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Abstract

In this paper we propose some kinetic models which take

into account different mechanisms of coagulation between two pop-

ulations of dust particles inside interstellar nebulae. These models

are in general nonlinear; however, at the end of the paper we per-

form an approximate procedure to obtain a linear transport equa-

tion even for the model which considers the most general mecha-

nism of coagulation.

1. Introduction

Dust coagulation is an important phenomenon in astrophysical research

[7] since it plays an essential role in the chemical and dynamical evolution

of interstellar nebulae.

Measurements of the extinction curve [9] of light through interstellar

clouds show that the nature of interstellar dust consists of two distinct pop-

ulations of solid particles, small and relatively large grains (hereinafter indi-

cated with a and b, respectively). The bimodal nature of the grain size dis-

tribution has become well established, in the sense that the greatest masses

of the small grains are of several order of magnitude less than the masses of

large particles [9].
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Dust particles experience a great variety of phenomena which may sig-

nificantly modify their morphological properties, see, for instance, papers

[6, 10, 11, 13, 14]. In particular, within these phenomena, growth of large

grains, due to coagulation when they interact with each of the two pop-

ulations of dust particles, plays a relevant role [5]. Moreover, studies on

the microphysics of the coagulation process has shown that sticking of two

colliding particles occurs when the relative collision velocity is less than a

critical velocity, depending on mass, elastic properties and surface energy of

the dust material. Such a physical process leads to the disappearance of the

lighter components, which are removed by the large particles from the grain

mass distribution.

More precisely, in [5] it is suggested that the critical velocity vcr of

coagulation is given by the following law:

vcr = Kb R
−5/6, R =

RaRb

Ra +Rb
, Kb = 3.86

γ
5/6
b

E
1/3
b ρ

1/2
b

(1)

where Eb is the Young’s modulus, γb the surface energy, ρb the density and

Rb the radius of the large grain b. Ra, obviously, is the radius of the small

particle a.

We observe that typical critical velocities range between 102 to 5 · 104

m/s, whereas Ra can vary between 1 nm and 10nm and Rb is generally

greater than 100 nm.

According to the literature quoted above, it seems of some interest a

kinetic approach to sticking phenomena of dust particles, at least in the

early coagulation process of interstellar matter. A first attempt to build a

kinetic model for dust coagulation was performed in [3]. Very recently, this

model has been improved in [2], where well-posedness of the Cauchy problem

in unbounded domains and numerical simulations of the coagulation process

have been performed. Such a model, hereinafter called the simplest model, is

basically determined assuming that the large particles are at rest and conse-

quently coagulation occurs only when small particles, with a relative velocity

less than a suitable critical velocity, collide with the large ones. Under these

assumptions the whole system of large grains is viewed as a background

which enlarge its total mass but preserve the number of individual particles.

Therefore the evolution of small particles is shown to be governed by a linear

integro-differential equation.
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In the present paper we remove these constraints, first considering the

motion of large particles and then allowing coagulation also between large

grains.

The paper is organized as follows: in Section 2 we resume the main

features of the simplest model proposed in [2]. In Section 3 we extend this

model by allowing the motion of large particles, but assuming that collisions

between these particles are negligible and that collisions between small and

large grains do not alter the velocity of these last ones.

In the last section we assume that also large particles may experience

coagulation and scattering, by introducing a critical velocity wcr. In this case

we obtain a nonlinear Boltzmann-like model. Under some further assump-

tions, including that scattering between large particles can be neglected, we

derive a linear transport model which has the same mathematical structure

as the simplest model, except for a correction term due to the sticking of

large grains.

2. The Simplest Model

We resume here the main features of the simplest model, considered in

[2], for an interstellar dust composed of two different populations.

1. Small particles (or particles a). These are characterized by having a mass

µ, 0 < µ ≤ µo, and a number density n = n(r,v, µ, t), n(r,v, µ, t)drdvdµ

representing the number of particles with masses between µ and µ+ dµ

contained, at time t, in the volume element dr around the location r and

having velocities in the volume element of the velocity space dv around

the velocity v. Since the cross sections for small particles are very small,

the contribution of a− a collisions may be considered negligible.

2. Large particles (or particles b). The second population is character-

ized by having a mass m, mo ≤ m < +∞, and number density N =

N(r,m, t), where N(r,m, t) dr dm denotes the number of particles with

masses between m and m+ dm contained, at time t, in the volume ele-

ment dr around the location r. In such a model, the dependence of N

from the velocity variable is disregarded, since large particles are consid-

ered at rest with respect to some suitable reference frame. Thus, there

are no b− b collisions. Moreover it is assumed that µo ≪ mo.
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3. Coagulation collisions. Assume that a small particle of mass µ, with a

speed v := |v| less than a critical speed vcr, collides with a large particle

of mass m. The result consists in the formation of a single large particle

of mass m + µ. Moreover, considering µ = (4/3)πρaR
3
a (i.e., sphericity

of particles) and under the assumption that Ra ≪ Rb, formula (1) gives

vcr = β µ−5/18, β = Kb

(
4πρa
3

)5/18

, (2)

where ρa is the density of the small particle.

4. Scattering collisions. Assume that a small particle of mass µ, with a

speed v larger than vcr, collides with a large particle. This leads to an

inelastic scattering of the small particle.

5. Free streaming. During the time interval between two consecutive col-

lisions there are no forces acting on small particles, which move with

constant velocity.

From the above assumptions, the following balance equation for the den-

sity of small particles is obtained

∂

∂t
n(r,v, µ, t) = −v · ∇r n(r,v, µ, t)

−v[σcg(v, µ) + σsc(v, µ)]n(r,v, µ, t)

[∫ +∞

mo

N(r,m′, t) dm′

]

+

∫

R3

dv′
{
v′σs(v

′ → v, µ)n(r,v′, µ, t)
} [∫ +∞

mo

N(r,m′, t) dm′

]
, (3a)

r ∈ R
3, v ∈ R

3 and t > 0. Equation (3a) must be supplemented by the

following initial condition

n(r,v, µ, 0) = n0(r,v, µ). (3b)

The first term on the right hand side of (3a) takes into account the free

streaming of small particles. The second one is a loss term describing the

disappearance of small particles from the phase-space point (r,v, µ) due to

coagulation, with isotropic coagulation cross-section σcg(v, µ) ≥ 0, and to

out-scattering, with total scattering cross-section σsc(v, µ) ≥ 0. The third

term is a gain term due to in-scattering, because small particles appear

in the phase-space point (r,v, µ) after a scattering collision with a large

particle that changes their velocity from v
′ to v. The scattering mechanism

is intended to be inelastic, so that a-particles, which initially have a velocity
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greater than vcr, may loose their velocity after some collisions and then

coagulate when the velocity critical value is reached. Moreover in (3a)

σsc(v, µ) =

∫

R3

σs(v → v
′, µ) dv′, (4)

where σs is the differential scattering cross-section,

σsc(v, µ) = 0 ∀ |v| < vcr(µ) (5)

σcg(v, µ) = 0 ∀ v > vcr(µ). (6)

We observe that the coagulation process is assumed to be isotropic so that

the corresponding cross section depends only on v = |v|. In addition, let

us remark that the cross-sections depend only on the mass µ of small par-

ticles. This approximation is coherent with the fact that the main physical

parameter in the interaction mechanism is the reduced mass µm/(µ + m)

which, when µ << m, coincides with µ. For the same reason also the critical

velocity vcr of coagulation depends on µ only. This approximation, however,

allows to reduce (3a) to a linear form, as we shall see later.

The balance equation for large particles reads

∂

∂t
N(r,m, t) = −N(r,m, t)

∫

R3

dv′

∫ µo

0

dµ′
[
v′σcg(v

′, µ′)n(r,v′, µ′, t)
]

+

∫

R3

dv′

∫ µ∗

0

dµ′
[
v′σcg(v

′, µ′)n(r,v′, µ′, t)N(r,m−µ′, t)
]
(7a)

for r ∈ R
3 and t > 0. As for equation (3a), an initial condition has to be

given for (7a), such as

N(r,m, 0) = N0(r,m). (7b)

In equation (7a) µ∗ := min{µo,m−mo} since N(r,m, t) is only defined for

m ≥ mo. The first term on the right hand side of equation (7a) is a loss

term describing the disappearance of large particles from the phase-space

point (r,m), due to coagulation collisions with small particles of any mass

µ′, that change the mass from m to m+µ′ (out-growing). The second term is

a gain term describing the appearance, in the phase-space point (r,m) after

coagulation with small particles of mass µ′, of large particles that change

the mass from m− µ′ to m (in-growing).
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Equations (3) and (7) give the dynamics of the simplest model. Never-

theless, as shown in [2], such equations can be re-written by introducing the

integrated density

N̂(r, t) :=

∫ +∞

mo

N(r,m, t) dm, (8)

which represents the total number density of large particles in r at time t.

Moreover it was easy to show that

N̂(r, t) = N̂0(r) :=

∫ +∞

mo

N0(r,m) dm (9)

for all r ∈ R
3. Thus, the total number of large particles is constant for all

t ≥ 0, since the coagulation process does not change the total number of

these particles, but increases only their total mass.

This result allows to re-write equation (3a) as follows

∂

∂t
n(r,v, µ, t) = −v · ∇r n(r,v, µ, t)

−vN̂0(r) [σcg(v, µ) + σsc(v, µ)]n(r,v, µ, t)

+N̂0(r)

∫

R3

dv′
{
v′σs(v

′ → v, µ)n(r,v′, µ, t)
}
, (10)

for r ∈ R
3, v ∈ R

3 and t > 0. In paper [2] well-posedness of the Cauchy

problems (3) and (7) has been proven under the assumption that the quan-

tities vσsc(v, µ) and vσcg(v, µ) are bounded non-negative and measurable

functions. Moreover some numerical simulations have also been performed

in order to evaluate the rate of decrease versus time of the a-particle popu-

lation.

3. Coagulation with Motion of Large Particles

In this section, we partially remove one of the assumptions made in the

previous section, considering now that large particles can move in the space

with velocity w. However we continue to assume that b− b interactions (i.e.,

interactions between large particles) are negligible. The distribution func-

tion of these particles is now defined by N = N(r,w,m, t). Consequently,
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equation (3a) becomes:

∂

∂t
n(r,v, µ, t) = −v · ∇r n(r,v, µ, t)

−n(r,v, µ, t)

∫

|v−w
′|<vcr

dw′ |v −w
′|σcg(|v −w

′|, µ)N̂ (r,w′, t)

−n(r,v, µ, t)

∫

R3

dv′

∫

|v−w
′|>vcr

dw′ |v −w
′|σs(v → v

′,w′, µ)N̂(r,w′, t)

+

∫

R3

dv′

∫

|v′−w
′|>vcr

dw′ |v′ −w
′|σs(v

′ → v,w′, µ)N̂ (r,w′, t)n(r,v′, µ, t), (11)

where, similarly to the previous section, we put

N̂(r,w, t) :=

∫ +∞

mo

N(r,w,m, t) dm. (12)

In the above equation, the first two integral terms account for the loss of

small particles of velocity v due to coagulation and scattering, respectively,

whereas the third integral term is a gain term produced by scattering of

small particles that after collision assume velocity v. Observe that now the

critical velocity vcr, in the integrals, is obviously compared to the incoming

relative speed |v − w
′| or |v′ − w

′| of the colliding dust particles. In (11),

the differential scattering cross-section σs now depends also on the velocity

w
′ of the b-particles. We observe that, thanks to the different order of

magnitude of the masses of the particles a and b, interactions between them

are assumed not altering the incoming velocity w
′ of grains b. Note also that

the coagulation cross-section σcg depends, as usual, on the modulus of the

incoming relative velocity.

We can now deduce the evolution equation of large grains which turns

out to be only a simple generalization of equation (7a) for moving particles

of type b:

∂

∂t
N(r,w,m, t) = −w · ∇r N(r,w,m, t)

−N(r,w,m, t)

∫ µo

0

dµ′

∫

|v′−w|<vcr

dv′ |v′ −w|σcg(|v
′ −w|, µ′)n(r,v′, µ′, t)

+

∫ µ∗

0

dµ′

∫

|v′−w|<vcr

dv′ |v′−w|σcg(|v
′−w|, µ′)n(r,v′, µ′, t)N(r,w,m−µ′, t). (13)

Thus, by following the same line of Lemma 3 of paper [2], it is easy to show
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that integration of equation (13) over m yields

∂

∂t
N̂(r,w, t) = −w · ∇r N̂(r,w, t), (14)

so that

N̂(r,w, t) = N̂0(r −wt,w), (15)

where

N̂(r,w, 0) = N̂0(r,w), (16)

with N̂0(r,w) given. Hence,

∫ +∞

mo

N(r,w,m, t) dm = N̂0(r −wt,w) = F (r,w, t) (17)

where F is a known function.

By using (17), equation (11) can be re-written in the following form

∂

∂t
n(r,v, µ, t) = −v · ∇r n(r,v, µ, t)

−n(r,v, µ, t)

∫

|v−w
′|<vcr

dw′ |v −w
′|σcg(|v −w

′|, µ)F (r,w′, t)

−n(r,v, µ, t)

∫

R3

dv′

∫

|v−w
′|>vcr

dw′ |v −w
′|σs(v → v

′,w′, µ)F (r,w′, t)

+

∫

R3

dv′

∫

|v′−w
′|>vcr

dw′ |v′ −w
′|σs(v

′ → v,w′, µ)F (r,w′, t)n(r,v′, µ, t).(18)

We observe that the last equation is linear since the function F , as already

said, is known.

Remark. If we assume that N̂0 is independent from space, i.e. N̂0 =

N̂0(w), then we find from (15)

N̂(r,w, t) = N̂0(w), (19)

namely the total number of large particles, with velocity w, is constant for

all t ≥ 0.

4. Coagulation between Large Particles

In this section we will assume that large grains b can move and can also
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experience coagulation. At this end we introduce, in the same fashion as for

interactions between particles a and b, a critical velocity of coagulation wcr

between b-particles. Assuming that two spherical b-particles of masses, say

m and m′, have the same density ρb, then the reduced radius R turns out to

be

R =

[
3mm′

4πρb(m+m′)

]1/3
,

and formula (2) this time becomes

wcr = β

(
mm′

m+m′

)−5/18

, β = Kb

(
4πρb
3

)5/18

. (20)

Moreover, considering two b-particles of masses m,m′, moving with veloc-

ities w,w′, we define a suitable coagulation cross-section Σcg = Σcg(|w
′ −

w|,m,m′) such that

Σcg(|w
′ −w|,m,m′) = 0 ∀ |w′ −w| > wcr(m,m′). (21)

Note that Σcg is related to the probability that two particles with velocities

w, w′ and masses m, m′ undergo a coagulation event that produces a single

particle of mass m+m′.

After these definitions, we are able to re-write equation (13) adding to

this equation new gain and loss terms. In particular we have to consider

- a loss term (in the balance equations of grains of mass m) due to coag-

ulation between two grains b that, before collision, have masses m, m′

and velocities w, w′, respectively, i.e.

−N(r,w,m, t)

∫ +∞

mo

dm′

∫

|w′−w|<wcr

dw′ |w′ −w|Σcg(|w
′ −w|,m,m′)

×N(r,w′,m′, t); (22)

- a gain term due to coagulation between two particles b which, before

collision, have masses m′, m′′ and velocities w′, w′′, and which coagulate

in a single grain of mass m = m′ +m′′ > 2mo and velocity w, i.e.

+H(m−2mo)

∫ m−mo

mo

dm′

∫

|w′−w
′′|<wcr

dw′ |w′−w
′′|Σcg(|w

′−w
′′|,m−m′,m′)

×N(r,w′,m′, t)N(r,w′′,m−m′, t), (23)
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where H is the Heaviside function (coagulation between to b-particles

cannot lead to particles with mass smaller than 2mo); in (23) momentum

conservation implies that

w
′′ =

mw −m′
w

′

m−m′
; (24)

- a loss term due to inelastic scattering between two large grains of masses

m,m′ that, before collision, have velocities w,w′, and after collision have

velocities w∗,w
′
∗, i.e.

−N(r,w,m, t)

∫

R3×R3

dw∗ dw
′
∗

∫ +∞

mo

dm′ |w′ −w|

× Σs

(
(w,w′) → (w∗,w

′
∗),m,m′

)
N(r,w′,m′, t), (25)

where Σs is the scattering differential cross-section (which vanishes if

|w′ − w| < wcr(m,m′)) and w
′ = w

′(w,w∗,w
′
∗,m,m′), through mo-

mentum conservation;

- a gain term due to inelastic scattering between two particles b of masses

m,m′ that, before collision, have velocities w∗,w
′
∗ such that |w∗−w

′
∗| >

wcr, and after collision have velocities w,w′, i.e.,

+

∫

R3×R3

dw∗ dw
′
∗

∫ +∞

mo

dm′ |w∗ −w
′
∗|

× Σs

(
(w∗,w

′
∗) → (w,w′),m,m′

)
N(r,w∗,m, t)N(r,w′

∗,m
′, t), (26)

where we recall that w′ = w
′(w,w∗,w

′
∗,m,m′).

Equation (13) with these new terms assumes a nonlinear form, so that it can

be considered a true Boltzmann-like equation [4], to be coupled with equation

(11) for a-particles. Such an equation is very similar to that studied in [8]

and analogous to kinetic equations appearing in papers [1, 12], concerning

coalescence of droplets in sprays, where also breakup is considered.

In order to obtain an evolution equation which includes coagulation for

large grains and, at the same time, can be reduced to a linear transport

equation, one has to neglect scattering between particles b. Such a require-

ment can be justified by the following conjecture. Temperature inside an

interstellar cloud results to be of only some Kelvin degree [5]. Therefore, the

characteristic velocity of large grains, as for instance the thermal velocity

[4], can be very small if compared to the coagulation critical velocity wcr.
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Consequently, one can argue that the number of b − b collisions with scat-

tering is of some order of magnitude less than that producing coagulation.

If this hypothesis is assumed, then the evolution equation for grains b can

be written disregarding the terms (25) and (26). Thus, we obtain

∂

∂t
N(r,w,m, t) = −w · ∇r N(r,w,m, t)

−N(r,w,m, t)

∫ µo

0

dµ′

∫

|v′−w|<vcr

dv′ |v′ −w|σcg(|v
′ −w|, µ′)n(r,v′, µ′, t)

+

∫ µ∗

0

dµ′

∫

|v′−w|<vcr

dv′ |v′ −w|σcg(|v
′ −w|, µ′)n(r,v′, µ′, t)N(r,w,m− µ′, t)

−N(r,w,m, t)

∫ +∞

mo

dm′

∫

|w′−w|<wcr

dw′ |w′−w|Σcg(|w
′−w|,m,m′)N(r,w′,m′, t)

+H(m− 2mo)

∫ m−mo

mo

dm′

∫

|w′−w
′′|<wcr

dw′ |w′ −w
′′|Σcg(|w

′ −w
′′|,m−m′,m′)

×N(r,w′,m′, t)N(r,w′′,m−m′, t). (27)

This equation, together with (11) for small grains, constitutes the objective

of this section. Nevertheless (27) is still a nonlinear equation; however, in

(11), the quantity N̂(r,w, t), defined by (12), is what is needed. We then

integrate both sides of (27) with respect to m, obtaining after standard

calculations

∂

∂t
N̂(r,w, t) = −w · ∇r N̂(r,w, t)

−

∫ +∞

mo

dm

∫ +∞

mo

dm′

∫

|w′−w|<wcr

dw′ |w′ −w|Σcg(|w
′ −w|,m,m′)

×N(r,w,m, t)N(r,w′,m′, t)

+

∫ +∞

mo

dm′

∫ +∞

mo

dm′′

∫

|w′−w
′′|<wcr

dw′ |w′ −w
′′|Σcg(|w

′ −w
′′|,m′′,m′)

×N(r,w′,m′, t)N(r,w′′,m′′, t), (28)

where now w
′′ = w +m′(w −w

′)/m′′, since we have used the substitution

m′′ = m−m′.

Note that the second and third term on the r.h.s. of (27) cancel each

other, after integration with respect tom, because coagulation between small

and large particles does not change N̂ . We also remark that (28) is not an

equation for the “unknown” N̂(r,w, t) because it involves also N(r,w,m, t).
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In the following section, we shall derive an approximate version of (28)

involving only N̂ .

5. An Approximate Procedure

If we assume, for simplicity, that wcr does not depend on m and m′

(which is coherent with the assumption that all b-particles coagulate when

they interact) and that

Σcg(|w
′ −w|,m,m′) ≃ Σcg,o/|w

′ −w|, Σcg,o = const. ,

which corresponds to the so-called Maxwellian molecules for the classical

Boltzmann equation [4]. With this assumption, (28) becomes

∂

∂t
N̂(r,w, t) = −w · ∇r N̂(r,w, t)− Σcg,o N̂(r,w, t)

∫

|w′−w|<wcr

dw′ N̂(r,w′, t)

+Σcg,o

∫ +∞

mo

dm′

∫ +∞

mo

dm′′

∫

|w′−w
′′|<wcr

dw′ N(r,w′,m′, t)N(r,w′′,m′′, t), (29)

recalling that w′′ = w +m′(w −w
′)/m′′.

Assume also that the collision mechanism of two b-particles is dominated

by collisions between particles having almost the same mass, i.e. m′ ≃ m′′ ≃

m/2. Correspondingly, the momentum balance becomes: w′′/2+w
′/2 = w,

and so w
′′ −w

′ = 2(w −w
′). We then obtain from eq.(29)

∂

∂t
N̂(r,w, t) = −w · ∇r N̂(r,w, t)−Σcg,o N̂(r,w, t)

∫

|w′−w|<wcr

dw′ N̂(r,w′, t)

+Σcg,o

∫

|w−w
′|<wcr/2
dw′ N̂(r,w′, t)N̂(r, 2w −w

′, t). (30)

The (rather rough) derivation of (30) is not important in itself. What is

interesting is that (30) suggests the following approximate form of eq.(28)

∂

∂t
N̂(r,w, t) = −w · ∇r N̂(r,w, t)− λ[N̂(r,w, t)]2, (31)

where λ is a suitable non-negative constant. As shown in what follows, the

solution of (31) gives some clue about the behavior of the density N̂ . As far

as λ is concerned, it should be chosen so that
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λ ≃ −
{
− Σcg,o N̂(r,w, t)

∫

|w′−w|<wcr

dw′ N̂(r,w′, t)

+ Σcg,o

∫

|w−w
′|<wcr/2
dw′ N̂(r,w′, t)N̂ (r, 2w −w

′, t)
}
/[N̂ (r,w, t)]2. (32)

Hence, if we assume that N̂ is “almost independent” on w (see Section 2)

we have

λ ≃ Σcg,o

∫

|w′−w|<wcr

dw′ − Σcg,o

∫

|w−w
′|<wcr/2
dw′

= Σcg,o

(4π
3
w3
cr −

4π

3

w3
cr

8

)
=

7π

6
Σcg,ow

3
cr.

Since (31) (with r substituted by r +wt) becomes

d

dt
N̂(r +wt,w, t) = −λ[N̂(r +wt,w, t)]2, (33)

integration, with the initial condition

N̂(r,w, 0) = N̂0(r,w) =

∫ +∞

mo

N(r,w,m, 0)dm,

gives

N̂(r +wt,w, t) =
N̂0(r,w)

1 + λN̂0(r,w)t

and thus

N̂(r,w, t) =
N̂0(r −wt,w)

1 + λN̂0(r −wt,w)t
= Φ(r,w, t). (34)

Substitution of the integrals over m′ of eq.(11) with N̂ , given by (34), leads

to a ”reasonable” linear approximate equation for the density n(r,v, µ, t)

into eq.(11) itself, that is

∂

∂t
n(r,v, µ, t) = −v · ∇r n(r,v, µ, t)

−n(r,v, µ, t)

∫

|v−w
′|<vcr

dw′ |v −w
′|σcg(|v −w

′|, µ)Φ(r,w′, t)

−n(r,v, µ, t)

∫

R3

dv′

∫

|v−w
′|>vcr

dw′ |v −w
′|σs(v → v

′,w′, µ)Φ(r,w′, t)
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+

∫

R3

dv′

∫

|v′−w
′|>vcr

dw′ |v′ −w
′|σs(v

′ → v,w′, µ)Φ(r,w′, t)n(r,v′, µ, t). (35)

We remark that (35) is linear as (18) and has the same mathematical struc-

ture. The only difference consists in the presence of the unknown function

Φ (instead of F ) which takes into account the dominant mechanism of co-

agulation between b-particles through the parameter λ.

We finally observe that a further approximate procedure on (35), sim-

ilar to that leading to (31), might be used to derive a simpler equation for

n̂(r,v, t) =
∫ µo

0
n(r,v, µ, t)dµ.
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