.

We make one more manipulation to get a final equation for w. We

introduce the following linear operator M,

Mw := Fρw − w − (v − s)2F

∫

(v − s)2w dv.

The operatorM is symmetric and strictly negative definite inHv, in contrast

to the linear operator Lw = Fρw − w which is negative semidefinite.

One can now prove that if w is a solution of

ε(v − s)∂ξw = Mw + α̃z + εβ̃ + εγ̃, (2.19)

subject to (2.14) at ξ = ±∞ then w is a solution (2.17) and satisfies (2.14)

for all ξ ∈ R, and vice versa. A similar result was proved in [2]. Therefore we

shall solve (2.15) coupled to (2.19) and subject to (2.13), with the advantage

that the linear operator M is coercive.

The second step consists of solving the associated linear equations

ε(v − s)∂ξw = Mw + fw with fw ∈ Hv. (2.20)

subject to (2.14) at ξ = ±∞, and the linear ODE

Ã∂ξz = αz + fz, with fz ∈ L2(R), (2.21)

subject to the initial condition z(0) = 0.

We have the following estimates. If z solves (2.21), then there exist

positive constants, say C, such that

‖z‖x ≤ C‖fz‖x and ‖∂ξz‖x ≤ C‖fz‖x.

For the linear equation (2.20), by the coercivity of M, we get

‖w‖x,v ≤
1

κ
‖fw‖x,v.

Existence of the linear w-equation is achieved by discretisation of the velocity

space, and using the coercivity of the operatorM, so that one can diagonalise

the discrete M and get a system of decoupled ODEs to be solved. In the

case of continous velocity space, the coercivity estimate is then applied to

get uniform estimates that let us take the limit to the continuous velocity

space.
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The existence proof of the non-linear problem uses a fixed-point map

argument and the smallness of ε. We define the fixed-point map, F , for a

given pair (z̄, w̄) corresponding to the projections of a ḡ. We then solve for

(z, w) the equations (2.15) and (2.17), with the coefficents α, β, γ, α̃, β̃ and

γ̃ evaluated using ḡ, and by imposing the initial data z(0) = 0. The solution

pair (z, w) of this linear sytem gives g = F(ḡ). To prove that the operator

has a fixed point, one uses the estimates on the linear equations, (2.16) and

(2.18). To estimate the L2-norms of the quadratic terms on ρḡ, we need to

control ‖ρḡ‖∞. This can be done by observing that, in one dimension, the

H1-norm controls the L∞-norm. Thus, it is also necessary to get estimates

on the first derivatives of z and w.

2.2. Stability

To study stability we shall first write equation (1.1) in the travelling

wave variable ξ = (x − st)ε, and introduce the parabolic scaling t → t/ε2,

where ε is the amplitude of the wave. Then equation (1.1) reads

ε2∂tf + ε(v − s)∂ξf =M(ρf )− f. (2.22)

Let us denote by φ the travelling wave solution constructed in Section 2.1,

and introduce the unknown G, given by

εG = f − φ, with G = ρF + εg, (2.23)

here we let ρ denote ρG, for simplicity. We further choose φ such that
∫

R

ρ dξ =

∫

R

(ρf − ρφ) dξ = 0. (2.24)

This condition fixes the shift of the travelling wave solutions, so one expects f

to approach this φ as t→ ∞. We shall further assume, that the macroscopic

travelling wave profiles are monotone:

∂ξ(a
′(ρφ)) ≤ 0. (2.25)

This condition is satisfied for the approximate wave fas in Section 2.1. How-

ever, a proof for the full kinetic profile φ is still missing.

The deviation G satisfies the equation

ε∂tG+ (v − s)∂ξG = R2 − g, (2.26)
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with

R2 :=
1

ε2
[M(ρφ + ερ)−M(ρφ)− ερF ] . (2.27)

Next we derive integral estimates as one would do for the purely macro-

scopic case. Before that, we shall split equation (2.26) into its microscopic

and macroscopic part, i.e. we apply two projections, P0 and P1, say, where

P0G = Fρ and P1G = εg. Application of the projection P0 to equation

(2.26) and division by F gives

∂tρ+
1

ε
(a′(ρ−)− s)∂ξρ+ ∂ξ

∫

(v − s)g dv = 0, (2.28)

and application of P1 gives

ε2∂tg + (v − a′(ρ−))F∂ξρ+ ε∂ξP1((v − s)g) = R2 − g. (2.29)

Equation (2.29) gives an expression for g. Substituting this expression into

(2.28) and writing

r2 :=

∫

(v − s)R2 dv =
1

ε
{a(ρφ + ερ)− a(ρ)− ερa′(ρφ)}, (2.30)

we arrive at the macroscopic equation

∂tρ− σ∂ξρ+ ∂ξr2 −A∂2ξρ− ∂ξ

∫

(v− s)
(

ε2∂tg + εP1((v − s)∂ξg)
)

dv = 0.

(2.31)

In a direct energy approach, the term ∂ξr2 leads to a contribution with the

bad sign, which cannot be controlled. This problem is circumvented by a

standard trick (see e.g. [8], [9]), introducing the new macroscopic unknown

W (ξ, t) =

∫ ξ

−∞

ρ(x, t) dx. (2.32)

The integrated macroscopic equation then reads, in terms of W ,

∂tW − σ∂ξW + r2 −A∂2ξW −

∫

(v − s)(ε2∂tg + ε P1((v − s)∂ξg)) dv = 0.

(2.33)

The advantage of introducing W becomes clear, if we assume for the

moment that (2.33) is purely macroscopic (the last term of the right-hand
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side is zero). Testing equation (2.33) with W gives the integral identity

1

2

d

dt

∫

R

‖W‖2x dξ +A

∫

R

(∂ξW )2 dξ +

∫

R

r2W dξ = 0.

We estimate the term containing r2 by first writing

r2 =
1

ε
(a′(ρφ)− a′(ρ−))ρ+

1

ε2
(a(ρφ + ερ)− a(ρφ)− εa′(ρφ)ρ),

then
∫

R

r2Wdξ ≤ −
1

2ε

∫

R

∂ξ(a
′(ρφ))W

2dξ −C0‖ρ‖
2
x ‖W‖∞, (2.34)

after integration by parts the first term of
∫

r2W . The first term in (2.34) is

positive by (2.25), and can be combined with similar terms which have the

wrong sign.

Similarly, we get integral identities from equations (2.33), (2.31) and its

derivatives with respect to ξ. In terms ofW , we have the following estimates

1

2

d

dt
‖W‖2x−

1

2ε

∫

R

∂ξ(a
′(ρφ))W

2dξ+(A−C0‖W‖∞)‖∂ξW‖2x+R
0 ≤ 0, (2.35)

1

2

d

dt
‖∂kξW‖2x + (A−

δ

2
)‖∂k+1

ξ W‖2x−
Ck

2δ
‖∂kξW‖2x +Rk≤0 for k=1, 2, (2.36)

where

Rk := −

∫

∂kξW∂kξ

{
∫

(v−s)(εP1((v−s)∂ξg+ε
2∂tg)dv

}

dξ = O(ε), (2.37)

for k = 0, 1, 2, δ ∈ (0, 2A) and the constants Ck for k = 1, 2 depend on ‖ρ‖∞.

Up to now, we have obtained estimates on the macroscopic part only.

The idea consists of combining the estimates for k = 0, 1, 2 to get an estimate

on theH2 norm ofW . If we ignore the microscopic parts of (2.35) and (2.36),

i.e. the Rk terms, and set δ = A, we get the following estimate on the H2-

norm of W (H1-norm of ρ)

1

2

d

dt

(

‖W‖2x + γ1‖∂ξW‖2x + γ2‖∂
2
ξW‖2x

)

+

(

A− C‖W‖∞ −
γ1C1

2A

)

‖∂ξW‖2x +

(

Aγ1
2

−
γ2C2

2A

)

‖∂2ξW‖2x ≤ 0. (2.38)

The L∞-norm of W is controlled by the H1-norm. Then the magnitude

of the constants Ck are controlled locally in t by the estimate (2.38) itself.

Hence, starting with initial data such that the initialW0 is small enough, and
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choosing γ1 and γ2 small enough to ensure that (A−C‖W‖∞−γ1C1/2A) ≥ 0

and (Aγ1/2−γ2C2/2A) ≥ 0, implies that the functional ‖W‖2x+γ1‖∂ξW‖2x+

γ2‖∂ξξW‖2x decreases with t for all t > 0, i.e the estimate implies global

existence in t, as well as stability of macroscopic travelling waves in H1

(ρ = ∂ξW ).

To achieve an analogous result for the full equation, the argument is

similar, but one has to take care of the contribution of the microscopic part.

The basic estimate for the microscopic part being

d

dt

{

‖∂kξ ρ‖
2
x + ε2‖∂kξ g‖

2
x,v

}

+
{

‖∂kξ g‖
2
x,v − ‖∂kξR2‖

2
x,v

}

≤ 0, (2.39)

for k = 0, 1, 2 (obtained from equation (2.29)). The quadratic terms (involv-

ing R2) are estimated by assuming ‖ρ‖∞ <∞. The next step is to combine

the macroscopic integral estimates (2.35) and (2.36) with the microscopic es-

timate (2.39), and play a similar game combining the estimates for different

order derivatives. The final result is the following

Theorem 2.2. Let f be a solution of (2.22) subject to initial data f0
satisfying (1.12), and let φ be a travelling wave solution such that (2.24) holds.

Then, under the assumtptions (2.4), (2.5) and (2.25), and if the initial data

is chosen such that W0 ∈ H3
v is small enough, the functional H given by

H = H0 + γ1H1 + γ2H2,

with, for k = 0, 1, 2,

Hk =
1

2
‖∂kξW‖2x−ε

2

∫

∂kxW

∫

(v−s)∂kξ g dv dξ+2ε3C‖∂kξ g‖
2
x,v+2εC‖∂kξ ρ‖

2
x,

is decreasing with respect to t for small enough values of ε, γ1 and γ2. In

particular, small amplitude travelling waves satisfying (2.24) are locally stable

in H2
v, in the sense that

ε

∫

∞

0
‖G‖2H1

ξ
(L2

v)
dt =

∫

∞

0
‖f − φ‖2H1

ξ
(L2

v)
dt <∞ .

3. Existence of Big Travelling Waves

In this section we prove existence of big travelling waves, i.e. solutions

of (1.11) subject to (1.12). Throughout this section v ∈ R. The main result
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is the following,

Theorem 3.1. Let M(ρ, v) be continuous with respect to v ∈ R and

continuously differentiable with respect to ρ ∈ R with ∂ρM > 0. Let

∫

|v2M(ρ, v)|dv <∞

for every ρ ∈ R. Then there exists a solution f(ξ, v) of the travelling wave

equation (1.11) with continuous macroscopic density ρf (ξ) satisfying the far-

field conditions (1.12) in the following sense: There exist sequences ξn → ∞

and ηn → −∞ such that

f(ξn, v) →M(ρ+, v), f(ηn, v) →M(ρ−, v), v-a.e.

Proof. We introduce the notation µ = v − s, g(ξ, µ) = f(ξ, µ + s) −

M(ρ−, µ + s), and

M̂(ρ, µ) =M(ρ+ ρ−, µ + s)−M(ρ−, µ + s).

Notice that M̂(ρ, µ) inherits the monotonicity with respect to ρ fromM and

also satisfies
∫

M̂(ρ, µ)dµ = ρ ,

∫

µM̂(ρ, µ)dµ = a(ρ+ ρ−)− a(ρ−)− sρ .

In terms of the new variables, the problem (1.11), (1.12) reads

µ∂ξg = M̂(ρg, µ)− g for ξ, µ ∈ R , (3.1)

subject to

g(−∞, µ) = 0, g(+∞, µ) = M̂ (ρ+ − ρ−, µ) for µ ∈ R. (3.2)

The first step is to solve an approximate problem (the slab problem) on

a finite ξ-interval:

µ∂ξg
L = M̂(ρL, µ)− gL for − L < ξ < L, µ ∈ R , (3.3)

subject to inflow boundary conditions

gL(−L, µ) = 0 for µ > 0, (3.4)

gL(L, µ) = M̂(ρ+ − ρ−, µ) for µ < 0, (3.5)
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where ρL = ρgL . Once this problem is solved, we shall pass to the limit

L→ ∞. �

Proposition 3.2. With the assumptions of Theorem 3.1 the slab prob-

lem (3.3)–(3.5) has a solution with continuous macroscopic density ρL(ξ),

satisfying

0 ≤ gL(ξ, µ) ≤ M̂(ρ+ − ρ−, µ) ∀ ξ, µ ∈ R , (3.6)

and, thus, 0 ≤ ρL(ξ) ≤ ρ+ − ρ−.

Proof. The proof is based on the fixed point map

T : θ 7→

∫

gθ dµ ,

where gθ solves

µ∂ξgθ = M̂(θ, µ)− gθ,

subject to the boundary conditions (3.4), (3.5), i.e.,

gθ(ξ, µ)=

{

1
µ

∫ ξ
−L M̂(θ(s), µ)e(s−ξ)/µds for µ>0,

M̂(ρ+ − ρ−, µ)e
(L−ξ)/µ + 1

−µ

∫ L
ξ M̂(θ(s), µ)e(s−ξ)/µds for µ<0.

A straightforward estimate, using the monotonicity of M̂ , shows that T

maps the set {ρ ∈ C([−L,L]) : 0 ≤ ρ ≤ ρ+ − ρ−} into itself.

Compactness of T is the consequence of a velocity averaging lemma

(cf. [5]). �

Due to the translation invariance of the problem, before going to the

limit L → ∞, we have to fix the shift of the profile to make sure that in

the limit the conditions (3.4) and (3.5) are satisfied. By using (3.6) and the

boundary conditions it can be seen that

ρL(−L) ≤

∫ 0

−∞

M̂(ρ+ − ρ−, µ)dµ ≤ ρL(L) .

and continuity of ρL implies that there exists a ξL ∈ (−L,L) such that

ρL(ξL) =
∫ 0
−∞

M̂(ρ+ − ρ−, µ)dµ. The strict montonicity of M̂ with respect

to the first argument implies

0 < ρL(ξL) =

∫ 0

−∞

M̂(ρ+ − ρ−, µ)dµ < ρ+ − ρ− .
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The next step is to extend the solution of the slab problem to the whole

ξ-domain R. We let gL1 denote the extension of gL, defined as follows:

gL1 (ξ, µ) =







gL(−L, µ) if ξ < −L,

gL(ξ, µ) if − L < ξ < L,

gL(L, µ) if ξ > L.

In order to take the limit L→ ∞, let Ln → ∞ as n→ ∞, let also ξn := ξLn

and gn(ξ, µ) = gLn

1 (ξ+ ξn, µ), so that ρgn(0) =
∫ 0
−∞

M̂(ρ+ − ρ−, µ)dµ. From

the bound (3.6) we have that gn → g in L∞(R× R) weak* (restricting to a

subsequence). Also, by velocity averaging, ρgn → ρg uniformly on compact

intervals with

ρg(0) =

∫ 0

−∞

M̂(ρ+ − ρ−, µ)dµ. (3.7)

To prove that g satisfies equation (3.1), it is necessary to prove that the

shifted interval [−Ln+ξn, Ln+ξn] tends to R. If we assume Ln+ξn → l <∞

as n → ∞, then by passing to the limit in the differential equation in the

distributional sense, g satisfies (3.1) for ξ > −l. Since, by velocity averaging,

we can pass to the limit in terms of the form
∫

gn(−l, µ)Φ(µ)dµ for arbitrary

test functions Φ, g(−l, µ) = 0 holds for µ > 0.

Integration of (3.1) with respect to µ shows that A =
∫

µg dµ is a

constant. Evaluation at ξ = −l gives

A =

∫ 0

−∞

µg(−l, µ)dµ ≤ 0 .

On the other hand, multiplication of (3.1) by µ and integration leads to

∂ξ

∫

µ2g dµ = a(ρ− + ρg)− a(ρ−)− sρg −A ≥ −A , (3.8)

where the inequality is a consequence of (1.9). By integration with respect

to ξ from −l to X,

A(X + l) ≥

∫

µ2g(−l, µ) dµ −

∫

µ2g(X,µ) dµ ,

where the right hand side is bounded uniformly in X. Passage to the limit

X → ∞ gives A ≥ 0, and, thus, A = 0. As a consequence, g(−l, µ) = 0 for

all µ.
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Since g is a bounded solution of (3.1), it satisfies

g(ξ, µ) =
1

µ

∫ ξ

∞

e(s−ξ)/µM̂(ρg(s), µ)ds for µ < 0 .

Evaluation at ξ = −l gives

0 =

∫

∞

−l
e(s+l)/µM̂(ρg(s), µ)ds for µ < 0 ,

with the consequence ρg(ξ) = 0 for ξ ≥ −l. This, however, contradicts (3.7),

hence Ln + xn → ∞ follows. Similarly one proves that Ln − xn → ∞, and

therefore g satisfies equation (3.1) for all x ∈ R.

The last step of the proof consists of checking that ρg(−∞) = 0 and

ρg(+∞) = ρ+ − ρ− in a suitable sense. For the argument we need an

entropy inequality. Since M̂ is a strictly increasing function of ρ, there

exists a function ϕ(g, µ), such that g = M̂(ρ, µ) is equivalent to ρ = ϕ(g, µ).

Let Φ(g, µ) satisfy ∂gΦ(g, µ) = ϕ(g, µ), then

∂ξ

∫

µΦ(g) dµ =

∫

(M̂ (ρg)− g)(ϕ(g) − ρg) dµ ≤ 0 . (3.9)

Hence, by the boundedness of g and upon integrating with respect to ξ over

R,
∫

∞

−∞

∫

(M̂ (ρg)− g)(ρg − ϕ(g)) dµ dξ <∞ .

Then there exist sequences ξn → ∞ and ηn → −∞ such that
∫

(M̂(ρg)− g)(ρg − ϕ(g)) dµ → 0 .

As a consequence there exist values ρ∞ and ρ−∞ such that

g(ξn, µ) → M̂(ρ∞, µ), g(ηn, µ) → M̂(ρ−∞, µ), µ-a.e.

modulo subsequences. Finally, using (3.8),

∂x

∫

µ2g dµ = a(ρ− + ρg)− a(ρ−)− sρg ≥ 0, (3.10)

and thus,
∫

µ2M̂(ρ−∞µ) dµ ≤

∫

µ2M̂(ρg(0)µ) dµ ≤

∫

µ2M̂(ρ∞, µ) dµ .
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Also by (3.10) and an argument as above we get that ρ±∞ have to satisfy

a(ρ−+ρ±∞)−a(ρ−)−sρ±∞=0 and therefore ρ−∞=0 and ρ∞=ρ+−ρ−. �
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