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PENCILS ON COVERINGS OF A GIVEN CURVE

WHOSE DEGREE IS LARGER THAN THE

CASTELNUOVO-SEVERI LOWER BOUND

BY
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Abstract

Fix integers q, g, k, d. Set πd,k,q := kd − d − k + kq + 1

and assume q > 0, k ≥ 2, d ≥ 3q + 1, g ≥ kq − k + 1 and

πd,k,q − ((⌊d/2⌋ + 1 − q) · (⌊k/2⌋ + 1) ≤ g ≤ πd,k,q. Let Y be a

smooth and connected genus q projective curve. Here we prove

the existence of a smooth and connected genus g projective curve

X, a degree k morphism f : X → Y and a degree d morphism

u : X → P
1 such that the morphism (f, u) : X → Y × P

1 is

birational onto its image.

1. Introduction

Let X (resp. Y ) be a smooth and connected curve of genus g (resp.

genus q) and f : X → Y a degree k covering. Let u : X → P1 be a

degree d morphism. Assume d ≤ (g − kq)/(k − 1). By Castelnuovo-Severi

inequality ([4]) the induced morphism (f, u) : X → Y ×P1 is not birational

onto its image. Very roughly speaking, “u factors through f”. Several

papers were devoted to the proof of the existence of X,Y, f, u for certain

d > (g − kq)/(k − 1) for which the morphism (f, u) : X → Y × P1 is

birational onto its image (see [1] and references therein). In this paper we

prove the following result.
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Theorem 1. Fix integers q, g, k, d. Set πd,k,q := kd−d−k+kq+1 and

assume q > 0, k ≥ 2, d ≥ 3q+1, g ≥ kq−k+1 and πd,k,q− ((⌊d/2⌋+1− q) ·

(⌊k/2⌋+1) ≤ g ≤ πd,k,q. Let Y be a smooth and connected genus q projective

curve. Then there exist a smooth and connected genus g projective curve X,

a degree k morphism f : X → Y and a degree d morphism u : X → P1 such

that the morphism (f, u) : X → Y ×P1 is birational onto its image.

We work over an algebraically closed field K with char(K) = 0.

2. Proof of Theorem 1.

Remark 1. Let f : X → Y be a finite morphism between smooth

and connected projective curves and D =
∑

niPi any divisor on X. Set

f!(D) :=
∑

nif(Pi). A key property of rational equivalence say that ifD and

D′ are linearly equivalent divisors on X, then f!(D) and f!(D
′) are linearly

equivalent divisors on Y ; here the smoothness of Y is essential, because it

implies that rational equivalence and linear equivalence are the same on Y .

Hence for any d ∈ Z the map f! induces a map f! : Pic
d(X) → Picd(Y ) such

that h0(Y, f!(L)) ≥ h0(X,L) for all L ∈ Picd(X). Furthermore, if L is base

point free, then f!(L) is base point free.

In the next remark we introduce our set-up. We will use several times

the notations and results proved in this remark.

Remark 2. Let Y be a smooth and connected projective curve. Set

q := pa(Y ) and S := Y × P1. Hence h1(S,OS) = q. Let π1 : S → Y and

π2 : S → P1 denote the two projections. For any R ∈ Pic(S) there are

unique M ∈ Pic(Y ) and k ∈ Z such that R ∼= π∗
1(M) ⊗ π∗

2(OP1(k)). Set

OS(M,k) := π∗
1(M) ⊗ π∗

2(OP1(k)). If k < 0, then h0(S,OS(M,k)) = 0 and

h1(S,OS(M,k)) = (−k − 1) · h0(Y,M) (Künneth formula). If k ≥ 0, then

h0(S,OS(M,k)) = (k+1)·h0(Y,M) and h1(S,OS(M,k)) = (k+1)·h1(Y,M)

(Künneth formula). Furthermore, if M is spanned and k ≥ 0, then OS(M,k)

is spanned, while if M is (birationally) very ample and k > 0, then OS(M,k)

is (birationally) very ample. Fix integers k ≥ 2 and d > 0 and M ∈ Picd(Y )

such that |M | has no base point. Let C ⊂ S be an integral curve in the

linear system |OS(M,k)| and ν : X → C the normalization map. For any

A ∈ Pic(Y ) and any integer x set OC(A, x) := OS(A, x)|C. Notice that

OC(A, x) is a line bundle of degree k · deg(A) + x · deg(M). The morphism
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π1 ◦ν : X → Y is a degree k covering between smooth and projective curves.

Since ωS
∼= OS(ωY ,−2), then ωC

∼= OC(M⊗ωS, k−2) (adjunction formula).

Thus pa(C) = kd− d− k + kq + 1. Set πd,k,q := kd− d− k − kq + 1.

Proposition 1. Fix integers q ≥ 0, k ≥ 2 and d > 0 and a smooth

curve Y of genus q. Assume the existence of a base point free M ∈ Picd(Y ).

Set g := kd − d − k + kq + 1. Then there exist a smooth genus g curve, a

degree k covering f : X → Y and L ∈ Picd(X) such that L is base point free

and f!(L) = M .

Proof. Notice that g = πd,k,q and take as X the curve C described in the

second part of Remark 2. Here we may take as C a smooth curve because

OS(M,k) is base point free and hence we may apply Bertini’s theorem. �

Proposition 2. Take Y, S as in Remark 2 and integers u, v, a such

that u > 0, v ≥ 2, 0 < a ≤ (v + 1)(u + 1− q)− 3 and there is a very ample

R ∈ Picu(Y ). Let A ⊂ S be a general subset such that ♯(A) = a. Then

the linear system |IA,S(R, v)| has no base point outside A and its scheme-

theoretic base locus is exactly A.

Proof. Since h0(Y,R) ≥ u+1−q, we have h0(S,IA,S(R, v)) ≥ 3. Since R

is very ample, OS(R, v) is very ample. Fix two general D,D′ ∈ |OS(R, v)|.

Hence D ∩ D′ is the union of 2uv points, each of them appearing with

multiplicity one. By semicontinuity it is sufficient to show the result when

we take as A a subset of D ∩D′ with ♯(A) = a. By the very ampleness of

OS(R, v) and hence of OD(R, v) we may apply the monodromy theorem ([3],

Ch. III, or [5]), and get that the result is true for one such A if and only if

it is true for all A′ ⊂ D∩D′ with ♯(A′) = a. Furthermore, the linear span of

{D,D′} in |OS(R, v)| is uniquely determined by any E ⊂ D ∩D′ such that

♯(E) = h0(S,OS(R, v))−2. Fix any such E, any P ∈ E and set F := E\{P}.

Hence h0(S,IF,S(R, v)) = h0(S,OS(R, v)) − 3. First, we will show that F

is scheme-theoretically the base locus B(F ) of |IF,S(R, v)|. Indeed, B(F ) ⊆

D ∩ D′ and hence each point of F appears with multiplicity one in B(F ),

while other base points (if any) are contained in D ∩D′\F . Assume there

is Q ∈ B(F )\F . By the monodromy theorem all Q′ ∈ D ∩D′ are contained

in B(F ). Hence h0(S,IF,S(R, v)) = h0(S,IE,S(R, v)) = h0(S,OS(R, v))− 2,

contradiction. Notice that ♯(F ) ≥ a. If ♯(F ) = a, we are done. If ♯(F ) > a
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we apply the same trick ♯(F )− a times and get the result for ♯(F )− 1, . . . , a

points. �

Proof of Theorem 1. The case k = 2 is well-known ([1]) and the case

k = 3 was done (in a different, but more explicit way) in [6] under different

numerical assumptions. Hence to simplify the numerical computations we

will assume k ≥ 4. Set y := πd,k,q − g. By assumption we have 0 ≤ y ≤

(⌊d/2⌋+ 1− q) · (⌊k/2⌋+ 1). Proposition 1 gives the result when g = πd,k,q.

Hence we may assume y > 0. Let A ⊂ S be a general subset with ♯(A) = y,

say A = {P1, . . . , Py}. For any P ∈ S let 2P denote the first infinitesimal

neighborhood of P in S, i.e. the closed zero-dimensional subscheme of S

with IP,S
2 as its ideal sheaf. Hence length(2P ) = 3. Fix a base point free

M ∈ Picd(Y ). �

Claim. There is a reduced curve C ∈ |I2P1∪···∪2Py(M,k))| such that

Sing(C) = A and each Pi ∈ A is an ordinary node of C.

Proof of the Claim. By Bertini’s theorem it is sufficient to show that the

linear system |I2P1∪···∪2Py(M,k)| has no base point outside {P1, . . . , Py} and

that a general C ∈ |I2P1∪···∪2Py(M,k))| has an ordinary node at each point

of {P1, . . . , Py}. Take L,L′ ∈ Pic⌊d/2⌋(Y ) such that either L⊗2 ∼= M (case d

even) or L⊗2(Q) ∼= M for some Q ∈ Y (case d odd) and apply Proposition

2 taking R := L, v := ⌊k/2⌋, a := y and A = {P1, . . . , Pa}. �

The Claim shows that the image of S by the linear system |L| is not

weakly defective in the sense of [2] and hence it is not defective, so that the

linear system of curves in |L| has the expected dimension dim(|L|)− 3y, i.e.

h0(S,I2P1∪···∪2Py(M,k)) = h0(S,OS(M,k))−3y = (k+1)(d+1−q)−3y and

h1(S,I2P1∪···∪2Py(M,k)) = 0. By [2], Th. 1.4, the general such curve, C, has

y ordinary nodes as its only singularities. Now we will check that a general

C ∈ |I2P1∪···∪2Py(M,k))| is integral. Since C is nodal, it is reduced. Assume

that C has t ≥ 2 irreducible components, say C1, . . . , Ct. Since ♯(Sing(C)) =

y and each sigular point of C is an ordinary node, this give a very strong

restriction on the sum of the intersection numbers
∑

1≤i<j≤tCi · Cj. Since

Sy is irreducible and A ⊂ Sy is general in Sy, moving A we also see that

either each point of A is contained in exactly two irreducible components of

C or each P ∈ A is in contained a unique irreducible component of C. In

the first case we get t = 2. Furthermore, moving again A we also see that
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C1 and C2 are algebraically equivalent. Since C1 ·C2 = y, the contradiction

comes from the inequality 2⌊d/2⌋⌊k/2⌋ > y. In the second case we get t ≥ y

and Ci∩Cj = ∅ for all i ≥ j. Hence all Ci are fibers of one of the projections

π1 : S → Y or π2 : S → P1, contradicting the assumptions d > 0 and

k > 0. Take C as in the Claim and integral. and let ν : X → C be the

normalization. The curve X satisfies the thesis of Theorem 1 for the curve

Y , the genus g and the integers d, k.

Our main numerical restriction in the statement of Theorem 1 came

from the use of Proposition 2.
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