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Abstract

We review recent results on traffic instabilities. An innova-

tive approach to traffic dynamics is proposed. The self-organized

oscillatory and chaotic behavior of traffic flow are identified and

formulated. The results agree with the empirical findings for free-

way traffic and with the previous numerical simulations. Thus

the work gives a justification for observed and simulated traffic

instabilities and some insight into their meanings.

1. Introduction

We are interested in modeling rich nonlinear phenomena in traffic: the

formation of traffic jams, stop-and-go waves, chaos, hysteresis and phase

transitions, see Daganzo et al. [6], Helbing [13], Kerner [18], Kerner and Re-

hborn [20], Knospe, Santen, Schadschneider and Schreckenberg [22], Mauch

and Cassidy [40], Treiterer and Myers [50], Safonov and co-authors [49],

Intrigued by the phenomenology of real-world traffic and the simulations

of others, we propose an innovative approach to the nonlinear dynamics of

traffic flow. Our goal is to identify and precisely formulate the self-organized

oscillatory behavior and chaotic behavior in traffic.

There are many important approaches to the modeling of traffic phe-

nomena: microscopic models which explain traffic phenomena on the basis
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of the behavior of single vehicles, see Gazis, Herman and Rothery [9], meso-

scopic models such as kinetic or Boltzmann-like models which deal with

the statistical number-of-car distribution function and its time, space and

velocity dependence, see Prigogine and Herman [45], and macroscopic mod-

els which describe traffic phenomena through parameters which characterize

collective traffic properties, see Daganzo [5], Li [31, 32, 33], Lighthill and

Whitham [38], Payne [44], Richards [46], Whitham [52] and Zhang [55]. The

relationship between microscopic models and macroscopic models and the

relationship between kinetic models and macroscopic models are addressed

by Helbing [13], Klar and Wegener [21] and Lee et al. [28]. There are models

using either discrete or continuous state space, with discrete or continuous

time and/or space. For example, traffic cellular automaton (CA) model of

Gray and Griffeath [10] and Nagel [43] is discrete in both time and space.

We review instability results in Section 2. An innovative approach to

traffic dynamics is proposed in Section 3. Our results will be compared with

empirical and numerical findings in Section 4.

2. Traffic Instability

Traffic instability has been empirically studied by many authors, in-

cluding Helbing [13], Kerner [18], Kerner and Rehborn [20], Knospe, Santen,

Schadschneider and Schreckenberg [22], Mauch and Cassidy [40], Treiterer

and Myers [50], where stop-and-go waves and spontaneous formation of traf-

fic jams were observed.

The instability phenomena have been modeled and simulated by many.

Gray and Griffeath [10] studied the ergodic theory of traffic jams. They an-

alyzed a probabilistic cellular automaton (CA) as a prototype for the emer-

gence of traffic jams at some intermediate density range. Different clusters

of vehicles, including the cluster of large amplitude moving against the flow,

have been observed in the numerical investigations of the cellular automation

model by Nagel [43].

Assuming that there exists a function relation between the velocity and

the density v = ve(ρ), Lighthill and Whitham [38] and Richards [46] devel-

oped the first macroscopic model of traffic flow, LWR (Lighthill, Whitham

and Richards) theory,

ρt + (ρve(ρ))x = 0. (1)
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The function ve(ρ) is the equilibrium velocity and is non-increasing

v′e(ρ) ≤ 0. (2)

ve(0) = vf and ve(ρj) = 0, where vf is the free flow speed and ρj is the jam

concentration.

q(ρ) = ρve(ρ) (3)

is the so-called fundamental diagram in traffic flow.

A fundamental diagram gives a correspondence of vehicle density to the

flow rate in traffic which can in general be determined by measurements.

It is well-known that experimental flux-density plots show wide scatter in

certain density regime. It can be speculated that this scatter hides a more

complicated behavior of the speed-density relation. There are a huge number

of different suggestions about the speed-density relation. The fundamental

diagrams may be concave, nonconcave, smooth, discontinuous or have mul-

tiple branches. According to Nagel [43] and others, a typical fundamental

diagram looks like a ’reverse λ’ in the (ρ, q) plane. Multivalued fundamental

diagrams are suggested by Illner, Klar and Materne [15] and Günther, Klar,

Materne and Wegener [12]. In this paper, we adopt nonconcave fundamental

diagrams, see (10) and Figure 1. Thus the characteristic family of equation

(1) is not genuinely nonlinear. The characteristic speed of (1) is

λ∗(ρ) = q′(ρ) = ρv′e(ρ) + ve(ρ). (4)

which is not faster than the traffic speed ve(ρ) under the assumption that

v′e(ρ) ≤ 0. This is the so-called anisotropic property.

LWR model can explain the formation of shock waves which correspond

to congestion formation in traffic flow. The LWR theory fails in describ-

ing more complicated traffic flow patterns including hysteresis phenomena

and stop-and-go traffic. This is due to the unrealistic assumption that the

equilibrium speed is adapted instantaneously. The LWR model (1) has been

extended to nonequilibrium macroscopic models that include the dynamics

of the velocity [19, 23, 33, 34, 44, 52, 55].

Payne [44] and Whitham [52]. proposed the nonequilibrium PW model,

ρt + (ρv)x = 0 (5)

vt + vvx +
c20
ρ
ρx =

ve(ρ)− v

τ
(6)
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where τ > 0 is the relaxation time, c0 is the traffic sound speed coefficient

and ve(ρ) is the desired speed.

Equation (6) describes drivers’ acceleration behavior. The acceleration

consists of a relaxation to the static equilibrium speed-density relation and

an anticipation which expresses the effect of drivers reacting to conditions

downstream. The third term on the left hand side of (6) accounts for the

anticipation effect. Its physical meaning is that one tends to reduce speed

when the density increases. The right hand side of (6) is the relaxation term.

Schochet [47] established the well-posedness for certain Payne type higher

order traffic flow models. Lattanzio and Marcati [26] showed the convergence

to the equilibrium solution as the relaxation parameter τ tends to zero, away

from the vacuum for certain PW type higher order traffic flow models.

The model (5) (6) is a system of nonlinear hyperbolic equations. Its

characteristic speeds are

λ1 = v − c0 < λ2 = v + c0.

The model (5) (6) is stable if

λ1 < λ∗ < λ2 (7)

or

−c0 < ρv′e(ρ) < c0 (8)

on the equilibrium curve v = ve(ρ), see Whitham [52]. Condition (7) is the

so-called strict subcharacteristic condition. Under the strict subcharacteris-

tic condition (7), Li and Liu [36] and Liu [39] derived the nonlinear stability

of elementary waves. Indeed, under the assumption (7), it can be derived,

in the same spirit as the Chapman-Enskog expansion, that the relaxation

process is approximated by a viscous conservation law

ρt + (ρve(ρ))x = (β(ρ)ρx)x (9)

where β(ρ) = − τ
ρ
(λ∗ − λ1)(λ∗ − λ2) > 0.

The following is a fundamental diagrams that changes concavity

q(ρ) = 5.0461ρ((1 + e
ρ−0.25

0.06 )−1 − 3.72 · 10−6), (10)

see Figure 1.
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If q(ρ) is nonconcave, such as in (10), then there exists an unstable

region of Payne-Whitham model (5) (6)

[ρc1, ρc2], (11)

where ρc1 < ρi < ρc2 are solutions of

− c0 = ρv′e(ρ), (12)

where ρi is the inflection point of the nonconcave fundamental diagram (10).

Kühne [23], Kerner and Konhäuser [19] and Jin and Zhang [16] observed

the formation of vehicle clusters in the numerical solutions of the Payne-

Whitham model in the unstable regions. In particular, numerically solving

the viscous PW model by the centered Euler scheme, Kerner and Konhäuser

[19] found that if the density of vehicles exceeds some critical value, a small

perturbation in a homogeneous traffic flow on a circular ring road can grow to

a stationary moving cluster. If the density is increased further, the avalanche-

like process of cluster formation can start. Therefore, a sequence of clusters,

which appear subsequently in space and time, is created. The clusters in

this sequence have different amplitudes, different widths, different velocities,

and are not situated periodically in space. Similar results were found by

Jin and Zhang [16] when they numerically solved PW model (5) (6) by the

Godunov method. They found that the number of clusters, the position,

height and the width of each cluster were not predictable. Kerner, Klenov

and Konhäuser [17] developed an asymptotic theory of traffic jams of large

amplitude based on singular perturbation methods.

Kühne and co-workers found that there are stable and unstable fixed

points and limit cycles of an approximation of the viscous PW model (5) (6)

with the following nonconcave fundamental diagram

q(ρ) = vfρ(1− ρ1.4)4, (13)

where vf = 120km
h
. The approximation is based on a truncated expan-

sion using the eigenmode expansion from linear stability as a starting point,

which suggest that traffic near maximum flow operates on a strange attractor

[24]. Under certain circumstances, chaotic motion is observed. The unstable

traffic patterns are connected with nonlinear stochastics. Free traffic would

correspond to a point attractor and the oscillating traffic state to a stable

limit cycle. This corresponds to a subcritical Hopf bifurcation.
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In their numerical simulations of Payne-Whitham equations (5) (6) with

a nonconcave fundamental diagram

q(ρ) = V0

ρ(1− ρ
ρ0
)

1 + E( ρ
ρ0
)θ

(14)

where V0 = 120km
h
, ρ0 = 140veh

km
, E = 100 and θ = 4, Lee et al. [27] managed

to trigger a form of stop-and-go traffic that was propagating upstream, but

its downstream front was pinned at the location of the ramp.

Bando et al. [1] proposed an optimal velocity model in which the ac-

celeration of every car is determined by its velocity vn and a desired speed

V0(bn) depending on the headway bn to the car in front

dvn

dt
= a(V0(bn)− vn)

where the optimal velocity V0(h) = tanh(h − 2) + tanh(2) is a monotone

increasing function, a is a constant called sensitivity which equals the inverse

of the reaction time. The evolution of traffic congestion was observed with

the development of time. Berg and Woods [3] gave an analogous continuum

counterpart of the optimal velocity model which is in good agreement with

its discrete version. The fundamental diagram is

q(ρ) = ρV (ρ) = ρV0(
1

ρ
) (15)

which is nonconcave, xn+1−xn ∈ (∆xmin,∆xmax) is unstable, where ∆xmin

= 1 and ∆xmax = 3. Berg and Woods [2] defined a recursive map which

specify the plateau headway as a function of the upstream headway. In all

cases, nonconcave fundamental diagrams were needed to obtain the cluster

solutions.

In [8], Gasser and co-authors presented the bifurcation analysis on follow-

the-car traffic models describing dynamics of N cars on a circular road. It

is proved that the loss of stability generally is due to Hopf bifurcation. It is

also shown that variable reaction time changes the periodic dynamics and

that aggressive driving behavior increases the stability. Whitham [51] ob-

tained exact solutions representing periodic waves and solitary waves for a

car-following model including time lag. Nagatani [41] studied the physics

of traffic jams through microscopic car-following models. Safonov and co-

authors [49] studied chaos and multifractality in a time-delay car-following



2007] CLUSTERING SOLUTIONS OF TRAFFIC FLOW 287

traffic model. Numerical simulations with fundamental diagram (15) by

Greenberg [11] yielded roll-wave solutions.

3. A Class of Discrete Models

In [35], the author derived a class of dynamic traffic flow models that

capture the essential features of traffic jams. One key result is the identifica-

tion of the physical condition needed to obtain clustering solutions, namely

that, the fundamental diagrams change concavity.

Consider the traveling wave solutions of (5) (6), namely, solutions of

form

(P, V )(x− ct) = (P, V )(ξ)

where ξ = x−ct is the traveling wave variable. c is the traveling wave speed.

We are looking for clustering solutions on a ring road propagating with

a speed which is less than the vehicle speed

c < V. (16)

This reflects the fact that the vehicle clustering travels against the traffic

flow.

1

P 3
(−Q2 + c20P

2)P ′ =
ve(P )− c− Q

P

τ
. (17)

We denote the coefficient of P ′ in (17) as

B(P ) =
1

P 3
(−Q2 + c20P

2). (18)

and the numerator of the right hand side of (17) as

D(P ) = ve(P )− c−
Q

P
. (19)

Thus the right hand side of (17) is zero if and only if

PD(P ) = q(P )− (cP +Q) = 0, (20)

see (3).
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Figure 1. A Nonconcave Fundamental Diagram q(P ) intersects cP +Q at

three points.

B(P ) vanishes at a single point 0 < P = P0(Q) < 1.

For nonconcave fundamental diagram q(ρ) defined in (10), Q > 0, and

thus c = c(Q) < V can then be chosen so that

D(P ) = 0

holds at

P = P0(Q)

and at two other points,

P = P−(Q), P = P+(Q),

where 0 < P−(Q) < P+(Q) < 1 satisfying

0 < min{P−(Q), P0(Q)} < ρi < max{P+(Q), P0(Q)} < 1 (21)

where 0 < ρi < 1 is the only inflection point of q(ρ). (21) is consistent with

previous instability result (11) for PW model.
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Define

f(P ) = P +
γ

τ

D(P )

B(P )
(22)

for some γ > 0. Thus

f(P±) = P± (23)

and

f(P )− P < 0, P− < P < P+. (24)

Moreover, f(P ) is smooth and bounded on 0 ≤ P ≤ 1. Equation (17)

becomes

P ′ =
1

γ
(f(P )− P ). (25)

(23) shows that P± are the steady states of the nonlinear equation (25).

We now propose the following discrete model of traffic flow. Let 0 ≤

P1 ≤ P+ be given and define

Pn+1 = f(Pn), n ≥ 1. (26)

We may restrict γ
τ
in certain range, so f maps the interval

[δ, P+]

to itself, for some δ > 0. (23) shows that P± are the fixed points of the

nonlinear map (26).

Traffic model (26) is a discretization of (25). In other words, we are

considering the discretized traveling wave solutions. γ > 0 is the step size

of the traveling wave variable in the discretization. From physical systems,

values of output variables are often registered at discrete times. These values

can be plotted against the values at the preceding time step yielding an

iteration mapping of the system. One may study the power spectrum of the

output signal to decide about the internal dynamics [54].

In [35], Li showed that the dynamics of map (26) are governed by the

logistic map. The dynamics of the logistic map undergoes one stable steady

state, a period-2 cycle, a period-4 cycle and further period-doublings to
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cycles of periods 8, 16, 32,. . ., 2n, . . ., as the bifurcation parameter

α =
γ

τ

increases. The long-time behavior is aperiodic and exhibits sensitive de-

pendence on initial data P1. The results can explain the appearance of a

phantom traffic jam, which is observed in real traffic flow.

It turns out that P+ is an unstable fixed point of map (26) for all values

of α > 0.

If α > 0 is small, then P− is a stable fixed point of map (26) and it is the

only stable steady state. Thus the asymptotic behavior is that Pn converges

to P− as n→+∞.

When bifurcation parameter α > 0 is beyond certain critical value, the

fixed point P− loses its stability

f ′(P−) < −1.

In a certain bifurcation parameter range, there exist two stable fixed points

of the second iteration map f(f(P )). There is a periodic asymptotic state

which oscillates between these two states. This is a 2-cycle. The 2-cycle

bifurcates continuously from steady state P−.

The 2-cycle is stable for bifurcation parameter α > 0 to be in certain

range. Beyond that range, further period-doublings lead to cycles of periods

4, 8, 16, 32,..., 2n, ..., and then chaotic solutions as α > 0 increases.

If we set the size of the discretization of the traveling wave variable γ

to be a constant, then increasing α > 0 is equivalent to increasing 1

τ
. The

latter is the sensitivity to the stimulus. Therefore increasing the sensitivity

to the stimulus results in instability of the traffic flow.

4. Comparison

The analysis of large sets of traffic data has revealed the existence of

three traffic phases: free flow, synchronized flow and wide moving jams,

Kerner [18] and Kerner and Rehborn [20]. Free traffic would correspond to

the point attractor P−. The bifurcation from steady state P−. marks the

transition from free flow to synchronized flow. Traffic jams are formed when

further period-doublings lead to cycles of period 4, 8, 16, 32,..., 2n, ..., and
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to chaotic solutions. The dynamic behavior of map (26) correctly predicts

the empirical findings for freeway traffic.

In particular, the dynamics of map (26) predicts that the instability of

traffic occurs at some intermediate density range. This is because the oscilla-

tory and the or chaotic traffic occurs around P−. Therefore the oscillatory or

chaotic traffic occurs at intermediate density. This is in agreement with the

empirical findings that speeds, flows and densities exhibit greater variation

when measured in moderately dense queues as compared with measurements

in queues of higher density. Moreover, the oscillations did not affect freely

flowing upstream of a queue’s tail. It was also found that most oscillations

formed in moderately dense queues while propagating upstream, against the

flow of traffic, which agrees with our negative speed condition (16).

In summary, we proposed an innovative approach to model the nonlin-

ear dynamics of traffic flow. A class of discrete models were derived from

nonequilibrium continuum models. Discrete model (26) captures the es-

sential features of traffic jams. We are able to identify and formulate the

self-organized vehicle clustering and the transition to chaos in traffic. In par-

ticular, the dynamics of map (26) predicts that the traffic is stable at small

traffic density, is unstable above a certain critical density, and becomes sta-

ble again at very high density. This is identical to the empirical findings for

freeway traffic in Daganzo et al. [6], Helbing [13], Kerner, [18] Kerner and Re-

hborn [20], Knospe, Santen, Schadschneider and Schreckenberg [22], Mauch

and Cassidy [40], Treiterer and Myers [50], and to numerical simulations in-

cluding Gray and Griffeath’s [10] and Nagel’s [43] results on the emergence

of traffic jams by using a probabilistic cellular automaton (CA), Kerner and

Konhäuser’s [19], Jin and Zhang’s [16] results by numerically solving certain

nonequilibrium continuum traffic models. Moreover, our clustering solutions

propagate with a speed that is less than the vehicle speed. This reflects the

physical setting that the vehicle clustering travels against the traffic flow.

We found a unified condition in obtaining clustering solutions: the fun-

damental diagrams change concavity. The condition is suggested from the

experiment data (see Figure 1) and is used in the previous work of Bando et

al. [1], Kerner and Konhaüser [19], Jin and Zhang [16], and Lee et al. [27].

In global optimization, many nonconvex minimization problems are NP-

hard. Due to the nonconvexity of the total potential energy of the system

concerned, application of local analytic methods and the standard optimiza-

tion procedures cannot guarantee the identification of the global minima. In
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nonconvex dynamical systems, numerical methods may produce the so-called

chaotic solutions [7].
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19. B. S. Kerner and P. Konhäuser, Structure and parameters of clusters in traffic

flow. Phys. Rev. E, 50(1994), 54-83.

20. B. S. Kerner and H. Rehborn, Experimental properties of complexity in traffic

flow, Phys. Rev. E, 53(1996), R4275-R4278.

21. A. Klar and R. Wegener, Kinetic derivation of macroscopic anticipation models

for vehicular traffic, SIAM J. Appl. Math., 60(2000), 1749-1766.

22. W. Knospe, Ludger Santen, Andreas Schadschneider and Michael Schreckenberg,

Single-vehicle data of highway traffic: Microscopic description of traffic phases, Phys. Rev.

E, 65(2002), 056133-1-16.

23. R. D. Kühne, Macroscopic freeway model for dense traffic-stop-start waves and

incident detection, Ninth International Symposium on Transportation and Traffic Theory,

VNU Science Press, Ultrecht, 1984, 21-42.

24. R. D. Kühne and R. Becksculte, Nonlinear stochastics of unstable traffic flow,

Proceedings of the 12th International Symposium on the Theory of traffic flow and trans-

portation, 1993, 367-386.

25. D. A. Kurtze and D. C. Hong, Traffic jams, granular flow, and soliton selection,

Phys. Rev. E, 52(1995), 218-221.

26. C. Lattanzio and P. Marcati, The zero relaxation limit for the hydrodynamic

Whitham traffic flow model, J. Differential Equations, 141(1997), 150-178.

27. H. Y. Lee, H.-W. Lee and D. Kim, Origin of Synchronized traffic flow on highways

and its dynamic phase transitions, Phys. Rev. Lett., 81(1998), 1130-1133.

28. H. Y. Lee, H.-W. Lee and D. Kim, Macroscopic Traffic Models from Microscopic

car-following models, Phys. Rev. E, 64(2001), 056126-1-12.

29. T. Li, Global solutions and zero relaxation limit for a traffic flow model, SIAM J.

Appl. Math., 61(2000), no.3, 1042-1061.

30. T. Li, L
1 stability of conservation laws for a traffic flow model, Electron. J.

Differential Equations, 2001(2001), no.14, 1-18.

31. T. Li, Well-posedness Theory of An Inhomogeneous Traffic Flow Model, Discrete

Contin. Dyn. Syst. Ser. B, 2(2002), 401-414.

32. T. Li, Global solutions of nonconcave hyperbolic conservation laws with relaxation

arising from traffic flow, J. Differential Equations, 190(2003), 131-149.

33. T. Li, Modelling traffic flow with a time-dependent fundamental diagram, Math.

Methods Appl. Sci., 27(2004), 583-601.

34. T. Li, Mathematical Modelling of Traffic Flows, in Hyperbolic Problems: Theory,

Numerics, Applications, Proceedings of the Ninth International Conference on Hyperbolic

Problems held in CalTech, Pasadena, March 25-29, 2002, 695-704, Edited by T. Y. Hou

and E. Tadmor, Springer, 2003.



294 TONG LI [June

35. T. Li, Nonlinear dynamics of traffic jams, Phys. D, 207(2005), 41-51.

36. T. Li and Hailiang Liu, Stability of a traffic flow model with nonconvex relaxation,

Commun. Math. Sci., 3(2005), 101-118.

37. T. Li and H. M. Zhang, The mathematical theory of an enhanced nonequilibrium

traffic flow model, Network and Spatial Economics, A Journal of Infrastructure Modeling

and Computation, Special Double Issue on Traffic Flow Theory. 1(2001), 167-179.

38. M. J. Lighthill and G. B. Whitham, On kinematic waves: II. A theory of traffic

flow on long crowded roads, Proc. R. Soc. Lond. Ser. A, 229(1955), 317-345.

39. T.-P. Liu, Hyperbolic conservation laws with relaxation, Comm. Math. Phys.,

108(1987), 153-175.

40. Mauch, M. and Cassidy, M. J. (2002) Freeway traffic oscillations: observations

and predictions. International Symp. of Traffic and Transpn Theory, (M.A.P. Taylor,

Ed.) Elsevier, Amsterdam, 653-674.

41. Takashi Nagatani, The physics of traffic jams, Rep. Progr. Phys., 65(2002), 1331-

1386.

42. A. Nakayama, K. Hasebe and Y. Sugiyama, Optimal velocity model and its appli-

cations, 127-140, Traffic and Granular Flow ’01, M. Fukui, Y. Sugiyama, M. Schreckenberg,

D.E. Wolf, Springer 2003.

43. K. Nagel, Particle hopping models and traffic flow theory, Phys. Rev. E, 53(1996),

4655-4672.

44. H. J. Payne, Models of freeway traffic and control, Simulation Councils Proc. Ser.

: Mathematical Models of Public Systems, 1(1971), no.1, 51-61, Editor G.A. Bekey, La

Jolla, CA.

45. I. Prigogine and R. Herman, Kinetic Theory of Vehicular Traffic, American Else-

vier Publishing Company Inc., New York, 1971.

46. P. I. Richards, Shock waves on highway, Oper. Res., 4(1956), 42-51.

47. S. Schochet, The instant-response limit in Whitham’s nonlinear traffic-flow model:

uniform well-posedness and global existence, Asymptot. Anal., 1(1988), 263-282.

48. K. R. Smilowitz and C. F. Daganzo, Reproducible features of congested highway

traffic, Math. Comp. Mod., 35(2002), 509-515.

49. L. A. Safonov, E. Tomer, V.V. Strygin, Y. Ashkenazy and S. Halvlin, Chaos and

multifractality in a time-delay car-following traffic model, 119-126, Traffic and Granular

Flow ’01, M. Fukui, Y. Sugiyama, M. Schreckenberg, D.E. Wolf, Springer 2003.

50. Treiterer, J. and Myers, J. A. (1974), The hysteresis phenomenon in traffic flow,

in Transportation and Traffic Theory, Proceedings of the Sixth International Symposium

on Transportation and Traffic Theory, Edited by D. J. Buckley, Elsevier, New York.

51. G. B. Whitham, Exact solutions for a discrete system arising in traffic flow, Proc.

R. Soc. Lond. Ser. A, 428(1990), 49-69.

52. G. B. Whitham, Linear and Nonlinear Waves, Wiley, New York, 1974.

53. R.E. Wilson and P. Berg, Existence and classification of travelling wave solutions

to second-order highway models, 85-90, Traffic and Granular Flow ’01, M. Fukui, Y.

Sugiyama, M. Schreckenberg, D.E. Wolf, Springer 2003.



2007] CLUSTERING SOLUTIONS OF TRAFFIC FLOW 295

54. A. Wolf, J. B. Swift, H.L.Swinney and J. A. Vastano, Determining Lyapunov

exponents from a time series, Phys. D, 16(1985), 285-317.

55. H. M. Zhang, A theory of nonequilibrium traffic flow, Transp. Res. B., 32(1998),

no.7, 485-498.

Department of Mathematics, University of Iowa, Iowa City, IA 52242, U.S.A.

E-mail: tli@math.uiowa.edu


	1. Introduction
	2. Traffic Instability
	3. A Class of Discrete Models
	4. Comparison

