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ON A FUNCTIONAL EQUATION ASSOCIATED

WITH THE TRAPEZOIDAL RULE

BY

PRASANNA K. SAHOO

Abstract

The present work aims to determine the solution f, g, h, k :

R → R of the equation g(y)− h(x) = (y− x)[f(x)+ 2k(sx+ ty)+

2k(tx+ sy) + f(y)] for all real numbers x and y. Here s and t are

any two a priori chosen real parameters. This functional equation

arises in connection with the trapezoidal rule for the numerical

evaluation of definite integrals. In the book [9], it was an open

problem to find the general solution of the functional equation

g(y)− g(x) = (y−x)[f(x)+2k(x+2y)+2k(2x+ y)+ f(y)]. This

paper also determines the differentiable solution of this functional

equation.

1. Introduction

Let R be the set of all real numbers. The trapezoidal rule is an ele-

mentary numerical method for evaluating a definite integral
∫ b

a
f(t) dt. The

method consists of partitioning the interval [a, b] into subintervals of equal

lengths and then interpolating the graph of f over each subinterval with a

linear function. If a = xo < x1 < x2 < · · · < xn = b is a partition of [a, b]

into n subintervals, each of length b−a
n

, then

∫ b

a

f(t)dt ≃
b− a

2n
[f(xo) + 2f(x1) + · · ·+ 2f(xn−1) + f(xn)].

This approximation formula is called the trapezoidal rule. It is well known
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that the error bound for trapezoidal rule approximation is

∣

∣

∣

∫ b

a

f(t)dt−
b− a

2n
[f(xo) + 2f(x1) + · · ·+ 2f(xn−1) + f(xn)]

∣

∣

∣
≤
K(b− a)3

12n2

where K = sup{|f (2)(x)||x ∈ [a, b]}. It is easy to note from this inequality

that if f is two times continuously differentiable and f (2)(x) = 0, then

∫ b

a

f(t)dt =
b− a

2n
[f(xo) + 2f(x1) + · · ·+ 2f(xn−1) + f(xn)].

This is obviously true if n = 3 and it reduces to

∫ b

a

f(t)dt =
b− a

6
[f(xo) + 2f(x1) + 2f(x2) + f(x3)].

Letting a = x, b = y, x1 = 2x+y
3 and x2 = x+2y

3 in the above formula, we

obtain
∫ y

x

f(t)dt =
y − x

6

[

f(x) + 2f
(2x+ y

3

)

+ 2f
(x+ 2y

3

)

+ f(y)
]

. (1)

This integral equation (1) holds for all x, y ∈ R if f is a polynomial of degree

at most one. However, it is not obvious that if (1) holds for all x, y ∈ R, then

the only solution f is the polynomial of degree one. The integral equation

(1) leads to the functional equation

g(y)− g(x) =
y − x

6

[

f(x) + 2f
(2x+ y

3

)

+ 2f
(x+ 2y

3

)

+ f(y)
]

(2)

where g is an antiderivative of f . The above equation is a special case of the

functional equation

g(y)− h(x) = (y − x)[f(x) + 2k(sx+ ty) + 2k(tx+ sy) + f(y)] (3)

where s, t are two real a priori chosen parameters. If we choose s = 1 and

t = 2, then we obtain

g(y)− g(x) = (y − x)[f(x) + 2k(x+ 2y) + 2k(2x + y) + f(y)] (4)

for all x, y ∈ R. In the book [9], it was an open problem to find the general

solution of the functional equation (4).
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It should be noted that if we consider n = 2 in the approximation

formula, then the functional equation

g(y)− g(x) =
(y − x

4

)[

f(x) + 2f
(x+ y

2

)

+ f(y)
]

arrises analogously and it is a special case of

g(y)− g(x) = (y − x)[φ(x) + ψ(y) + h(sx+ ty)].

This functional equation was treated by Kannappan, Riedel and Sahoo [6]

(also see [9]); without any regularity conditions. Interested reader should see

[1-5, 7-11] for related functional equations whose solutions are polynomials.

In this paper, our goal is to determine the general solution of the func-

tional equation (3) without any regularity assumptions on the unknown func-

tions f , g, h and k when s and t are any two a priori chosen real parameters

with s2 = t2. In the case s2 6= t2, we find the differentiable solutions of

the functional equation (3). We also provide differentiable solutions of the

functional equation (4).

2. Solution of the Functional Equation (3) when s
2 = t

2

The following theorem from [6] will be instrumental in solving the func-

tional equation (3).

Theorem 1. Let s and t be real parameters. The functions f, g, h, φ, ψ :

R → R satisfy the functional equation

f(x)− g(y) = (x− y)[h(sx+ ty) + ψ(x) + φ(y)]

for all x, y ∈ R if and only if g(x) = f(x) and

f(x) =



































ax2 + (b+ d)x+ c if s = 0 = t

ax2 + bx+ c if s = 0, t 6= 0

ax2 + bx+ c if s 6= 0, t = 0

3ax4 + 2bx3 + cx2 + (d+ 2β)x + α if s = t 6= 0

2ax3 + cx2 + (2β − d)x−A(x) + α if s = −t 6= 0

−2bstx3 + βx2 + (2γ + α− d)x+ δ if 0 6= s2 6= t2 6= 0
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φ(x) =







































ax+ (b−δ)
2 if s = 0 = t

ax+ (b+δ)
2 if s = 0, t 6= 0

ax+ (b+δ)
2 if s 6= 0, t = 0

2ax3 + bx2 + cx−A(x) + β + δ
2 if s = t 6= 0

3ax2 + cx− 1
2Ao(x) + β, if s = −t 6= 0

bt(t− 2s)x2 + βx+A(tx) + γ if 0 6= s2 6= t2 6= 0

ψ(x) =







































ax+ (b+δ)
2 if s = 0 = t

ax+ (b−δ)
2 − h(tx) if s = 0, t 6= 0

ax+ (b−δ)
2 − h(sx) if s 6= 0, t = 0

2ax3 + bx2 + cx−A(x) + β − δ
2 if s = t 6= 0

3ax2 + cx+ 1
2Ao(x) + β − d if s = −t 6= 0

bs(s− 2t)x2 + βx+A(sx) + γ + α if 0 6= s2 6= t2 6= 0

h(x) =







































arbitrary with h(0) = d if s = 0 = t

arbitrary if s = 0 t 6= 0

arbitrary if s 6= 0 t = 0

a
(

x
s

)3
+ b

(

x
s

)2
+A

(

x
s

)

+ d if s = t 6= 0

−a
(

x
s

)2
− s

x
A
(

x
s

)

+ 1
2Ao

(

x
s

)

, x 6= 0 if s = −t 6= 0,

−bx2 −A(x)− d if 0 6= s2 6= t2 6= 0,

where Ao, A : R → R are additive functions and a, b, c, d, α, β, γ, δ are arbi-

trary real constants.

Using Theorem 1, we determine the general solution of the functional

equation (3) without any regularity assumptions on the unknown functions

f , g and h when the parameters s and t satisfy s2 = t2.

Theorem 2. Let s and t be any two a priori chosen real parameters

such that s = 0, t = 0, or s2 = t2. The functions f, g, h, k : R → R satisfy

the functional equation (3), that is

g(y)− h(x) = (y − x)[f(x) + 2k(sx+ ty) + 2k(tx+ sy) + f(y)]
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for all x, y ∈ R if and only if h(x) = g(x) and

g(x) =



























ax2 + bx+ c if s = 0 = t

ax2 + bx+ c if s = 0, t 6= 0

ax2 + bx+ c if s 6= 0, t = 0

3ax4 + 2bx3 + cx2 + (d+ 2β)x+ α if s = t 6= 0

2ax3 + cx2 + 2βx−A(x) + α if s = −t 6= 0

f(x) =



























ax+ (b−γ)
2 if s = 0 = t

ax+ b
2 − 2k(tx) if s = 0, t 6= 0

ax+ b
2 − 2k(sx) if s 6= 0, t = 0

2ax3 + bx2 + cx−A(x) + β if s = t 6= 0

3ax2 + cx+ β if s = −t 6= 0,

k(x) =



























arbitrary if s = 0 = t

arbitrary if s = 0, t 6= 0

arbitrary if s 6= 0, t = 0
a
4

(

x
s

)3
+ b

4

(

x
s

)2
+ 1

4A
(

x
s

)

+ d
4 if s = t 6= 0

−a
2

(

x
s

)2
− 1

2

(

s
x

)

A
(

x
s

)

− k(−x), x 6= 0 if s = −t 6= 0,

where A : R → R is an additive function, a, b, c, d, α, β are arbitrary real

constants, and the constant γ is given by γ = 4k(0).

Proof. Letting y = x in (3), we see that h(x) = g(x) for all x ∈ R, and

the functional equation (3) reduces to

g(y)− g(x) = (y − x)[f(x) + 2k(sx+ ty) + 2k(tx+ sy) + f(y)] (5)

for all x, y ∈ R. To determine the solution of the functional equation (5), we

consider several cases depending on parameters s and t.

Case 1. Suppose s = 0 = t. Then the functional equation (5) reduces

to

g(x) − g(y) = (x− y)[f(x) + f(y) + γ] (6)
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where γ = 4k(0). Using Theorem 1, we get

g(x) = ax2 + bx+ c (7)

f(x) = ax+ (b− γ)/2 (8)

k(x) is an arbitrary function (9)

where a, b, c are arbitrary constants.

Case 2. Suppose s 6= 0 and t = 0. Then (5) yields

g(x)− g(y) = (x− y)[f(x) + 2k(sx) + 2k(sy) + f(y)] (10)

for all x, y ∈ R. Hence by Theorem 1, we obtain

g(x) = ax2 + bx+ c (11)

f(x) = ax+
b

2
− 2k(sx), (12)

where k : R → R is an arbitrary function, and a, b, c are arbitrary constants.

Case 3. Suppose t 6= 0 and s = 0. Then (5) yields

g(x)− g(y) = (x− y)[f(x) + 2k(tx) + 2k(ty) + f(y)] (13)

for all x, y ∈ R. Hence by Theorem 1, we obtain

g(x) = ax2 + bx+ c (14)

f(x) = ax+
b

2
− 2k(tx), (15)

where k : R → R is an arbitrary function, and a, b, c are arbitrary constants.

Case 4. Suppose s = t 6= 0. Then (5) reduces to

g(x)− g(y) = (x− y)[f(x) + 4k(s(x+ y)) + f(y)] (16)

for all x, y ∈ R. Hence by Theorem 1, we obtain

g(x) = 3ax4 + 2bx3 + cx2 + (d+ 2β)x+ α, (17)

f(x) = 2ax3 + bx2 + cx−A(x) + β +
δ

2
, (18)
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f(x) = 2ax3 + bx2 + cx−A(x) + β −
δ

2
, (19)

4k(x) = a
(x

s

)3
+ b
(x

s

)2
+A

(x

s

)

+ d, (20)

where A : R → R is an additive function, and a, b, c, d, β, δ, α are constants.

From (18) and (19), we see that δ = 0. Therefore the solution of (5) is given

by

g(x) = 3ax4 + 2bx3 + cx2 + (d+ 2β)x+ α, (21)

f(x) = 2ax3 + bx2 + cx−A(x) + β, (22)

f(x) = 2ax3 + bx2 + cx−A(x) + β, (23)

k(x) =
a

4

(x

s

)3
+
b

4

(x

s

)2
+

1

4
A
(x

s

)

+
d

4
, (24)

where A : R → R is an additive function, and a, b, c, d, β, α are constants.

Case 5. Suppose s = −t 6= 0. Then from (5) we have

g(x)− g(y) = (x− y)[f(x) + 2k(s(x − y)) + 2k(−s(x− y)) + f(y)] (25)

for all x, y ∈ R. Defining

ℓ(sx) := 2k(sx) + 2k(−sx) (26)

for all x ∈ R and using (25), we obtain

g(x)− g(y) = (x− y)[f(x) + ℓ(s(x− y)) + f(y)] (27)

for all x, y ∈ R. Hence by Theorem 1, we obtain

g(x) = 2ax3 + cx2 + (2β − d)x−A(x) + α, (28)

f(x) = 3ax2 + cx−
1

2
A0(x) + β, (29)

f(x) = 3ax2 + cx+
1

2
A0(x) + β − d, (30)

ℓ(x) = −a
(x

s

)2
−
s

x
A
(x

s

)

+
1

2
A0

(x

s

)

, x 6= 0, (31)

where A,A0 : R → R are additive functions, and a, c, d, β, α are constants.
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Hence from (29) - (30) we see that

A0 ≡ 0, and d = 0. (32)

Therefore, we have

g(x) = 2ax3 + cx2 + 2βx−A(x) + α (33)

f(x) = 3ax2 + cx+ β, (34)

k(x) + k(−x) = −
a

2

(x

s

)2
−

1

2

s

x
A
(x

s

)

, x 6= 0, (35)

where a, c, α, β are arbitrary constants, and A : R → R is an additive func-

tion.

Since no more cases are left the proof of the theorem is now com-

plete. �

Notice that in the case s = −t, Theorem 2 does not find k(x) but

determines the function k(x) + k(−x).

3. Differentiable Solution of Equation (3) when s
2 6= t

2

In this section, we determine the differentiable solution of the functional

equation (3) in the case the a priori chosen parameters s and t satisfy s2 6= t2

with s 6= 0 and t 6= 0. Throughout this section, ψ(n) will denote the nth

derivative of the function ψ : R → R.

Theorem 3. Let s and t be any two nonzero a priori chosen real pa-

rameters with s2 6= t2. Suppose g and f are twice differentiable and k is four

time differentiable. The functions f, g, h, k : R → R satisfy the functional

equation (3), that is

g(y)− h(x) = (y − x)[f(x) + 2k(sx+ ty) + 2k(tx+ sy) + f(y)]
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for all x, y ∈ R if and only if h(x) = g(x) and for (s− t)2 − st 6= 0

g(x) = 2

3
∑

i=2

aiist[s
i−2 + ti−2]xi+1 + 2

1
∑

i=0

[bi + (si + ti)ai]x
i+1 + 2b0x+ c0

f(x) = 2

3
∑

i=2

ai

[

ist(si−2 + ti−2)− (si + ti)
]

xi + 2b1x+ 2b0

k(x) = a3x
3 + a2x

2 + a1x+ a0,

and for (s− t)2 − st = 0

g(x) = 2
5
∑

i=2

aiist[s
i−2 + ti−2]xi+1 + 2

1
∑

i=0

[bi + (si + ti)ai]x
i+1 + 2b0x+ b0

f(x) = 2
5
∑

i=2

ai

[

ist(si−2 + ti−2)− (si + ti)
]

xi + 2b1x+ 2b0

k(x) = a5x
5 + a4x

4 + a3x
3 + a2x

2 + a1x+ a0,

where ai (i = 0, 1, . . . , 5), bi (i = 0, 1), c0 are arbitrary real constants.

Proof. As in the Theorem 2, letting y = x, we get g(x) = h(x), and the

functional equation reduces to

g(x) − g(y) = (x− y)[f(x) + 2k(sx+ ty) + 2k(tx+ sy) + f(y)] (36)

for all x, y ∈ R. Letting y = 0 in the above functional equation, we have

g(x) = x[f(x) + 2k(sx) + 2k(tx) + f(0)] + g(0) (37)

for all x ∈ R. Differentiating (36) with respect to x twice, we obtain

g(2)(x) = (x− y)
[

f (2)(x) + 2s2k(2)(sx+ ty) + 2t2k(2)(tx+ sy)
]

+2
[

f (1)(x) + 2sk(1)(sx+ ty) + 2tk(1)(tx+ sy)
]

. (38)

Next, differentiating (38) with respect to y twice and simplifying, we see

that

4st(s− t)k(3)(sx+ ty)− 4st(s− t)k(3)(tx+ sy)

= 2s2t2(x− y)
[

k(4)(sx+ ty) + k(4)(tx+ sy)
]
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for all x, y ∈ R. Since s and t are nonzero, we have

k(3)(sx+ ty)− k(3)(tx+ sy)

=
1

2

st

s− t
(x− y)

[

k(4)(sx+ ty) + k(4)(tx+ sy)
]

(39)

for all x, y ∈ R.

Let u = sx+ ty and v = sy + tx. Since s2 6= t2, that is det

(

s t

t s

)

6= 0,

therefore

x =
vt− us

t2 − s2
and y =

ut− vs

t2 − s2
.

Hence from (39), we have

k(3)(u)− k(3)(v) =
1

2

st

(s− t)2
(u− v)

[

k(4)(u) + k(4)(v)
]

(40)

for all u, v ∈ R. Defining

φ(x) = k(3)(x) and ψ(x) =
1

2

st

(s− t)2
k(4)(x) (41)

and using the equation (40), we obtain

φ(u)− φ(v) = (u− v)[ψ(u) + ψ(v)] (42)

for all u, v ∈ R. The solution of the functional equation (42) can be obtained

from Lemma 3.2 in [9] as

ψ(u) = ax+ b and φ(x) = ax2 + 2bx+ c (43)

where a, b, c are real arbitrary constants. From (41) and (43), we obtain

1

2

st

(s − t)2
k(4)(x) = ax+ b and k(3)(x) = ax2 + 2bx+ c. (44)

Differentiating the second expression in (44) with respect to x, we get

k(4)(x) = 2ax+ 2b.

Now we consider two cases.
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Case 1. Suppose (s − t)2 − st 6= 0. Comparing this with the first

expression in (44), we see that a = 0 and b = 0. Hence k(4)(x) = 0 for all

x ∈ R. Therefore

k(x) = a3x
3 + a2x

2 + a1x+ a0, (45)

where ai’s are real constants.

Letting (45) into (36) and differentiating the resulting equation first with

respect to x and then with respect to y, we get

0 = (x− y)[12a3st(sx+ ty) + 4a2st+ 12a3st(tx+ sy) + 4a2st]

−
[

f (1)(x) + 6a3s(sx+ ty)2 + 4a2s(sx+ ty) + 2a1s

+6a3t(tx+ sy)2 + 4a2t(tx+ sy) + 2a1t
]

+
[

6a3t(sx+ ty)2 + 4a2t(sx+ ty) + 2a1t

+6a3s(tx+ sy)2 + 4a2s(tx+ sy) + 2a1s+ f (1)(y)
]

for all x, y ∈ R. Letting y = 0 in the last equation and simplifying, we have

f (1)(x) = 2
3
∑

i=2

iai

[

ist(si−2 + ti−2)− (si + ti)
]

xi−1 + f (1)(0). (46)

Integrating (46) with respect to x, we obtain

f(x) = 2

3
∑

i=2

ai

[

ist(si−2 + ti−2)− (si + ti)
]

xi + 2b1x+ 2b0, (47)

where 2b1 = f (1)(0) and b0 is a constant of integration. Using (47) and (45)

in (37), we see that

g(x) = 2

3
∑

i=2

aiist
[

si−2+ti−2
]

xi+1+2

1
∑

i=0

[bi+(si+ti)ai]x
i+1+2b0x+c0, (48)

where c0 = g(0). Letting the functions f(x), g(x) and k(x) into the func-

tional equation (36), we see that they are the solution of (36).

Case 2. Suppose (s − t)2 − st = 0, that is s = (32 ±
√

5
2 )t. Then from
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(44) we have k(4)(x) = 2ax+ 2b. Integrating with respect to x, we see that

k(x) = a5x
5 + a4x

4 + a3x
3 + a2x

2 + a1x+ a0, (49)

where ai’s for i = 0, 1, . . . , 5 are real constants. Letting this k(x) into (36)

and differentiating the resulting equation first with respect to x and then

with respect to y, and finally substituting y = 0 in the resulting expression,

we obtain

f (1)(x) = 2
5
∑

i=2

iai

[

ist(si−2 + ti−2)− (si + ti)
]

xi−1 + f (1)(0). (50)

Integrating (50) with respect to x, we obtain

f(x) = 2

5
∑

i=2

ai

[

ist(si−2 + ti−2)− (si + ti)
]

xi + 2b1x+ 2b0, (51)

where 2b1 = f (1)(0) and b0 is a constant of integration. Using (51) and (49)

in (37), we see that

g(x) = 2
5
∑

i=2

aiist
[

si−2 + ti−2
]

xi+1 + 2
1
∑

i=0

[

bi + (si + ti)ai

]

xi+1 + 2b0x+ c0,

(52)

where c0 = g(0). Letting the functions f(x), g(x) and k(x) into the func-

tional equation (36), we see that they are the solution of (36). Since no more

cases are left, the proof of the theorem is now complete. �

The following three corollaries follow from Theorem 3.

Corollary 1. Suppose g : R → R and f : R → R are twice differentiable

and k : R → R is four time differentiable. The functions f, g, h, k : R → R

satisfy the functional equation (4), that is

g(y)− h(x) = (y − x)[f(x) + 2k(x+ 2y) + 2k(2x + y) + f(y)]
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for all x, y ∈ R if and only if h(x) = g(x) and

g(x) = 36Ax4 + 16Bx3 + (E + 6C)x2 + 2(G+ 2D)x+ F, (53)

f(x) = 18Ax3 + 6Bx2 + Ex+G, (54)

k(x) = Ax3 +Bx2 + Cx+D, (55)

where A,B,C,D,E, F,G are arbitrary real constants.

Corollary 2. Let s and t be any two nonzero a priori chosen real

parameters with s2 6= t2. Suppose g : R → R are twice differentiable and

f : R → R is four time differentiable. The functions f, g : R → R satisfy the

functional equation

g(y)− g(x) = (y − x)[f(x) + 2f(sx+ ty) + 2f(tx+ sy) + f(y)]

for all x, y ∈ R if and only if

g(x) = (2s + 2t+ 1)Cx2 + 6Dx+ E, (56)

f(x) = Cx+D (57)

where C,D,E are arbitrary real constants.

Corollary 3. Suppose g : R → R are twice differentiable and f : R → R

is four time differentiable. The functions f, g : R → R satisfy the functional

equation (2), that is

g(y)− g(x) =
y − x

6

[

f(x) + 2f
(2x+ y

3

)

+ 2f
(x+ 2y

3

)

+ f(y)
]

for all x, y ∈ R if and only if

g(x) = 9Cx2 + 6Dx+ E, (58)

f(x) = 18Cx+ 6D (59)

where C,D,E are arbitrary real constants.

4. Main Result

Now using Theorem 2 and Theorem 3, we are ready to give the differ-

entiable solutions of the functional equation (3).
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Theorem 4. Let s and t be any two priori chosen real parameters.

Suppose g : R → R and f : R → R are twice differentiable and k : R → R

is four time differentiable. The functions f, g, h, k : R → R satisfy the

functional equation (3), that is

g(y)− h(x) = (y − x)[f(x) + 2k(sx+ ty) + 2k(tx+ sy) + f(y)]

for all x, y ∈ R if and only if h(x) = g(x) and

g(x) =



















































































































ax2 + bx+ c if s = 0 = t

ax2 + bx+ c if s = 0, t 6= 0

ax2 + bx+ c if s 6= 0, t = 0

3ax4 + 2bx3 + cx2 + (d+ 2β)x + α if s = t 6= 0

2ax3 + cx2 + (2β − d)x+ α if s = −t 6= 0

2

3
∑

i=2

aiist[s
i−2 + ti−2]xi+1

+2
1
∑

i=0

[bi+(si+ti)ai]x
i+1+2b0x+c0 if s2 6= t2, (s−t)2 6=st

2

5
∑

i=2

aiist[s
i−2 + ti−2]xi+1

+2

1
∑

i=0

[bi+(si+ti)ai]x
i+1+2b0x+c0 if s2 6= t2, (s−t)2=st

f(x) =































































































ax+ b−4η(0)
2 if s = 0 = t

ax+ b
2 − 2η(tx) if s = 0, t 6= 0

ax+ b
2 − 2η(sx) if s 6= 0, t = 0

2ax3 + bx2 + (c− d)x+ β if s = t 6= 0

3ax2 + cx+ β if s = −t 6= 0,

2
3
∑

i=2

ai

[

ist(si−2+ti−2)−(si + ti)
]

xi

+ 2b1x+ 2b0 if s2 6= t2, (s−t)2 6=st

2
5
∑

i=2

ai

[

ist(si−2+ti−2)−(si + ti)
]

xi

+ 2b1x+ 2b0 if s2 6= t2, (s−t)2=st
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k(x) =











































































η(x) if s = 0 = t

η(x) if s = 0, t 6= 0

η(x) if s 6= 0, t = 0
a
4

(

x
s

)3
+ b

4

(

x
s

)2
+ 1

4δ
x
s
+ d

4 if s = t 6= 0

−a
2

(

x
s

)2
− d

2 − k(−x) if s = −t 6= 0
3
∑

i=0

aix
i if s2 6= t2, (s−t)2 6=st

5
∑

i=0

aix
i if s2 6= t2, (s−t)2=st

where η : R → R is an arbitrary function, and ai (i = 0, 1, 2, . . . , 5), bi (i =

0, 1), a, b, c, d, c0, α, β, δ are arbitrary real constants.

Problem 1. In Theorem 3, we have assumed that the functions g :

R → R and f : R → R are twice differentiable and k : R → R is four time

differentiable. The proof of Theorem 3 heavily relies on this differentiability

assumption. Thus we pose the following problem: Determine the general

solution of the functional equation (3) without any regularity assumptions

on the unknown functions g, h, f and k.
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