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MAGNETOHYDRODYNAMIC APPROACHES TO

MEASURE-VALUED SOLUTIONS OF THE

TWO-DIMENSIONAL STATIONARY EULER EQUATIONS

BY

TAKAHIRO NISHIYAMA

Abstract

It is proved that Galerkin approximations of nonstation-

ary magnetohydrodynamic equations with artificial terms gener-

ate measure-valued solutions to the stationary Euler equations in

two dimensions.

1. Introduction

Let us introduce a nonstationary system of equations for a viscous and

perfectly conductive magneto-fluid in a domain Ω (⊂ R2) with artificial

terms:

vt + v · ∇v + αωJvt − β∆vt

= −∇q +B · ∇B −∇(|B|2/2) + γ∆v,

Bt = J∇((v + αvt) · (JB)),

∇ · v = ∇ ·B = 0.























(1)

Here (v,B, q) : Ω × {t > 0} → R2 × R2 × R is the triple of the velocity,

magnetic field and pressure of the magneto-fluid with unit density. The

operator J represents π/2 counterclockwise rotation around the origin on

R2-plane. It corresponds to the three-dimensional vector product symbol ×

(see §2) and ω = (J∇) · v means vorticity. The constants α and β denote
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the magnitudes of the artificial terms, while the constant γ denotes viscosity.

The second equation of (1) is rewritten in the form

Ψt + (v + αvt) · ∇Ψ = 0, (2)

where Ψ is a flux function of B, that is, B = −J∇Ψ = −J∇(Ψ+ c(t)) with

an arbitrary function c(t). On the boundary Γ, we assume that

v|Γ = 0, B · n|Γ = 0 (3)

are satisfied, where n is the unit outward normal vector on Γ.

The reason for introducing (1) is that the author is interested in justify-

ing Moffatt’s magnetic relaxation approach to stationary Euler flows some-

how in a rigorous sense. If we set α = β = 0 and γ > 0, then (1) corresponds

to the two-dimensional version of Moffatt’s system in [6]. In [7, §5], he as-

serted its relaxation to an equilibrium

B · ∇B = ∇(q + |B|2/2), ∇ ·B = 0, v = Bt = 0

at t = ∞, and moreover, the “topological accessibility” of B|t=∞ from the

initial data B|t=0. Namely, u = B|t=∞ with p = −(q + |B|2/2)|t=∞ is a

solution to the two-dimensional stationary Euler equations for an inviscid

incompressible fluid:

u · ∇u = −∇p, ∇ · u = 0, (4)

and the topology of field lines of u = B|t=∞ (or streamlines) is similar to that

of B|t=0. This is remarkable because his approach to (4) with nonvanishing

vorticity is completely different from usual variational approaches (e.g., [13])

and others ([12], [15]). However, to justify his assertion in its entirety in a

rigorous sense, we need the existence of a temporally global solution to his

system in the sense of distribution in space, at the weakest, which seems

difficult to prove. In addition, even if it is proved and the decay v → 0 (as

t → ∞) in L2(Ω) = (L2(Ω))2 is obtained, the rigorous derivation of vt → 0

in L2(Ω) does not seem easy.

If we set α > 0 and β = γ = 0, then (1) corresponds to the system of

Vallis et al. [14, §5]. They asserted its relaxation to a steady state as t→ ∞.

However, their assertion is also difficult to prove rigorously.

Two essential features of Moffatt’s magnetic relaxation theory are the

monotone decrease of energy and the frozen-in phenomenon of magnetic field
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lines to the fluid. Although (1) with α > 0 and β > 0 may seem too artificial,

it retains these two features. Indeed, the monotone decrease of energy can be

shown as (16) below, and (2) implies that magnetic field lines are advected

with the pseudo-velocity v + αvt.

Our main aim in this paper is to prove that a sequence of solutions

to a Galerkin approximation of (1) with (3) for α > 0, β ≥ 0 and γ > 0

converges to a measure-valued solution to (4). It is done in §3 by letting

both t and the number of basis functions go to infinity simultaneously. By

this simultaneous limiting, we can evade the problem of temporally global

solvability of (1). The positiveness of α enables us to have (19) below. If

(19), or weaklier (28) can be proved for α = 0, then Theorem 1 will remain

valid for α = 0.

In §4, we prove three lemmas on the measure-valued solution. Particu-

larly, Lemmas 2 and 3 are obtained when β > 0. Their validity for β = 0 is

open. If we can prove Theorem 1 for α = 0, that is, (28) for α = 0, then all

of Lemmas 1–3 will be valid for α = β = 0. In other words, the only reason

for adding the artificial terms in (1) is that we do not know the validity of

(28) for α = 0.

Solvability in the sense of measure is a generalization of usual weak

solvability. It was first used in the discussion of equations of conservation

laws by DiPerna [1]. Generalizing his results, DiPerna and Majda [2], [3]

applied the concept of a measure-valued solution to the nonstationary Eu-

ler equations. They justified its utility for the description of fluid motion

accompanied with singularity such as vortex sheets (see also [5]).

For the three-dimensional stationary Euler equations, the author [9]

deduced a result analogous to Theorem 1 by considering a Galerkin approx-

imation of a three-dimensional version of (1) with β = 0. To prove the

nontriviality of the obtained measure-valued solution, he used magnetic he-

licity, that is, (L2)3-product of a magnetic field and its vector potential. In

the two-dimensional case, however, magnetic helicity is not useful because

it is always equal to zero. Instead, we can use (2).

It is interesting that the magnetic fieldB in (1) tends to the fluid velocity

u in (4). However, it may seem indirect to consider five quantities B =

(B1, B2), v = (v1, v2) and q in order to obtain three quantities u = (u1, u2)
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and p. For this reason, the author proposed a simpler equation in three-

dimensional context in [11] and its two-dimensional version is

Bt = J∇(Pσ(ζJB) · (JB)). (5)

Here ζ = (J∇) · B and Pσ is a solenoidal projection operator, that is,

Pσf = f +∇Q with Q determined by ∆Q = −∇·f and (f +∇Q) ·n|Γ = 0.

The equation (5) is similar to the second equation of (1), in other words,

B is advected with the pseudo-velocity Pσ(ζJB). In §5, we prove that a

measure-valued solution to (4) is generated from a Galerkin approximation

of (5).

Lastly, it should be noted that solutions to (4) are also generated by

considering nonstationary non-magnetohydrodynamic equations ([8], [10]).

2. Preliminaries

First, to make clear the relation between two-dimensional vector calcu-

lations with J and three-dimensional ones with the vector product symbol ×,

we review the following equalities for vector functions f = (f1(x, y), f2(x, y)),

g = (g1(x, y), g2(x, y)), a scalar function h(x, y) and ∇ = (∂/∂x, ∂/∂y):

(f ; 0) × (g ; 0) = (0 ; (Jf ) · g) = (0 ;−f · (Jg)),

(0 ;h) × (f ; 0) = (hJf ; 0),

∇3 × (f ; 0) = (0 ; (J∇) · f) = (0 ;−∇ · (Jf)),

∇3 × (0 ;h) = (−J∇h ; 0).

Here (· ; ·) is defined by (f ;h) = (f1, f2, h), and ∇3 = (∂/∂x, ∂/∂y, 0). In

particular, it is convenient to note that the above equalities yield

(J∇(f · (Jg)) ; 0) = ∇3 × ((f ; 0)× (g ; 0)) = (g · ∇f − f · ∇g ; 0) (6)

if f and g are divergence-free.

Next, let us introduce our notation. We assume that Ω is an arbitrary,

open, bounded and simply connected domain in R2 and its boundary Γ

is sufficiently smooth. By C∞
0 (Ω), we denote the set of all infinite-times

continuously differentiable functions on Ω whose supports are inside Ω. By
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C∞
0,σ(Ω), we denote the set of all two-dimensional divergence-free functions

whose components belong to C∞
0 (Ω). The product ((·, ·)) means

((f, g)) =

∫

Ω
f(x, y) g(x, y) dxdy or ((f ,g)) =

∫

Ω
f(x, y) · g(x, y) dxdy

for scalar functions f , g or vector functions f , g. The norm ‖ · ‖ is defined

by

‖f‖ = ((f, f))1/2 or ‖f‖ = ((f ,f))1/2.

The spaces Hσ and H1
σ represent the closures of C∞

0,σ(Ω) with respect to ‖·‖

and ‖·‖1, respectively. Here ‖·‖j (j ∈ N) is the norm in W
j
2(Ω) = (W j

2 (Ω))
2

and W j
2 (Ω) is the Sobolev space of the j-th order.

By M(G), we denote the space of Radon measures on G = Ω̄, S or R2,

where Ω̄ = Ω ∪ Γ and S is the unit circle. The total variation of µ ∈ M(G)

is defined by the supremum of |
∫

G χ dµ| for all χ ∈ C(Ω̄), C(S) or C0(R
2)

such that |χ| ≤ 1. Here C(G) is the set of all continuous functions on G

and C0(R
2) is the subset of C(R2) whose elements have compact supports.

The subspace of nonnegative measures in M(G) is denoted by M+(G). The

subspace of measures with unit total variation in M+(G) is represented by

ProbM(G).

Let wk
1 ∈ H1

σ ∩W l
2(Ω) (k = 1, 2, 3, . . .) with a large integer l be eigen-

functions for the problem

∆w = ∇s− λw, ∇ ·w = 0, w|Γ = 0, ‖w‖ = 1

with some function s ∈ W l−1
2 (Ω) and eigenvalues λ = λ1,k such that 0 <

λ1,k ≤ λ1,k+1 and limk→∞ λ1,k = ∞ (the two-dimensional version of the

result in [4, Chapter 2, §4]). Then {wk
1}

∞
k=1 is a complete orthonormal

system in Hσ.

By ψ(k) ∈W l
2(Ω) (k = 1, 2, 3, . . .) with a large l, we define eigenfunctions

for ∆ψ = −λψ and ψ|Γ = 0 with eigenvalues λ = λ2,k such that 0 < λ2,k ≤

λ2,k+1 and limk→∞ λ2,k = ∞. It is well known that λ2,1 < λ2,2 and we can

suppose that ψ(1) > 0 everywhere in Ω. The set {ψ(k)}∞k=1 constitutes a

complete orthogonal system in L2(Ω). Set

wk
2 =

−J∇ψ(k)

‖∇ψ(k)‖
=

−J∇ψ(k)

λ
1/2
2,k ‖ψ

(k)‖
. (7)
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Then {wk
2}

∞
k=1 is a complete orthonormal system in Hσ such that wk

2 ∈

Hσ ∩W l−1
2 (Ω). It should be noted that u = cwk

2 with any constant c is of

a smooth solution to (4) with u · n|Γ = 0. Indeed, it is easy to verify that

(cwk
2) · ∇(cwk

2) = ∇
c2
(

|∇ψ(k)|2 + λ2,k(ψ
(k))2

)

2‖∇ψ(k)‖2
.

For f = (f1(x, y), f2(x, y)) and a 2× 2-matrix g = (gij), we define

f ⊗ f =

(

f21 f1f2
f1f2 f22

)

,

∇f : g = f1xg11 + f1yg12 + f2xg21 + f2yg22.

3. A Galerkin Approximation and Its Limit

We consider the initial value problem for the ordinary differential equa-

tions of {an,k(t)}
n
k=1 and {bn,k(t)}

n
k=1 with a fixed n ∈ N and constants α,

β, γ:

(1 + βλ1,k)
dan,k
dt

+ α
n
∑

j=1

((ω(n)Jwj
1, w

k
1))

dan,j
dt

= ((Bn · ∇Bn − vn · ∇vn + γ∆vn, wk
1)), (8)

dbn,k
dt

= ((J∇((vn + αvn
t ) · (JB

n)), wk
2)), (9)

vn =
n
∑

j=1

an,jw
j
1, ω(n) = (J∇) · vn, Bn =

n
∑

j=1

bn,jw
j
2. (10)

It is easy to see that this system is an approximation of (1) with (3) by the

2n basis functions {wk
1}

n
k=1 and {wk

2}
n
k=1. The initial conditions are

an,k(0) = ((v0,w
k
1)), bn,k(0) = ((B0,w

k
2)), (11)

where v0 ∈ H1
σ and B0 ∈ Hσ are given arbitrarily but B0 6≡ 0. We denote

vn|t=0, ω
(n)|t=0 and Bn|t=0 by vn

0 , ω
(n)
0 and Bn

0 , respectively.
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Note that the function Ψ0 defined by

Ψ0 =

∞
∑

j=1

((B0,w
j
2))

ψ(j)

λ
1/2
2,j ‖ψ

(j)‖
(12)

is a flux function of B0, that is, B0 = −J∇Ψ0 (see (7)) and Ψ0|Γ = 0. Then

we have the following theorem.

Theorem 1. Let α > 0, β ≥ 0 and γ > 0. Then the system (8)–(11)

has a unique smooth solution globally in time. There exist sequences {nm ∈

N | nm < nm+1} and {tm | 2m−1 < tm < 2m} (m = 1, 2, 3, . . .) such that
∥

∥vnm |t=tm

∥

∥,
∥

∥ω(nm)|t=tm

∥

∥ and
∥

∥vnm
t |t=tm

∥

∥ (and moreover,
∥

∥ω
(nm)
t |t=tm

∥

∥ if

β > 0) tend to zero and
∣

∣Bnm |t=tm

∣

∣

2
(or a subsequence of it) converges

weakly-* to a measure µ in M(Ω̄) satisfying

λ2,1‖Ψ0‖
2 ≤

∫

Ω̄
dµ ≤ I0. (13)

Here I0 = ‖v0‖
2 + (αγ + β)‖(J∇) · v0‖

2 + ‖B0‖
2. Furthermore, the system

(8)–(11) with n = nm and t = tm yields the existence of a µ-measurable

map (x, y) (∈ Ω) 7→ {ν(x,y), ξ(x,y)} (∈ M+(R2) ⊕ ProbM(S)) such that

{µ, ν(x,y), ξ(x,y)} is a measure-valued solution of (4) in the sense of DiPerna–

Majda [2]:

∫

Ω
∇Φ :

(
∫

S

u

|u|
⊗

u

|u|
dξ(x,y)

)

dµ = 0, (14)

∫

Ω
∇φ ·

(
∫

RRR2

u

1 + |u|2
dν(x,y)

)

(1 + ρ)dxdy = 0 (15)

for all Φ ∈ C∞
0,σ(Ω) and all φ ∈ C∞

0 (Ω). Here ρ is the Radon–Nikodym

derivative of the absolutely continuous part of µ with respect to the Lebesgue

measure.

Proof. The n×n-matrix whose (k, j)-component is defined by ((ω(n)Jwj
1,

wk
1)) (contained in (8)) is anti-symmetric. This implies that the real parts

of its eigenvalues are all zero and the problem (8)–(11) has a unique smooth

solution at least locally in time.

Multiplying (8) by an,k or (d/dt)an,k and summing up the products
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from k = 1 to n, we get

1

2

d

dt
(‖vn‖2 + β‖ω(n)‖2) = ((−αω(n)Jvn

t +Bn · ∇Bn, vn))− γ‖ω(n)‖2,

‖vn
t ‖

2 + β‖ω
(n)
t ‖2 = ((Bn · ∇Bn − vn · ∇vn, vn

t ))−
γ

2

d

dt
‖ω(n)‖2.

Here we used ((f · ∇g, h)) = −((f · ∇h, g)) (= 0 if g = h) for smooth

f , g and h such that one of them vanishes on Γ and f is divergence-free.

Summing up the products of (9) and bn,k from k = 1 to n and noting (6),

we have

1

2

d

dt
‖Bn‖2 = ((J∇((vn + αvn

t ) · (JB
n)), Bn))

= ((Bn · ∇(vn + αvn
t ), B

n)).

These equalities and ((vn ·∇vn, vn
t )) = ((ω(n)Jvn, vn

t )) = −((ω(n)Jvn
t , v

n))

yield

1

2

d

dt

(

‖vn‖2 + (αγ + β)‖ω(n)‖2 + ‖Bn‖2
)

= −α‖vn
t ‖

2 − γ‖ω(n)‖2 − αβ‖ω
(n)
t ‖2, (16)

which leads to

∥

∥vn|t=t′
∥

∥

2
+ (αγ + β)

∥

∥ω(n)|t=t′
∥

∥

2
+

∥

∥Bn|t=t′
∥

∥

2

+2

∫ t′

0
(α‖vn

t ‖
2 + γ‖ω(n)‖2 + αβ‖ω

(n)
t ‖2)dt

= ‖vn
0‖

2 + (αγ + β)‖ω
(n)
0 ‖2 + ‖Bn

0‖
2 ≤ I0 (17)

for any t′ > 0. Therefore, the problem (8)–(11) has a unique smooth solution

globally in time.

Since (17) means that ‖vn
t ‖ and ‖ω(n)‖ (and moreover, ‖ω

(n)
t ‖ if β > 0)

are square integrable over (0,∞), there exists a sequence {t
(n)
m | 2m−1 <

t
(n)
m < 2m} (m = 1, 2, 3, . . .) such that

α
∥

∥vn
t |t=t

(n)
m

∥

∥

2
+ γ

∥

∥ω(n)|
t=t

(n)
m

∥

∥

2
+ αβ

∥

∥ω
(n)
t |

t=t
(n)
m

∥

∥

2
≤ 2−mI0. (18)

Indeed, if we suppose the nonexistence of this {t
(n)
m }, then we have

∫ 2m

2m−1

(α‖vn
t ‖

2 + γ‖ω(n)‖2 + αβ‖ω
(n)
t ‖2)dt > 2−mI0(2

m − 2m−1) = I0/2,
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which contradicts (17). From (18), we deduce the existence of {nm ∈ N |

nm < nm+1} and {tm | tm = t
(nm)
m } such that

∥

∥vnm
t |t=tm

∥

∥ → 0, (19)
∥

∥vnm |t=tm

∥

∥ ≤ λ
−1/2
1,1

∥

∥ω(nm)|t=tm

∥

∥ → 0, (20)

and in addition,
∥

∥ω
(nm)
t |t=tm

∥

∥ → 0 if β > 0, (21)

as m → ∞. Furthermore, since (17) implies that |((|Bn|2, χ))| for any

χ ∈ C(Ω̄) satisfying |χ| ≤ 1 is bounded uniformly in n and t, we have the

weak-* convergence of
∣

∣Bnm |t=tm

∣

∣

2
(or a subsequence of it, if necessary) to

a measure µ in M(Ω̄). The limit

lim
m→∞

∫

Ω
∇Φ : (Bnm ⊗Bnm)|t=tm dxdy

=

∫

Ω
∇Φ :

(
∫

S

u

|u|
⊗

u

|u|
dξ(x,y)

)

dµ (22)

is derived from theorems in [2, §4] for a µ-measurable ξ(·,·) : Ω → ProbM(S)

and an arbitrary Φ ∈ C∞
0,σ(Ω).

Defining Φn ∈ H1
σ ∩W l

2(Ω) with a large l by

Φn =
n
∑

j=1

((Φ,wj
1))w

j
1

and summing up the products of (8) and ((Φ,wk
1)) from k = 1 to n, we

obtain

((vn
t + αω(n)Jvn

t , Φ
n))− β((vn

t , ∆Φn))

= −

∫

Ω
∇Φ : Bn ⊗Bn dxdy +

∫

Ω
∇(Φ−Φn) : Bn ⊗Bn dxdy

+((vn · ∇Φn, vn)) + γ((vn, ∆Φn)). (23)

Therefore, we derive (14) by using (19), (20) and (22). The estimate
∫

Ω̄ dµ ≤

I0 in (13) is obtained from (17).

Noting that wk
2 ∈ Hσ means ((∇φ, Bn)) = 0 for any φ ∈ C∞

0 (Ω), we

get (15) by theorems in [2, §4].
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Lastly, let us prove
∫

Ω̄ dµ ≥ λ2,1‖Ψ0‖
2. It is convenient to define

Ψ(n) =
n
∑

j=1

bn,jψ
(j)

λ
1/2
2,j ‖ψ

(j)‖
, (24)

which is a flux function of Bn, that is, Bn = −J∇Ψ(n). The initial state

Ψ(n)|t=0 is denoted by Ψ
(n)
0 . Noting (7), we can rewrite (9) as

dbn,k
dt

=
((

(vn + αvn
t ) · ∇Ψ(n),

∆ψ(k)

λ
1/2
2,k ‖ψ

(k)‖

))

. (25)

Multiplying this by λ−1
2,kbn,k and summing up the products from k = 1 to n,

we have
1

2

d

dt
‖Ψ(n)‖2 = (((vn + αvn

t ) · ∇Ψ(n), −Ψ(n))) = 0.

This yields

‖Ψ(n)‖2 = ‖Ψ
(n)
0 ‖2 → ‖Ψ0‖

2 for all t > 0, as n→ ∞. (26)

Since

‖Ψ(n)‖2 ≤ λ−1
2,1

n
∑

j=1

b2n,j = λ−1
2,1‖B

n‖2, (27)

we obtain ‖Ψ0‖
2 ≤ λ−1

2,1

∫

Ω̄ dµ. �

Remark 1. The sequence {tm | 2m−1 < tm < 2m} in Theorem 1 can

be generalized as {tm | 0 < tm < tm+1, limm→∞(tm+1 − tm) = ∞}.

Remark 2. If we can prove (19) for α = 0, or weaklier

((vnm
t |t=tm ,Φ)) → 0 with any Φ ∈ C∞

0,σ(Ω) (28)

for α = 0, then Theorem 1 will be valid for α = 0. Indeed, we can deduce

(14) from (28) and (23) with α = 0 by using (20) and (22), which hold for

α = 0, and noting that ((vn
t , (1− β∆)Φn)) = ((vn

t , (1− β∆)Φ)).

4. Lemmas on the Measure-Valued Solution

For the measure-valued solution in Theorem 1, we have the following:
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Lemma 1. Let v0 ≡ 0. Assume that B0 ∈ Hσ is not a solution to (4)

in the sense of distribution, in other words,

∫

Ω
∇wk

1 : B0 ⊗B0 dxdy 6= 0 for some k ∈ N. (29)

Then µ in Theorem 1 satisfies
∫

Ω̄ dµ < ‖B0‖
2.

Proof. Assume that
∫

Ω̄ dµ = ‖B0‖
2. Then

lim
m→∞

∫ tm

0
(‖vnm

t ‖2 + ‖ω(nm)‖2 + β‖ω
(nm)
t ‖2)dt = 0

follows from (17), (19) and (20). It leads to

lim
m→∞

∫ T

0
(‖vnm

t ‖2 + ‖ω(nm)‖2 + β‖ω
(nm)
t ‖2)dt = 0 (30)

for any finite T > 0. Integrating (17) over (0, T ) and letting n = nm → ∞,

we obtain

lim
m→∞

∫ T

0
(‖Bnm‖2 − ‖B0‖

2)dt = 0

by (30). Note that (9) with (30) yields

|((Bnm −Bnm
0 , wk

2))| ≤ c0,k

∫ T

0
‖Bnm‖‖vnm + αvnm

t ‖dt → 0

uniformly in t ∈ (0, T ), where c0,k is a positive constant determined by the

derivatives of wk
2. Namely, Bnm converges to B0 weakly in Hσ, uniformly

in t. Therefore,

lim
m→∞

∫ T

0
‖Bnm −B0‖

2dt

= lim
m→∞

∫ T

0
(‖Bnm‖2 − 2((Bnm,B0)) + ‖B0‖

2)dt = 0

holds. Integrating (8) over (0, T ) and letting n = nm → ∞, we have

∫

Ω
∇wk

1 : B0 ⊗B0 dxdy = 0

for any k. This contradicts (29). �

Since the function Ψ(n) defined by (24) is uniformly bounded from above
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in W 1
2 (Ω) (see (17) and (27)) and Ψ(n)|Γ = 0, it converges to a function

Θ ∈ W 1
2 (Ω) strongly in L2(Ω) as n = nm and t = tm (or subsequences of

them) go to ∞, and Θ|Γ = 0. The relation

‖Θ‖ = ‖Ψ0‖ (31)

follows from (26). Furthermore, we have

Lemma 2. If β > 0, then
∫

Ω
Θ dxdy =

∫

Ω
Ψ0 dxdy. (32)

Proof. Multiplying (25) by λ
−1/2
2,k ((1, ‖ψ(k)‖−1ψ(k))) and summing up

the products from k = 1 to n, we get

((1,Ψ
(n)
t )) = (((vn + αvn

t ) · ∇Ψ(n), −Pn(1)))

= (((vn + αvn
t ) · ∇Ψ(n), 1− Pn(1))),

where Pn(1) =
∑n

j=1((1, ‖ψ
(j)‖−1ψ(j)))‖ψ(j)‖−1ψ(j), that is, the projection

of unit onto the space spanned by {ψ(j)}nj=1. Since

∫ T

0
‖vn + αvn

t ‖
2
1dt ≤ (λ−1

1,1 + 1)

∫ T

0
‖ω(n) + αω

(n)
t ‖2dt

and L2(0, T ;W 1
2(Ω)) ⊂ L2(0, T ;Lτ (Ω)) with arbitrary T > 0 and τ > 2, we

have
∣

∣

∣

∣

∫

Ω
(Ψ(n)|t=T −Ψ

(n)
0 )dxdy

∣

∣

∣

∣

≤

∫ T

0
dt

∫

Ω
|vn + αvn

t ||B
n||1 − Pn(1)|dxdy

≤ c1T
1/2

(
∫

Ω
|1− Pn(1)|

2τ/(τ−2)dxdy

)(τ−2)/(2τ)

(33)

by Hölder’s inequality and (17). Here c1 is a positive constant which depends

on I0 and τ , but neither on n nor T .

Let En(ǫ) = {(x, y) ∈ Ω | |1−Pn(1)| ≥ ǫ}. Then, for arbitrary positive ǫ

and η, there exists a number N0(ǫ, η) ∈ N such that the Lebesgue measure
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of En(ǫ) is less than η for any n > N0(ǫ, η). We have

∫

Ω
|1− Pn(1)|

2τ/(τ−2)dxdy =
(

∫

En(ǫ)
+

∫

Ω−En(ǫ)

)

|1− Pn(1)|
2τ/(τ−2)dxdy

≤ c
2τ/(τ−2)
2 η + c3ǫ

2τ/(τ−2)

for n > N0(ǫ, η), where c2 = supΩ,n |1 − Pn(1)| and c3 =
∫

Ω dxdy. Choose

{nm}∞m=1 in §3 so that nm > N0(2
−m, 2−2mτ/(τ−2)) is satisfied. This implies

that nm can go to infinity faster than tm ∈ (2m−1, 2m). Then, from (33), we

derive
∣

∣

∣

∣

∫

Ω
(Ψ(nm)|t=tm −Ψ

(nm)
0 )dxdy

∣

∣

∣

∣

≤ c4t
1/2
m 2−m ≤ c42

−m/2,

where c4 > 0 depends only on c1, c2, c3 and τ . Letting m → ∞, we obtain

(32). �

Because of (31), we restrict Hσ to

Y = {f ∈ Hσ | f = −J∇h, h|Γ = 0, ‖h‖ = 1}

=
{

f ∈ Hσ | f = −J∇

∞
∑

j=1

rj
ψ(j)

‖ψ(j)‖
=

∞
∑

j=1

rjλ
1/2
2,j w

j
2,

∞
∑

j=1

r2j = 1
}

.

According to §2,

U =
{

±λ
1/2
2,j w

j
2

}∞

j=1

is a subset of Y such that each element is a smooth solution to (4). For

any f ∈ Y , the inequality ‖f‖ ≥ λ
1/2
2,1 is valid and ‖f‖ = λ

1/2
2,1 means

f = ±λ
1/2
2,1 w

1
2.

If all our measure-valued solutions to (4) for B0 ∈ Y −U corresponded

to elements of U , that is, they had the form

dµ = λ2,j |w
j
2|
2dxdy, ν(x,y) = δ

κλ
1/2
2,j www

j
2(x,y)

, ξ(x,y) = δ
κwwwj

2(x,y)/|www
j
2(x,y)|

, (34)

where κ = 1 or −1, and δfff is the Dirac measure at f , then our discussion

would be trivial. This is denied by the following lemma.

Lemma 3. Let β > 0 and v0 ≡ 0. Assume that B0 is an element

of Y − U satisfying (29) and λ2,1 < ‖B0‖
2 ≤ λ2,2. Then, for at least one
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B0, the measure-valued solution of (4) in Theorem 1 does not have the form

(34). It satisfies λ2,1 ≤
∫

Ω̄ dµ < ‖B0‖
2.

Proof. The last statement is clear by (13) and Lemma 1. Therefore, if

the measure-valued solution has the form (34), then it is with j = 1.

Let us suppose that every measure-valued solution for the above condi-

tions has the form (34) with j = 1 and Θ = κ‖ψ(1)‖−1ψ(1). From this, we

will derive a contradiction.

A flux function for B0 ∈ Y −U is given by (12) with
∑∞

j=1 r
2
j = 1 and

|rk| 6= 1 for any k ∈ N, where rj = λ
−1/2
2,j ((B0, w

j
2)). Therefore, from (32),

we deduce
∫

Ω

ψ(1)

‖ψ(1)‖
dxdy =

1

r′1

∫

Ω

∞
∑

j=2

rj
ψ(j)

‖ψ(j)‖
dxdy,

where r′1 = −r1 + κ. The value of the right member changes according to

{rj}
∞
j=1, while the left member is equal to a fixed positive number. Hence

we reach a contradiction. �

Remark 3. If λ2,1 <
∫

Ω̄ dµ holds for µ = µ1 in Lemma 3, then we

have another measure-valued solution {µ2, ν2(x,y), ξ
2
(x,y)} by taking a new B0

such that (29) and λ2,1 < ‖B0‖
2 ≤

∫

Ω̄ dµ1 are satisfied. We can repeat this

process N -times (N ≤ ∞) until λ2,1 =
∫

Ω̄ dµN is obtained.

Remark 4. If we can prove Theorem 1 for α = 0, that is, (28) for

α = 0, then Lemmas 2 and 3 will be valid for α = β = 0. This is because

Lemma 1 and (33) will hold for α = β = 0.

5. Another Magnetohydrodynamic Approach

In this section, we investigate a Galerkin approximation of (5) with

B · n|Γ = 0:

dbn,k
dt

= ((J∇(Pσ(ζ
(n)JBn) · (JBn)), wk

2)), (35)

Bn =

n
∑

j=1

bn,j(t)w
j
2, ζ(n) = (J∇) ·Bn, bn,k(0) = ((B0,w

k
2)). (36)

For this system, the following theorem is deduced.
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Theorem 2. Assume that B0 ∈ Hσ satisfies (29) (or (29) with wk
1

replaced by wk
2). Then (35) with (36) has a unique smooth solution globally

in time. There exist sequences {nm ∈ N | nm < nm+1} and {tm | 2m−1 <

tm < 2m} (m = 1, 2, 3, . . .) such that
∣

∣Bnm |t=tm

∣

∣

2
(or a subsequence of it)

converges weakly-* to a measure µ in M(Ω̄) satisfying

λ2,1‖Ψ0‖
2 ≤

∫

Ω̄
dµ < ‖B0‖

2

with Ψ0 given by (12). Furthermore, (35) with (36) for n = nm and t = tm

yields the existence of a µ-measurable map (x, y) (∈ Ω) 7→ {ν(x,y), ξ(x,y)}

(∈ M+(R2) ⊕ ProbM(S)) such that {µ, ν(x,y), ξ(x,y)} is a measure-valued

solution of (4) in DiPerna–Majda’s sense, which satisfies (14) and (15).

Proof. Sum up the products of (35) and bn,k from k = 1 to n and note

that Pσ(ζ
(n)JBn) ·n|Γ = Bn ·n|Γ = 0, that is, Pσ(ζ

(n)JBn) · (JBn)|Γ = 0.

Then we have

1

2

d

dt
‖Bn‖2 = ((J∇(Pσ(ζ

(n)JBn) · (JBn)), Bn))

= −((∇(Pσ(ζ
(n)JBn) · (JBn)), JBn))

= ((Pσ(ζ
(n)JBn) · (JBn), ∇ · (JBn) ))

= −((Pσ(ζ
(n)JBn), ζ(n)JBn))

= −‖Pσ(ζ
(n)JBn)‖2.

Therefore,
∥

∥Pσ(ζ
(nm)JBnm)|t=tm

∥

∥ → 0 is derived for some {nm} and {tm},

analogously to (19)–(21). Using this fact, we can prove the theorem in the

same way as Theorem 1 and Lemma 1. For example, (14) is obtained from

(22) and

((Pσ(ζ
(n)JBn), Φ)) = −

∫

Ω
∇Φ : Bn ⊗Bndxdy

for any Φ ∈ C∞
0,σ(Ω). �

Remark 5. It is open whether facts like Lemmas 2 and 3 can be proved

for (35).
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