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A CLASS OF ANALYTIC FUNCTIONS DEFINED
BY THE CARLSON-SHAFFER OPERATOR

BY

NENG XU AND DINGGONG YANG

Abstract

The Carlson-Shaffer operator L(a,c)f = ¢(a,c) * f, where
f(2) = z+a22®> +- - is analytic in the unit disk F = {2 : |2| < 1}
and ¢(a, c; z) is an incomplete beta function, is used to define the
class T'(a,c). An analytic function f belongs to T'(a,c) if L(a,c)f
is starlike in /. The object of the present paper is to derive some

properties of functions f in the class T'(a,c).

1. Introduction

Let A be the class of functions f of the form
flz)= z—l—Zanz” (1.1)
n=2

which are analytic in the unit disk £ = {z : |z|] < 1}. A function f € A is

said to be starlike of order o in F if

2f'(2)
f(z)

for some a (0 < o < 1). We denote this class as S*(«). Also we denote by

Re

>a (z€F)
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S*(0) = S*. A function f € A is said to be convex (univalent) in E if

wfie L) o e

We denote this class as K. Clearly f € K if and only if zf" € S*.

The class A is closed under the Hadamard product or convolution

(f = 9)( Z anby 2"
where
= Z apnz", g(z) = Z bp2".
n=0 n=0

Let ¢(a,c) be defined by
(a) \@n nt1
= E E; 0,-1,-2,--- 1.2
¢ a C z =z + c z 6 Y & # 9 9y ) )7 ( )

where (A\), = AXA+1)---(A+n—-1)(n € N ={1,2,3,--- }). The function
¢(a,c) is an incomplete beta function. Carlson and Shaffer [1] defined a

linear operator on A by the convolution as follows:

L(a,c)f = ¢(a,C) * f (f € A; C 7£ 07 _17 _27 o ) (13)

L(a,c) maps A into itself. L(c,c) is the identity and if a # 0,—1,—-2,--- |
then L(a, c) has a continuous inverse L(c, a) and is an one-to-one mapping of
A onto itself. L(a,c) provides a convenient representation of differentiation
and integration. If g(z) = zf'(z), then g = L(2,1)f and f = L(1,2)g.

By using L(a, c) we now introduce the subclass of A as follows.

Definition. A function f € A is said to be in the class T'(a, ¢) if

L(a,c)f € 8% (¢#0,-1,-2,---). (1.4)

Miller and Mocanu [4, Theorem 2] have proved that if ¢(c # 0) and a
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are real and satisfy

cl+3 cf>1
a>N@:{2222(H ? (1.5)
st +35 (e <3),
then the function
N - (c)n 2"
O(c,a;2) =14 nz::l (@) 11 (1.6)

is convex in E.
In [5] Noor gave the following.

Lemma A.([5, Lemma 2.1]) If ¢(c # 0) and a are real and satisfy (1.5),

then ¢(c,a; z) is convex in E.

Theorem A.([5, Theorem 3.2]) Let f € T'(a,c), where a and ¢ satisfy

the conditions of Lemma A. Then f € S* and hence f is univalent in F.

Theorem B.([5, Theorem 3.3]) Let f € T(a,c) with a and ¢ satisfying
(1.5). Then the disk E is mapped onto a domain that contains the disk

D:{w4w<2@+®}. (1.7)

a

Theorem C. ([5, Theorem 3.4]) Let a(a # 0),c and d be real and
¢ > N(d), where N(d) is defined as in (1.5). Then

T(a,d) C T(a,c). (1.8)
Theorem D.([5, Theorem 3.5]) Let a(a # 0) and c be real and satisfy

¢ > N(a), where N(a) is defined in the similar way of (1.5). Let ¢ be a
convex function in E. If f € T'(a,c) then ¢ x f € T(a,c).

Theorem E.([5, Theorem 3.7]) Let f € T'(a,c) and let F' be defined by

F(z) = ﬁ;ﬁ ! /0 -1 ()dt (8 € N). (1.9)
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Then
Re {M} >a (z€FE), (1.10)

where

a:—(2ﬁ+1)+\/4ﬁ2+45+9‘ (111)

4

However, we find that Lemma A is not always true for ¢(c # 0 real) and
a satisfying (1.5).
Counterexample. Let a =1 and 3 <c¢ < . Thena > N(¢c) =c+ %

and

oe,1;2) =z + Z (;—)!nznﬂ = rzz)c (1.12)
n=1

For z = pe(0 < p<1)and 1 — § < cosf < 1(0 < 6 < %), we have

2¢"(c,1;2) o (e+Dpe  (c—1)pe”
¢ (c,1;2) 1 — pet? 1+ (c—1)pei?”

1+

Hence

6 .1 . 10 _ 0
oy {1 220t e gy pef )

p—1 @ (c, 1; pet?) 2 c—1)e?
1—c c—1+cosf
= -1 .
o e U ey

(1—-¢)(2—¢)(2cos0+c—2)
211+ (¢ — 1)e??|?
<0, (1.13)

which implies that the function ¢(c,1;2)(3 < ¢ < 3) is not convex in E.

In view of ﬁ € 5*, we see that

fe(z) = ¢(e, 15 2) % a —Zz)2 e T(1,¢).

But fo(z) = 2¢/(c,1;2)(3 < ¢ < 3) is not starlike in E. Thus the counterex-
ample shows that Theorem A is not true when a = 1 and % <c< % In [5],
the proof of Theorem B used Lemma A, and so its validity is not justified.
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Similarly the proof of Theorem C in [5] is not valid. Also the result from

Theorem E is not sharp.

In this paper we discuss similar problems and obtain useful results for
the class T'(a, c).

2. Preliminary Results

To prove our results, we need the following lemmas.

Lemma 2.1.([4, Corollary 4.1]) If a, b and ¢ are real and satisfy —1 <
a<1l,b>0andc>1+max{2+|a+b—2,1—(a—1)(b—1)}, then

zF(a,b;c;2) € S*, (2.1)
where
N - (a)n(b)n i
F(a,b;c;2) =1+ nz_:l “on (2.2)

1s the Gaussian hypergeometric function.
Applying Lemma 2.1, we derive the following result.

Lemma 2.2. Ifa and c are real and satisfy —1 < a <1 and ¢ > 3+ |al,
then ¢(a,c; z) defined by (1.2)is convex in E.

Proof. From (1.2) we have

2¢/(a,c;2) = 2+ Z %Zwl
n=1 n

— ot i (@)n(2)n 2"
~ (o 0
= zF(a,2;¢; 2). (2.3)

Since —1 < a <1 and ¢ > 3+ |a|, it follows from (2.3) and Lemma 2.1 (with
b =2) that 2¢'(a, ¢; 2) is starlike in E, which leads to ¢(a,c) € K. d
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Lemma 2.3.([6]) If f € K and g € S*, then fxg € S*.

Let f and g be analytic in E. The function f is subordinate to g, written
f=<gor f(z) <g(2), if g is univalent in E, f(0) = ¢g(0) and f(E) C g(E).

Lemma 2.4.([2]) Let a(a # 0) and B be complex numbers and let p
and h be analytic in E with p(0) = h(0). If Q(z) = ah(z) + S is convex and
ReQ(z) > 0 in E, then

implies that p(z) < h(z).

Lemma 2.5.([3]) Let a(a # 0) and S be complex numbers and let h be
analytic and univalent in E and Q(z) = ah(z) + . Let p be analytic in E
and satisfy

< h(z) (p(0) = h(0)). (2.4)

If

(i) ReQ(z) >0 for z € E, and

(ii) @ and é are convez in F,

then the solution of the differential equation

2q'(2) s _
q(2) + OET h(z) (q(0) = h(0)) (2.5)

is univalent in E and is the best dominant of (2.4).

Lemma 2.6.([7]) Let pu be a positive measure on the unit interval [0, 1].
Let g(t, z)be a function analytic in E for each t € [0,1] and integrable in t
for each z € E and for almost all t € [0,1], and suppose that Reg(t,z) > 0
in E, g(t,—p) is real and

1 1
Re > zl <p<1; tel0,1]).
00 = g =e 0,1)
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If g(= fo (t,z)du(t), then

3. The Class T'(a,c)
Theorem 3.1. Let a and c be real and satisfy
c#0,-1<c<1 and a>3+]|c. (3.1)
Then T'(a,c) C S*.

Proof. If f € T(a,c), then L(a,c)f = ¢(a,c) x f € S*. Since a and
c satisfy (3.1), we have from Lemma 2.2 that ¢(c,a) € K. Therefore an
application of Lemma 2.3 leads to

f=d¢(c,a) = (¢(a,c) x ) € 5™
This completes the proof of the theorem. O

Theorem 3.2. Let a and ¢ satisfy (3.1). If f € T(a,c), then f(E)

contains the disk
a
D = : _ 5. 3.2
{os ol < rar ) (32

Proof. Let
o0
fz) =2+ Z an12" € T(a,¢),

n=1

where a and ¢ satisfy (3.1), and wo(wg # 0) be any complex number such
that f(z) # wq for z € E. Then the function

wo f(2) ( 1 > 2

Z2)=——~=z+|\a2+— |+ -
9(2) wo — f(2) Wo

is analytic and univalent in E' by Theorem 3.1, and hence

1
lwo

—las| <

1
wo
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Since

a
( )nan+lzn+1 c S*,

(©)n

we have [#22] < 2, and it follows from (3.3) that

L(a,0)f(z) =2+
n=1

[wol > 2+ |as] = 2(|c|a—|- a)’ (3.4)

This gives the desired result. U
Theorem 3.3. Let a, ¢ and d be real. If

d#0,-1<d<1 and c>3+]d, (3.5)

then T'(a,d) C T'(a,c).

Proof. It f € T(a,d), then L(a,d)f = ¢(a,d) * f € S*. Since ¢ and d
satisfy (3.5), ¢(d,c) € K by Lemma 2.2. Hence it follows from Lemma 2.3
that

L(a,c)f = ¢(a,c) x f = (¢(a,d) * ¢(d, c))
= ¢(d,c) * (¢(a,d) = f) € S7,
that is, f € T(a,c). The proof is complete. 0
Theorem 3.4. Let f € T(a,c) and 1 € K.Then ¢ x f € T(a, ).
Proof. Since L(a,c¢)f € S* and ¢ € K, it follows from Lemma 2.3 that
La,c)(1 * f) = 4  L(a,c)f € S*.
Hence ¢ * f € T(a, c). O

In view of Theorem 3.4, we see that the assumption “a(a # 0) and c are
real and satisfy ¢ > N(a), where N(a) is defined in the similar way of (1.5)”
in Theorem D is redundant.

Theorem 3.5. Ifa > 1, then

T(a+1,¢) C T(a,c). (3.6)
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Proof. 1t is known that for f € A,

2(L(a,e)f(2)) = aLl(a+1,¢)f(2) — (a — 1)L(a,c) f(2). (3.7)

Let us put
_ 2(L(a,0)f (7))
M =L are) &%)
Then ¢(0) = 1 and from (3.7) and (3.8) we get
alle+ Lo =) _ ooyt q . (3.9)

L(a,c)f(2)

Differentiating both sides of (3.9) logarithmically and using (3.8) we have

2(L(a+1,¢)f(2)) B 2q(2)
La+1Lo0f(z) g(2) + FEFTEE (3.10)

If f € T(a+1,c), then (3.10) leads to
g(z) + g(zjg—ii(z)— 1 < i i_z (3.11)

Since Q(z) = 12 +a— 1 is convex in E and ReQ(z) > a—1> 0(z € E), it

follows from (3.11) and Lemma 2.4 that g(z) < 112, which is equivalent to
f € T(a,c). This proves (3.6). O
Theorem 3.6. Let f € T'(a,c) and
1 z
e =224 / @)t (8> 0). (3.12)
0

Then L(a,c)F € S*(o(B)), where

o(8) = (4/01 uiiﬁt)zdo_l _ 8. (3.13)

The result is sharp, that is, the order o() cannot be increased.

Proof. From (3.12) we have F' € A and

BL(a,)F(2) + z(L(a, ) F(2))" = (B + 1) L(a, ) f(2)
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e ot
Differentiating both sides of (3.14) logarithmically we deduce that
e G AHLeofC)Y
PO 08T Lwal() 19
where
_ 2(L(a, ) F(z))'
p(z) = L(a,c)F(2) (3.16)
Since f € T'(a,c), it follows from (3.15) that
pe) + 2L IR ) -, (3.17)

p()+8 1-z

Taking « = 1,8 > 0,h(z) = % and Q(z) = 1+z + S, it is clear that
the conditions (i) and (ii) in Lemma 2.5 are satisfied. Thus, by Lemma 2.5,

the differential equation

o)+ A = 0 =) (3.18)
has a univalent solution ¢(z),
p(z) < q(z) < 11_2, (3.19)

and ¢(z) is the best dominant of (3.17). It is easy to verify that the solution

q(z) of (3.18) is

(2) = LB+ 8
! 22 [y = 2du
1 B -1
— <(1—z)2/0 ﬁdt) - B. (3.20)

It is well known that for ¢; > b1 > 0 and z € E, the Gaussian hyperge-
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ometric function defined by (2.2) satisfies

F(C]_) 1 tbl—l(l _t)cl_bl_l

F(ay,biyer;2) = T (e —b1) /0 1t dt (3.21)

and

F(ay,bi;¢1;2) = F(bi,a1;¢152) = (1 — z)cl_‘“_blF(cl —b1,c1 —ag;cr;2).

(3.22)
By using (3.21) and (3.22), ¢(#) given by (3.20) can be expressed as
B p+1
) = Gpre s stz
_ Rt _
BT o2
From (3.21) and (3.23) we have
1
q(z) = ) B, (3.24)

where

1
g@zégmwwm

ot 2) = ﬁ <11__—;> dpt) = BB+ Y1 —Ddt (8> 0). (3.25)

Note that for |z| <p <land 0 <t <1,

1 T+tp\ 1
9(t, 2) 2(6+1)<1+p> e

Now applying Lemma 2.6, it follows from (3.24) and (3.25) that

Re

1 6+1
R = -
QQ(Z) 2 g(_p) ﬁ 01 11:t€)dﬂ(t) 6 (|Z| S p)v
which leads to
inf Reg(z) = —— — 8 = g(1). (3.26)
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Since ¢(z) is the best dominant of (3.17), from (3.16)-(3.20) and (3.26) we
conclude that

AL@FE)Y o, [ oL,
re g > o= (1 ) gm0

and the bound o(f3) cannot be increased. The proof is now complete. O

We note that Theorem 3.6 is better than Theorem E by Noor.
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