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A CLASS OF ANALYTIC FUNCTIONS DEFINED

BY THE CARLSON-SHAFFER OPERATOR

BY

NENG XU AND DINGGONG YANG

Abstract

The Carlson-Shaffer operator L(a, c)f = φ(a, c) ∗ f, where

f(z) = z+ a2z
2+ · · · is analytic in the unit disk E = {z : |z| < 1}

and φ(a, c; z) is an incomplete beta function, is used to define the

class T (a, c). An analytic function f belongs to T (a, c) if L(a, c)f

is starlike in E. The object of the present paper is to derive some

properties of functions f in the class T (a, c).

1. Introduction

Let A be the class of functions f of the form

f(z) = z +

∞
∑

n=2

anz
n (1.1)

which are analytic in the unit disk E = {z : |z| < 1}. A function f ∈ A is

said to be starlike of order α in E if

Re
zf ′(z)

f(z)
> α (z ∈ E)

for some α (0 ≤ α < 1). We denote this class as S∗(α). Also we denote by
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S∗(0) = S∗. A function f ∈ A is said to be convex (univalent) in E if

Re

{

1 +
zf ′′(z)

f ′(z)

}

> 0 (z ∈ E).

We denote this class as K. Clearly f ∈ K if and only if zf ′ ∈ S∗.

The class A is closed under the Hadamard product or convolution

(f ∗ g)(z) =

∞
∑

n=0

anbnz
n,

where

f(z) =
∞
∑

n=0

anz
n, g(z) =

∞
∑

n=0

bnz
n.

Let φ(a, c) be defined by

φ(a, c; z) = z +
∞
∑

n=1

(a)n
(c)n

zn+1 (z ∈ E; c 6= 0,−1,−2, · · · ), (1.2)

where (λ)n = λ(λ + 1) · · · (λ + n − 1)(n ∈ N = {1, 2, 3, · · · }). The function

φ(a, c) is an incomplete beta function. Carlson and Shaffer [1] defined a

linear operator on A by the convolution as follows:

L(a, c)f = φ(a, c) ∗ f (f ∈ A; c 6= 0,−1,−2, · · · ). (1.3)

L(a, c) maps A into itself. L(c, c) is the identity and if a 6= 0,−1,−2, · · · ,

then L(a, c) has a continuous inverse L(c, a) and is an one-to-one mapping of

A onto itself. L(a, c) provides a convenient representation of differentiation

and integration. If g(z) = zf ′(z), then g = L(2, 1)f and f = L(1, 2)g.

By using L(a, c) we now introduce the subclass of A as follows.

Definition. A function f ∈ A is said to be in the class T (a, c) if

L(a, c)f ∈ S∗ (c 6= 0,−1,−2, · · · ). (1.4)

Miller and Mocanu [4, Theorem 2] have proved that if c(c 6= 0) and a
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are real and satisfy

a > N(c) =

{

|c|+ 1
2 (|c| ≥ 1

3 )

3
2c

2 + 2
3 (|c| ≤ 1

3 ),
(1.5)

then the function

Φ(c, a; z) = 1 +
∞
∑

n=1

(c)n
(a)n

zn

n!
(1.6)

is convex in E.

In [5] Noor gave the following.

Lemma A.([5, Lemma 2.1]) If c(c 6= 0) and a are real and satisfy (1.5),

then φ(c, a; z) is convex in E.

Theorem A.([5, Theorem 3.2]) Let f ∈ T (a, c), where a and c satisfy

the conditions of Lemma A. Then f ∈ S∗ and hence f is univalent in E.

Theorem B.([5, Theorem 3.3]) Let f ∈ T (a, c) with a and c satisfying

(1.5). Then the disk E is mapped onto a domain that contains the disk

D =

{

w : |w| <
2(c+ a)

a

}

. (1.7)

Theorem C. ([5, Theorem 3.4]) Let a(a 6= 0), c and d be real and

c > N(d), where N(d) is defined as in (1.5). Then

T (a, d) ⊂ T (a, c). (1.8)

Theorem D.([5, Theorem 3.5]) Let a(a 6= 0) and c be real and satisfy

c > N(a), where N(a) is defined in the similar way of (1.5). Let ψ be a

convex function in E. If f ∈ T (a, c) then ψ ∗ f ∈ T (a, c).

Theorem E.([5, Theorem 3.7]) Let f ∈ T (a, c) and let F be defined by

F (z) =
β + 1

zβ

∫ z

0
tβ−1f(t)dt (β ∈ N). (1.9)
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Then

Re

{

z(L(a, c)F (z))′

L(a, c)F (z)

}

> α (z ∈ E), (1.10)

where

α =
−(2β + 1) +

√

4β2 + 4β + 9

4
. (1.11)

However, we find that Lemma A is not always true for c(c 6= 0 real) and

a satisfying (1.5).

Counterexample. Let a = 1 and 1
3 ≤ c < 1

2 . Then a > N(c) = c + 1
2

and

φ(c, 1; z) = z +

∞
∑

n=1

(c)n
n!

zn+1 =
z

(1− z)c
. (1.12)

For z = ρeiθ(0 < ρ < 1) and 1− c
2 < cos θ < 1(0 < θ < π

2 ), we have

1 +
zφ′′(c, 1; z)

φ′(c, 1; z)
= 1 +

(c+ 1)ρeiθ

1− ρeiθ
+

(c− 1)ρeiθ

1 + (c− 1)ρeiθ
.

Hence

lim
ρ→1

Re

{

1 +
ρeiθφ′′(c, 1; ρeiθ)

φ′(c, 1; ρeiθ)

}

=
1− c

2
+ (c− 1) Re

{

eiθ

1 + (c− 1)eiθ

}

=
1− c

2
+ (c− 1)

c− 1 + cos θ

|1 + (c− 1)eiθ |2

= −
(1− c)(2 − c)(2 cos θ + c− 2)

2|1 + (c− 1)eiθ|2

< 0, (1.13)

which implies that the function φ(c, 1; z)(13 ≤ c < 1
2) is not convex in E.

In view of z
(1−z)2 ∈ S∗, we see that

fc(z) = φ(c, 1; z) ∗
z

(1− z)2
∈ T (1, c).

But fc(z) = zφ′(c, 1; z)(13 ≤ c < 1
2 ) is not starlike in E. Thus the counterex-

ample shows that Theorem A is not true when a = 1 and 1
3 ≤ c < 1

2 . In [5],

the proof of Theorem B used Lemma A, and so its validity is not justified.
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Similarly the proof of Theorem C in [5] is not valid. Also the result from

Theorem E is not sharp.

In this paper we discuss similar problems and obtain useful results for

the class T (a, c).

2. Preliminary Results

To prove our results, we need the following lemmas.

Lemma 2.1.([4, Corollary 4.1]) If a, b and c are real and satisfy −1 ≤

a ≤ 1, b ≥ 0 and c > 1 + max{2 + |a+ b− 2|, 1 − (a− 1)(b − 1)}, then

zF (a, b; c; z) ∈ S∗, (2.1)

where

F (a, b; c; z) = 1 +

∞
∑

n=1

(a)n(b)n
(c)n

zn

n!
(2.2)

is the Gaussian hypergeometric function.

Applying Lemma 2.1, we derive the following result.

Lemma 2.2. If a and c are real and satisfy −1 ≤ a ≤ 1 and c > 3+ |a|,

then φ(a, c; z) defined by (1.2)is convex in E.

Proof. From (1.2) we have

zφ′(a, c; z) = z +

∞
∑

n=1

(n+ 1)(a)n
(c)n

zn+1

= z +

∞
∑

n=1

(a)n(2)n
(c)n

zn+1

n!

= zF (a, 2; c; z). (2.3)

Since −1 ≤ a ≤ 1 and c > 3+ |a|, it follows from (2.3) and Lemma 2.1 (with

b = 2) that zφ′(a, c; z) is starlike in E, which leads to φ(a, c) ∈ K. �
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Lemma 2.3.([6]) If f ∈ K and g ∈ S∗, then f ∗ g ∈ S∗.

Let f and g be analytic in E. The function f is subordinate to g, written

f ≺ g or f(z) ≺ g(z), if g is univalent in E, f(0) = g(0) and f(E) ⊂ g(E).

Lemma 2.4.([2]) Let α(α 6= 0) and β be complex numbers and let p

and h be analytic in E with p(0) = h(0). If Q(z) = αh(z) + β is convex and

ReQ(z) > 0 in E, then

p(z) +
zp′(z)

αp(z) + β
≺ h(z)

implies that p(z) ≺ h(z).

Lemma 2.5.([3]) Let α(α 6= 0) and β be complex numbers and let h be

analytic and univalent in E and Q(z) = αh(z) + β. Let p be analytic in E

and satisfy

p(z) +
zp′(z)

αp(z) + β
≺ h(z) (p(0) = h(0)). (2.4)

If

(i) ReQ(z) > 0 for z ∈ E, and

(ii) Q and 1
Q

are convex in E,

then the solution of the differential equation

q(z) +
zq′(z)

αq(z) + β
= h(z) (q(0) = h(0)) (2.5)

is univalent in E and is the best dominant of (2.4).

Lemma 2.6.([7]) Let µ be a positive measure on the unit interval [0, 1].

Let g(t, z)be a function analytic in E for each t ∈ [0, 1] and integrable in t

for each z ∈ E and for almost all t ∈ [0, 1], and suppose that Re g(t, z) > 0

in E, g(t,−ρ) is real and

Re
1

g(t, z)
≥

1

g(t,−ρ)
(|z| ≤ ρ < 1; t ∈ [0, 1]).
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If g(z) =
∫ 1
0 g(t, z)dµ(t), then

Re
1

g(z)
≥

1

g(−ρ)
(|z| ≤ ρ). (2.6)

3. The Class T (a, c)

Theorem 3.1. Let a and c be real and satisfy

c 6= 0,−1 < c ≤ 1 and a > 3 + |c|. (3.1)

Then T (a, c) ⊂ S∗.

Proof. If f ∈ T (a, c), then L(a, c)f = φ(a, c) ∗ f ∈ S∗. Since a and

c satisfy (3.1), we have from Lemma 2.2 that φ(c, a) ∈ K. Therefore an

application of Lemma 2.3 leads to

f = φ(c, a) ∗ (φ(a, c) ∗ f) ∈ S∗.

This completes the proof of the theorem. �

Theorem 3.2. Let a and c satisfy (3.1). If f ∈ T (a, c), then f(E)

contains the disk

D =

{

w : |w| <
a

2(|c|+ a)

}

. (3.2)

Proof. Let

f(z) = z +

∞
∑

n=1

an+1z
n+1 ∈ T (a, c),

where a and c satisfy (3.1), and w0(w0 6= 0) be any complex number such

that f(z) 6= w0 for z ∈ E. Then the function

g(z) =
w0f(z)

w0 − f(z)
= z +

(

a2 +
1

w0

)

z2 + · · ·

is analytic and univalent in E by Theorem 3.1, and hence

1

|w0|
− |a2| ≤

∣

∣

∣

∣

a2 +
1

w0

∣

∣

∣

∣

≤ 2. (3.3)
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Since

L(a, c)f(z) = z +

∞
∑

n=1

(a)n
(c)n

an+1z
n+1 ∈ S∗,

we have |aa2
c
| ≤ 2, and it follows from (3.3) that

|w0| ≥
1

2 + |a2|
≥

a

2(|c| + a)
. (3.4)

This gives the desired result. �

Theorem 3.3. Let a, c and d be real. If

d 6= 0, −1 < d ≤ 1 and c > 3 + |d|, (3.5)

then T (a, d) ⊂ T (a, c).

Proof. If f ∈ T (a, d), then L(a, d)f = φ(a, d) ∗ f ∈ S∗. Since c and d

satisfy (3.5), φ(d, c) ∈ K by Lemma 2.2. Hence it follows from Lemma 2.3

that

L(a, c)f = φ(a, c) ∗ f = (φ(a, d) ∗ φ(d, c)) ∗ f

= φ(d, c) ∗ (φ(a, d) ∗ f) ∈ S∗,

that is, f ∈ T (a, c). The proof is complete. �

Theorem 3.4. Let f ∈ T (a, c) and ψ ∈ K.Then ψ ∗ f ∈ T (a, c).

Proof. Since L(a, c)f ∈ S∗ and ψ ∈ K, it follows from Lemma 2.3 that

L(a, c)(ψ ∗ f) = ψ ∗ L(a, c)f ∈ S∗.

Hence ψ ∗ f ∈ T (a, c). �

In view of Theorem 3.4, we see that the assumption “a(a 6= 0) and c are

real and satisfy c > N(a), where N(a) is defined in the similar way of (1.5)”

in Theorem D is redundant.

Theorem 3.5. If a ≥ 1, then

T (a+ 1, c) ⊂ T (a, c). (3.6)
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Proof. It is known that for f ∈ A,

z(L(a, c)f(z))′ = aL(a+ 1, c)f(z) − (a− 1)L(a, c)f(z). (3.7)

Let us put

g(z) =
z(L(a, c)f(z))′

L(a, c)f(z)
. (3.8)

Then g(0) = 1 and from (3.7) and (3.8) we get

aL(a+ 1, c)f(z)

L(a, c)f(z)
= g(z) + a− 1. (3.9)

Differentiating both sides of (3.9) logarithmically and using (3.8) we have

z(L(a+ 1, c)f(z))′

L(a+ 1, c)f(z)
= g(z) +

zg′(z)

g(z) + a− 1
. (3.10)

If f ∈ T (a+ 1, c), then (3.10) leads to

g(z) +
zg′(z)

g(z) + a− 1
≺

1 + z

1− z
. (3.11)

Since Q(z) = 1+z
1−z

+ a− 1 is convex in E and ReQ(z) > a− 1 ≥ 0(z ∈ E), it

follows from (3.11) and Lemma 2.4 that g(z) ≺ 1+z
1−z

, which is equivalent to

f ∈ T (a, c). This proves (3.6). �

Theorem 3.6. Let f ∈ T (a, c) and

F (z) =
β + 1

zβ

∫ z

0
tβ−1f(t)dt (β > 0). (3.12)

Then L(a, c)F ∈ S∗(σ(β)), where

σ(β) =

(

4

∫ 1

0

tβ

(1 + t)2
dt

)−1

− β. (3.13)

The result is sharp, that is, the order σ(β) cannot be increased.

Proof. From (3.12) we have F ∈ A and

βL(a, c)F (z) + z(L(a, c)F (z))′ = (β + 1)L(a, c)f(z)
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or

z(L(a, c)F (z))′

L(a, c)F (z)
+ β = (β + 1)

L(a, c)f(z)

L(a, c)F (z)
. (3.14)

Differentiating both sides of (3.14) logarithmically we deduce that

p(z) +
zp′(z)

p(z) + β
=
z(L(a, c)f(z))′

L(a, c)f(z)
, (3.15)

where

p(z) =
z(L(a, c)F (z))′

L(a, c)F (z)
. (3.16)

Since f ∈ T (a, c), it follows from (3.15) that

p(z) +
zp′(z)

p(z) + β
≺

1 + z

1− z
(p(0) = 1). (3.17)

Taking α = 1, β > 0, h(z) = 1+z
1−z

and Q(z) = 1+z
1−z

+ β, it is clear that

the conditions (i) and (ii) in Lemma 2.5 are satisfied. Thus, by Lemma 2.5,

the differential equation

q(z) +
zq′(z)

q(z) + β
=

1 + z

1− z
(q(0) = 1) (3.18)

has a univalent solution q(z),

p(z) ≺ q(z) ≺
1 + z

1− z
, (3.19)

and q(z) is the best dominant of (3.17). It is easy to verify that the solution

q(z) of (3.18) is

q(z) =
zβ+1

(1− z)2
∫ z

0
uβ

(1−u)2
du

− β

=

(

(1− z)2
∫ 1

0

tβ

(1− tz)2
dt

)−1

− β. (3.20)

It is well known that for c1 > b1 > 0 and z ∈ E, the Gaussian hyperge-
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ometric function defined by (2.2) satisfies

F (a1, b1; c1; z) =
Γ(c1)

Γ(b1)Γ(c1 − b1)

∫ 1

0

tb1−1(1− t)c1−b1−1

(1− tz)a1
dt (3.21)

and

F (a1, b1; c1; z) = F (b1, a1; c1; z) = (1− z)c1−a1−b1F (c1 − b1, c1 − a1; c1; z).

(3.22)

By using (3.21) and (3.22), q(z) given by (3.20) can be expressed as

q(z) =
β + 1

(1− z)2F (2, β + 1;β + 2; z)
− β

=
β + 1

(1− z)F (1, β;β + 2; z)
− β. (3.23)

From (3.21) and (3.23) we have

q(z) =
1

g(z)
− β, (3.24)

where

g(z) =

∫ 1

0
g(t, z)dµ(t),

g(t, z) =
1

β + 1

(

1− z

1− tz

)

, dµ(t) = β(β+1)tβ−1(1− t)dt (β > 0). (3.25)

Note that for |z| ≤ ρ < 1 and 0 ≤ t ≤ 1,

Re
1

g(t, z)
≥ (β + 1)

(

1 + tρ

1 + ρ

)

=
1

g(t,−ρ)
> 0.

Now applying Lemma 2.6, it follows from (3.24) and (3.25) that

Re q(z) ≥
1

g(−ρ)
− β =

β + 1
∫ 1
0

1+ρ
1+tρ

dµ(t)
− β (|z| ≤ ρ),

which leads to

inf
z∈E

Re q(z) =
1

g(−1)
− β = q(−1). (3.26)
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Since q(z) is the best dominant of (3.17), from (3.16)-(3.20) and (3.26) we

conclude that

Re
z(L(a, c)F (z))′

L(a, c)F (z)
> q(−1) =

(

4

∫ 1

0

tβ

(1 + t)2
dt

)−1

− β = σ(β)

and the bound σ(β) cannot be increased. The proof is now complete. �

We note that Theorem 3.6 is better than Theorem E by Noor.
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