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Abstract

A family of models MD-AR(1), MD-AR(p), MD-MA(q),

MD-ARMA(p, q) for multivariate discrete time series is developed

and all their autocorrelation structures are investigated. Any

fat-tailed dependent multivariate discrete random vectors can be

fitted reasonably by these multivariate discrete time series mod-

els. In this article, four multivariate Zipf processes are mainly

discussed. Some distributional properties of the Zipf processes,

MZ-AR(1) and MZ-MA(1) including the joint distribution, time

reversibility, expected run length, extreme order statistics, geo-

metric minima are studied thoroughly in this paper. These mul-

tivariate Zipf processes provide potential models for multivariate

discrete income time series data.

1. Introduction and Motivation

Some multivariate discrete time series models are developed in this pa-

per. They can generate a stationary sequence of dependent multivariate dis-

crete random vectors, which have a specified multivariate discrete marginal

distribution, and their correlation structures are constructed. This work

is extended from the result of Jacobs and Lewis (1978, 1983). There are
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three submodels included in this paper: (1) the multivariate discrete autore-

gressive process, MD-AR(p), (2) the multivariate discrete moving average

process, MD-MA(q), (3) The mixed multivariate MD-ARMA(p, q) process.

Their correlation structures are derived respectively.

These multivariate discrete time series models are suitable for any depen-

dent stationary multivariate discrete random vectors, such as: multivariate

Poisson, multivariate hypergeometric, multivariate multinomial, multivari-

ate negative multinomial, etc., (Johnson and Kotz and Balakrishnan(1997)).

However, the multivariate Zipf distribution was not in their book. Yeh

(2002) developed six generalized multivariate Zipf distributions. The Zipf

distribution is the discrete version of the Pareto distribution and it has been

frequently used to model a wide variety of soci-economic integer variables

such as the size of business firms, discrete income (Yule (1924), Arnold and

Laguna (1977)). Asset returns are also some types of income and in reality,

such kind of data may appear as multivariate forms which are fat upper

tailed on each dimension and they are reasonably well fitted by multivariate

Zipf distributions.

Motivation of this study is from the book of Tsay (2005) (Ch.3, 5, and 8),

Tsay studied many properties of the financial time series data. The charac-

teristics of asset returns are right fat-tailed. All conditional heteroscedastic

models developed in recent years, such as ARCHBGARCHBEGARCH, etc.

are all fat-tailed and continuous. Most financial time series analysis studies

involve returns, in stead of prices of assets. Asset returns have more at-

tractive statistical properties. Additionally, many such variables of random

vectors are repeatedly observed over time and they possibly form a multi-

variate discrete Zipf time series data. Hence if the marginal distributions of

the MD-AR(p), MD-MA(q), MD-ARMA(p, q) processes are specified as the

multivariate Zipf (I), (II), (III), (IV) distributions, which will be introduced

in subsection 2.3, then these models are defined as the multivariate Zipf

processes and are denoted by MZ-AR(p), MZ-MA(q), and MD-ARMA(p, q)

respectively. In this paper, some distributional properties of the particular

MZ-AR(1) and MZ-MA(1) processes are studied detailedly.

As for the the statistical inferences and the identifiability of these mul-

tivariate Zipf processes will be studied in the near future by the author or

some other researchers of time series analysis.
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2. The Multivariate Discrete Time Series Models

The univariate discrete time series models proposed by Jacobs and Lewis

(1978, 1983) can be easily extended to the multivariate versions of AR(p),

MA(q), and ARMA(p, q). In the following subsections, the multivariate

discrete autoregressive process MD-AR(1), and higher order autoregressive

process MD-AR(p), and the multivariate discrete moving average process

MD-MA(q) will be discussed. Finally, the mixed multivariate discrete MD-

ARMA(p, q) processes are introduced.

2.1. The multivariate discrete autoregressive process MD-AR(1)

An m-variate discrete autoregressive process MD-AR(1) is defined as

An = VnAn−1 + (Im − Vn)Yn, (2.1)

where {Vn}
i.i.d.
∼ m-variate Bernoulli, i.e., Vn =

{

Im, w.p. ρ

0m×m, w.p. 1− ρ

Im is the identity matrix of dimension m × m and 0m×m is the m × m

matrix of entry 0, and {Yn}
i.i.d.
∼ any m-variate discrete random vector. The

MD-AR(1) process is clearly Markovian and it is analogous to the Markov

switching model proposed by Hamilton(1989).

Property 2.1. In model (2.1), (i) if the initial value A0 has the same

distribution as the Yn’s, then for each n = 1, 2, . . . , An has the same marginal

distribution as the Yn’s have, say π. (ii) If A0 has an arbitrary (and possi-

bly degenerate) distribution, then An converges in distribution to the same

distribution as the Yn’s distribution, π.

In this paper, only the stationary case is considered, i.e. assume A0
d
=Yn.

There are many m-variate discrete distributions introduced in Johnson and

Kotz and Balakrishnan (1997), such as: multivariate Poisson, multivariate

hypergeometric, multivariate multinomial, multivariate negative binomial,

multivariate negative multinomial, and multivariate logarithmic series dis-

tributions. But m-variate discrete Zipf distributions are not in their book.

Yeh (2002) developed six different m-variate discrete Zipf distributions. In

this article, all the Yn’s and A0 in Eq.(2.1) are chosen to have the m-variate
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Zipf (I), (II) (III) and (IV) distributions and the sequence {An} is defined as

the multivariate Zipf autoregressive processes and denoted by MZ(I)-AR(1),

MZ(II)-AR(1), MZ(III)-AR(1), MZ(IV)-AR(1) respectively. These multi-

variate Zipf processes will be studied in Subsections 2.3-2.6.

2.2. The correlation structure of the MD-AR(1) process

Although the An’s in Eq.(2.1) have a stationary distribution π, the An’s

are not independent as the Yn’s. This is easily discerned by the autocovari-

ance matrices between An and An−ℓ.

For any two m-variate random vectors An and An−ℓ in Eq.(2.1), the au-

tocovariance matrices between them are defined as Γ(ℓ) = Cov (An, An−ℓ) =

E[(An − µ)(An−ℓ − µ)′], where µ = E(An) = E(An−ℓ). In general, for any

ℓ ∈ {±1,±2,±3, . . .}, it is verified that

Γ(ℓ) = Γ(−ℓ) = ρ|ℓ|Γ(0). (2.2)

Thus, the MD-AR(1) process is time reversible.

2.3. The multivariate Zipf autoregressive process MZ-AR(1)

If the An’s in Eq.(2.1) are marginally distributed as the multivariate

Zipf distribution (Yeh (2002)), then this MD-AR(1) process is called the

MZ-AR(1) process. Before we study the MZ-AR(1) process, it is necessary

to introduce the four types of the multivariate Zipf (I), (II), (III), (IV) dis-

tributions. Their definitions are as follows.

Definition 2.1. Multivariate Zipf Distribution

Suppose X = (X1,X2, . . . ,Xm) is an m-dimensional discrete random

vector. Then X is said to have multivariate Zipf distribution.

(1) of type (I), if the joint survival function of X is

FX(k) = P (X ≥ k) =
{

1 +

m
∑

i=1

(ki
σi

)}−α
, (2.3)
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for any k = (k1, k2, . . . , km), ki ∈ {0, 1, 2, . . .}, 1 ≤ i ≤ m where α > 0,

σi > 0, 1 ≤ i ≤ m, denote σ = (σ1, σ2, . . . , σm). The distribution of X

is denoted as X ∼M (m)Zipf(I)(σ, α).

(2) of type (II), if the joint survival function of X is

FX(k) =
{

1 +
m
∑

i=1

(ki − µi
σi

)}−α
, (2.4)

for any k = (k1, k2, . . . , km), ki ≥ µi and ki is integer, 1 ≤ i ≤ m, where

µ = (µi, µ2, . . . , µm), each µi is an integer, 1 ≤ i ≤ m. As for α and

σ, they are the same as in Eq.(2.1). The distribution of X is denoted as

X ∼M (m)Zipf(II)(µ, σ, α).

(3) of type (III), if the joint survival function of X is

FX(k) =
{

1 +

m
∑

i=1

(ki − µi
σi

)1/γi}−1
, (2.5)

where γ = (γ1, γ2, . . . , γm), γi > 0, as for µ, σ, k, they are the same as

in Eq.(2.4).

The distribution of X is denoted as X ∼M (m) Zipf(III)(µ, σ, γ).

(4) of type (IV), if the joint survival function of X is

FX(k) =
{

1 +
m
∑

i=1

(ki − µi
σi

)1/γi}−α
, (2.6)

where α > 0, and µ, σ, γ, k, are the same as in Eq.(2.5). The distribu-

tion of X is denoted as X ∼M (m)Zipf(IV )(µ, σ, γ, α).

It is clear that the three multivariate Zipf(I), (II), (III) families can be

identified as special cases of the multivariate Zipf(IV) family as follows:

M (m)Zipf(I)(σ, α) = M (m)Zipf(IV)(0, σ, 1, α),

M (m)Zipf(II)(µ, σ, α) = M (m)Zipf(IV)(µ, σ, 1, α), (2.7)

M (m)Zipf(III)(µ, σ, γ) = M (m)Zipf(IV)(µ, σ, γ, 1).

Under the constructions of Eqs.(2.3), (2.4), (2.5), (2.6), it is easily dis-

cerned that these four m-dim Zipf distributions are qualified as multivariate

Zipf distributions by virture of having Zipf marginal variables.
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2.4. The joint distributions and time reversibility of the MZ-AR(1)

process

Let An and An+1 be any two adjacent m-variate random vectors in the

MZ-AR(1) process, then the joint survival function of An and An+1 is derived

from Eq.(2.1) as

FAn,An+1
(k1, k2)

=
{

1 +

m
∑

i=1

(max(k1i , k
2
i )− µi

σi

)1/γi}−α
ρ+

{

1 +

m
∑

i=1

(k1i − µi
σi

)1/γi}−α

·
{

1 +

m
∑

i=1

(k2i − µi
σi

)1/γi}−α
(1− ρ), (2.8)

for any two state vectors k1 = (k11 , k
1
2 , . . . , k

1
m) ∈ Em = {k = (k1, k2, . . . , km)

| ki ≥ µi, ki is integer, 1 ≤ i ≤ m} and k2 = (k21 , k
2
2 , . . . , k

2
m) ∈ Em.

It is easily observed that Eq.(2.7) is symmetric in k1 and k2, and hence

the MZ-AR(1) process is time reversible. The time reversibility is also con-

firmed by the correlation structure of the MD-AR(1) process in Subsection

2.2, Γ(ℓ) = Γ(−ℓ), for any ℓ = 1, 2, . . ..

2.5. The distribution of the runs in the MZ-AR(1) process

From the previous Subsection 2.3, Eq.(2.7), it suffices to study the

MZ(IV)-AR(1) process. Let {An} be a sequence in the MZ(IV)-AR(1) pro-

cess, i.e., An’s satisfy

An =

{

An−1, w.p. ρ,

Yn, w.p. 1− ρ.

Fix an m-variate state vector i = (i1, i2, . . . , im) ∈ Em, where Em = {k =

(k1, k2, . . . , km) | ki ≥ µi, ki is integer, 1 ≤ i ≤ m} and, µ = (µ1, µ2, . . . , µm),

each µi is an integer, 1 ≤ i ≤ m, then the length of a run of i starting at

time epoch one for {Aj} in the MZ(IV)-AR(1) process is defined as Ti =

inf{j : Aj 6= i} − 1. The probability mass function (pmf) of Ti is calculated

as

P (Ti = 0) = P{A1 6= i} = 1− π(i), (2.9)
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where π(i) is the joint pmf of the multivariate Zipf(IV) distribution, it is

obtained from Eq.(2.6) as

π(i) =
{

1 +
m
∑

ℓ=1

( iℓ−µℓ
σℓ

)1/γℓ
}−α

−
{

1 +
m
∑

ℓ=1

( iℓ+1−µℓ
σℓ

)1/γℓ
}−α

. (2.10)

For general ℓ = 1, 2, 3, . . ., by the Markov property of MZ(IV)-AR(1), we

have

P (Ti=ℓ) = P (A1= i, A2= i, . . . , Aℓ= i, Aℓ+1 6= i) =
∑

j∈Em−{i}

π(i)P ℓ−1
ii Pij ,

(2.11)

where Pii and Pij are the transition probabilities. They are evaluated as

Pij=P (An+1=j | An= i)=

{

(1−ρ)π(j), if j 6= i

ρ+(1−ρ)π(i), if j = i
, for any i, j ∈ Em.

Thus, for any ℓ ∈ {1, 2, . . .},

P (Ti = ℓ) = (1− ρ)π(i)(1− π(i)){ρ+ (1− ρ)π(i)}ℓ−1. (2.12)

From Eqs.(2.9) and (2.12), it is straightforward to check that
∑∞

ℓ=0 P (Ti =

ℓ) = 1, and conclude that for any fixed state vector i ∈ Em, the length of

a run of i’s, Ti is a non-defective discrete random variable. The survival

function of Ti is directly calculated from the pmf of Ti as

P (Ti ≥ ℓ) =

{

1, if ℓ = 0,

π(i){ρ+ (1− ρ)π(i)}ℓ−1, if ℓ = 1, 2, . . . .
(2.13)

Property 2.2. The expected run length for the MZ(IV )-AR(1) process

is always greater than or equal to the expected run length of an i.i.d. sequence

of multivariate Zipf(IV ) random vectors.

Note. This property is true not only for the MZ(IV)-AR(1) process, it

is also true for any other multivariate discrete random vectors in the general
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MD-AR(1) process defined in Subsection 2.1.

2.6. Extreme order statistics in the MZ-AR(1) process

Order statistics of discrete random vectors are usually intractable ex-

cept for the extremes. Finite series minima and maxima in the univariate

Z(III)-AR(1) process (Yeh (1990)) and the geometric minima in the multi-

variate Zipf(III) family (Yeh (2002)) are particularly well behaved. Owing to

the similar forms between the multivariate MZ(III)-AR(1) process and the

univariate Z(III)-AR(1) process, it is natually to study whether this closure

properties for extreme order statistics in the univariate Z(III)-AR(1) process

will also be true in the multivariate MZ(III)-AR(1) process.

2.6.1. Exact and asymptotic distributions of extremes

Let A1, A2, . . . , An be the first n random vectors from a MZ(III)-AR(1)

or MZ(IV)-AR(1) process. Define mn = min{A1, A2, . . . , An} as the coor-

dinatewise minima of {Ai}
n
i . By the Markov property of {Ai}, the survival

function of mn is calculated as

Fmn(k) = P (A1 ≥ k){P (A2 ≥ k | A1 ≥ k)}n−1

=
1

{

1+
m
∑

j=1

(kj−µj
σj

)1/γj}α

{

ρ+
1−ρ

{

1+
m
∑

j=1

(kj−µj
σj

)1/γj}α

}n−1

,

(2.14)

for any k ∈ Em. Eq.(2.14) is the exact survival function of mn in the

MZ(IV)-AR(1) process, if set α = 1 in Eq.(2.14), then by Eq.(2.5), the exact

survival function of mn in the MZ(III)-AR(1) process is the following

Fmn(k) =
1

(

1 +

m
∑

j=1

(kj − µj
σj

)1/γj)

{

1 + ρ

m
∑

j=1

(kj − µj
σj

)1/γj

1 +

m
∑

j=1

(kj − µj
σj

)1/γj

}n−1

, (2.15)
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for any k ∈ Em. If we consider the particular state vector k0 = (µ1 +
σ1

nγ1 x1, µ2 +
σ2

nγ2 x2, . . . , µm + σm
nγm xm) in Eq.(2.15) with all the xi > 0, 1 ≤

i ≤ m, then the limiting distribution of mn is

lim
n→∞

Fmn(k0) = lim
n→∞

1
(

1 + 1
n

m
∑

j=1

x
1/γj
j

)

{

1 + ρ
n

m
∑

j=1

x
1/γj
j

1 + 1
n

m
∑

j=1

x
1/γj
j

}n−1

= e−(1−ρ)
∑m

j=1 x
1/γj
j . (2.16)

If consider scale transformation coordinatewisely, then Eq.(2.16) becomes

lim
n→∞

P
{(n(1− ρ))γ

σ
(mn − µ) ≥ x

}

= e−
∑m

j=1
x
1/γj
j , (2.17)

where (n(1−ρ))γ

σ (mn − µ) = (( (n(1−ρ))γ1

σ1
(m1

n − µ1),
(n(1−ρ))γ2

σ2
(m2

n − µ2), . . .,
(n(1−ρ))γm

σm
(mm

n − µm))), and x = (x1, x2, . . . , xm), mn = (m1
n,m

n
2 , . . . ,m

m
n ).

From Eq.(2.17), conclude that the limiting distribution of (n(1−ρ))γ

σ (mn−µ)

is m’s independent Weibull(1/γj) random variables.

2.6.2. Geometric minima of the MZ(III)-AR(1) process

Yeh (2002) studied geometric random sampling of the multivariate Zipf

(III) distributions and found that Zipf(III) is closed under the geometric

minima. This interesting fact initiates Yeh into the study of the geometric

minima closure properties for the auto-correlated MZ(III)-AR(1) process.

Suppose that A1, A2, . . ., is a sequence in the MZ(III)-AR(1) process

and that N is a geometric random variable with pmf

P (N = n) =

{

pqn−1, if n = 1, 2, . . . (q = 1− p)

0, o.w.
. (2.18)

Assuming that N is independent of the Ai’s, let g = min{A1, A2, . . . , AN}.

Since N and Ai’s are independent, so P{g ≥ k | N = n} = P{mn ≥ k},

for any k ∈ Em, where mn and its survival function is defined in Eq.(2.15).
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Thus,

P (g ≥ k) =

∞
∑

n=1

P{g ≥ k | N = n}P (N = n)

=

{

1 +

m
∑

j=1

( kj − µj

σj

(

ρ+ 1−ρ
p

)−γj

)1/γj

}−1

,

it is discerned that the geometric minima is also an m-variate M (m)Zipf(III)

random vector, i.e.,

g ∼ M (m)Zipf(III)
(

µ,
(

ρ+
1− ρ

p

)−γ
σ, γ), (2.19)

where the parameter vectors are respectively defined as µ = (µ1, µ2, . . . , µm),

γ = (γ1, γ2, . . . , γm), and

(

ρ+
1−ρ

p

)−γ
σ=

(

(

ρ+
1−ρ

p

)−γ1
σ1,
(

ρ+
1−ρ

p

)−γ2
σ2, . . . ,

(

ρ+
1−ρ

p

)−γm
σm

)

.

3. The Higher Order Multivariate Discrete Autoregressive

Process MD-AR(p)

A direct way of extending the MD-AR(1) process in Eq.(2.1) is to con-

sider the following representation

An = VnAn−Dn + (Im − Vn)Yn, (3.1)

where {Dn} is a sequence of i.i.d. univariate discrete random variables with

pmf

P (Dn = i) = αi,

1 ≤ i ≤ p,
∑p

i=1 αi = 1, and {Vn}
i.i.d.
∼ m-dim Bernoulli(ρ) random matrices.

Vn =

{

Im, w.p. ρ,

0m×m, w.p. 1− ρ,
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and {Vn}
i.i.d.
∼ anym-variate discrete random vector. Expanding out Eq.(3.1),

then each An is expressed as

An =







































An−1, w.p. ρα1,

An−2, w.p. ρα2,

...
...

An−p, w.p. ραp,

Yn, w.p. 1− ρ

(3.2)

for n = 1, 2, . . ., model (3.1) or (3.2) is denoted as MD-AR(p). The MD-

AR(p) process is clearly a Markov pth-order model and it is analogous to the

model proposed by Lo and Mackinlay (1990).

Property 3.1. In Eq.(3.2) (i) If the p’s initial random vectors {A0, A−1,

. . . , A−p+1} have identical marginal distributions as the i.i.d. m-variate dis-

crete random vectors {Yn}, then all the An’s, n = 1, 2, . . ., in the MD-

AR(p) process have the same marginal distribution as the Yn’s have. (ii)

If {A0, A−1, . . . , A−p+1} have arbitrary distribution, then An converges in

distribution to the same distribution as the Yn’s distribution, π.

The proof of Property 3.1 is similar to Property 2.1 and hence is omitted.

In the following, we will focus on the stationary case, i.e. condition (i) of

Property 3.1 holds.

3.1. The correlation structure of the MD-AR(p) process

For any two m-variate random vectors An and An−ℓ in the MD-AR(p)

process, the autocovariance matrices between An and An−ℓ are defined as

Γ(ℓ) = Cov (An, An−ℓ), by Eq.(3.2), then

Γ(ℓ) = ρα1Γ(ℓ−1)+ρα2Γ(ℓ−2)+ · · ·+ραpΓ(ℓ−p)+(1−ρ)ΣY,A(ℓ), (3.3)
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where ΣY,A(ℓ) = Cov (Yn, An−ℓ), consider the following cases:

(i) ℓ = 0, then ΣY,A(0) = (1− ρ)ΣY . (3.4)

(ii) ℓ > 0, ΣY,A(ℓ) = 0m×m. (3.5)

(iii) ℓ < 0, ΣY,A(ℓ) = ρ

min{p,−ℓ}
∑

j=1

αjΣY,A(ℓ+ j). (3.6)

Refer to Eq.(3.3), consider the following cases: for

(i) ℓ = 1, 2, . . . , p, the autocovariance matrices {Γ(ℓ)}p1 of the MD-AR(p)

process satisfy the multivariate version of the Yule-Walker equation

which is






























Γ(1) = ρα1Γ(0) + ρα2Γ(−1) + · · ·+ ραpΓ(−(p− 1))

Γ(2) = ρα1Γ(1) + ρα2Γ(0) + · · ·+ ραpΓ(−(p− 2))

...

Γ(p) = ρα1Γ(p − 1) + ρα2Γ(p− 2) + · · ·+ ραpΓ(0)

, (3.7)

where Γ(0) = ΣY , for

(ii) ℓ > p, then Γ(ℓ) is obtained recursively as

Γ(ℓ) = ρα1Γ(ℓ− 1) + ρα2Γ(ℓ− 2) + · · ·+ ραpΓ(ℓ− p), (3.8)

(iii) ℓ = 0,

Γ(0) = ρ

p
∑

j=1

αjΓ(−j) + (1− ρ)2ΣY , (3.9)

(iv) ℓ < 0,

Γ(ℓ) = ρ

p
∑

j=1

αjΓ(ℓ− j) + (1− ρ)ρ

min{p,−ℓ}
∑

j=1

αjΣY,A(ℓ+ j). (3.10)

From Eqs.(3.7) and (3.8), it is observed that the autocovariance matrices

Γ(ℓ) for the positive lag, ℓ = 1, 2, . . . , p, p + 1, . . . of the MD-AR(p) process

satisfy the system of the multivariate Yule-Walker equations (Janacek and

Swift (1993)). This property is similar to that of the multivariate Gaussian

AR(p) process (Tiao and Box (1981)).
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For any two m-variate random vectors An and An+ℓ, ℓ = 1, 2, . . ., in the

MD-AR(p) process, we are interested in studying the probability that An

and An+ℓ will choose the same random vector Yk, 1 ≤ k ≤ n. Let PA(ℓ)

denote such probability in the following.

Property 3.2. In the MD-AR(p) process, the probability, PA(ℓ), for

ℓ = 1, 2, . . . , p, p+ 1, . . ., will satisfy the univariate Yule-Walker equations.

4. The Multivariate Discrete Moving Average Process MD-MA(p)

The MD-MA(q) process is defined as

Xn = VnYn−En + (Im − Vn)Yn, (4.1)

where {En} is a sequence of univariate i.i.d. discrete random variables with

pmf P (En = i) = βi, i = 1, 2, . . . , q,
∑q

i=1 βi = 1, and {Vn}
i.i.d.
∼ m-dim.

Bernoulli(ρ) random matrices, Vn =

{

Im, w.p. ρ

0m×m, w.p. 1− ρ
, and {Yn}

i.i.d.
∼

any m-variate discrete random vector.

Eq.(4.1) can be written explicitly as

Xn =















































Yn−1, w.p. ρβ1

Yn−2, w.p. ρβ2

...
...

...

Yn−q,
... ρβq

Yn, w.p. 1− ρ

(4.2)

for n = 1, 2, . . ..

For any k ∈ Em the survival function of Xn is calculated directly by

Eq.(4.1), which is

FXn(k) =
{

ρβ1 + ρβ2 + · · ·+ ρβq + (1− ρ)
}

P (Yn ≥ k) = F Yn(k), (4.3)

hence all the Xn’s in the MD-MA(q) process have the same marginal m-

variate discrete distribution as the Yn’s have.



42 HSIAW-CHAN YEH [March

4.1. The correlation structure of the MD-MA(q) process

For any two m-variate random vectors Xn and Xn+ℓ in the MD-MA(q)

process, the autocovariance matrices between Xn and Xn+ℓ are defined as

Γ(ℓ) = Cov (Xn,Xn+ℓ), for any ℓ = 0,±1,±2, . . ., consider the following

cases: for

(i) ℓ = 0, Γ(0) = Cov (Xn,Xn)
△
=ΣX

△
=ΣY ,

(ii) 1 ≤ ℓ ≤ q − 1, the autocovariance matrix of lag ℓ can be similarly

calculated as

Γ(ℓ) = Γ(−ℓ) =
{

(1− ρ)ρβℓ + ρ2
q−ℓ
∑

i=1

βiβi+ℓ

}

ΣY . (4.4)

(iii) ℓ = q

Γ(q) = (1− ρ)ρβqΣY (4.5)

(iv) ℓ > q,

Γ(ℓ) = 0m×m = Γ(−ℓ). (4.6)

Thus, the correlation structure of the MD-MA(q) process has a cut-

off pattern after lag q, and by the relation Γ(ℓ) = Γ(−ℓ) for any ℓ =

0,±1,±2, . . ., the MD-MA(q) process is time reversible. It is easily observed

from Eq.(4.2) and the structure of the autocovariance matrices {Γ(ℓ)} that

the MD-MA(q) process is a q-dependent stationary multivariate time series

model.

4.2. The multivariate Zipf moving average process MD-MA(q)

In this subsection, the MD-MA(1) process with the multivariate Zipf

(I), (II), (III), (IV) as the marginal distribution is considered and it is called

the MZ-MA(1) process. Unless otherwise indicated, we will restrict our

attention to the MZ-MA(1) process in the remainder of this subsection; that

is in Eq.(4.1), En ≡ 1 with probability 1, i.e., P (En = 1) = 1, then

Xn =

{

Yn, w.p. 1− ρ

Yn−1, w.p. ρ
, (4.7)
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and {Yn}
i.i.d.
∼ the m-variate Zipf (I), (II), (III), (IV) distributions which are

introduced in Subsection 2.3. Note that, unlike the MZ-AR(1) process, the

MZ-MA(1) process is not a Markov chain but is a one-dependent stationary

process. From Eq.(2.7), it suffices to study the MZ(IV)-MA(1) process.

Suppose the innovation process {Yn} are i.i.d. multivariate Zipf(IV) random

vectors, then for each n = 1, 2, . . ., Xn in the MZ-MA(1) process is identically

distributed as the Yn’s. For any m-variate state vector i = (i1, i2, . . . , im) ∈

Em = {k = (k1, k2, . . . , km) | ki ≥ µi, ki is integer, 1 ≤ i ≤ m}, the survival

function of Xn is

FXn(i) =
{

1 +

m
∑

ℓ=1

( iℓ − µℓ
σℓ

)1/γℓ
}−α

, (4.8)

Thus for all n = 1, 2, . . ., Xn’s are marginally distributed as the Yn’s which

are multivariate Zipf(IV) random vectors. The correlation structure of the

MZ-MA(1) process is followed from Section 4.1, which is















Γ(0) = ΣX = ΣY ,

Γ(1) = (1− ρ)ρΣY = Γ(−1),

Γ(ℓ) = 0m×m = Γ(−ℓ), for ℓ ≥ 2.

(4.9)

Therefore, the MZ-MA(1) process is a one-dependent stationary process and

its autocorrelation structure has a cut-off pattern at lag one.

4.3. The joint distributions and time reversibility of the

MD-MA(q) process

Let Xn and Xn+1 be any two adjacent m-variate random vectors in the

MZ-MA(1) process, then for any two state vectors k1, k2 ∈ Em, the joint

survival function of Xn and Xn+1 is derived from Eq.(4.7) as

FXn,Xn+1
(k1, k2) =

{

1 +
m
∑

i=1

(k1i − µi
σi

)1/γi}−α{

1 +
m
∑

i=1

(k2i − µi
σi

)1/γi}−α

×
{

(1− ρ)2 + ρ(1− ρ) + ρ2
}

+
{

1 +

m
∑

i=1

(max(k1i , k
2
i )− µi

σi

)1/γi}−α
ρ(1− ρ). (4.10)
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Clearly, this function is symmetric in k1 and k2, and hence the MZ-MA(1)

process is time reversible. The time reversibility of the MZ-MA(1) process

is also discerned from Eq.(4.9).

4.4. The distribution of the runs in the MZ-MA(1) process

Let {Xn} be a sequence in the MZ(IV)-MA(1) process, i.e., Xn’s satisfy

Eq.(4.7). Fix an m-variate state vector i = (i1, i2, . . . , im) ∈ Em, then the

length of a run of i starting at time epoch one for {Xn} in the MZ(IV).MA(1)

process is defined as Ti = inf{n ≥ 1 | Xn 6= i} − 1. For any integer n =

1, 2, . . ., the survival function of Ti, P (Ti ≥ n) is calculated as follows: let

an = P (Ti ≥ n), and π(·) be the marginal pmf of each Xn which is Eq.(2.10),

π(i) =
{

1 +
m
∑

ℓ=1

( iℓ − µℓ
σℓ

)1/γℓ
}−α

−
{

1 +
m
∑

ℓ=1

( iℓ + 1− µℓ
σℓ

)1/γℓ
}−α

.

From the definition of an, it is discerned that a0 = P (Ti ≥ 0) ≡ 1, and

a1 = P (Ti ≥ 1) = P (X1 = i) = π(i) (4.11)

By mathematical induction, the recursive relation among the survival prob-

abilities {an}n≥1 is derived as follows:

an+1 = ρπ(i)an + ρ(1− ρ)π(i)an−1 + ρ(1− ρ)2π2(i)an−2 + · · ·

+ρ(1− ρ)nπn(i)a0 + (1− ρ)n+1πn+1(i), (4.12)

for each n = 1, 2, . . .. Therefore, the marginal pmf of the length of a run

of i is P (Ti = n) = an − an+1. The expected run length for the MZ(IV)-

MA(1) process is calculated from Eq. (4.12). For each n = 1, 2, . . ., summing

Eq.(4.12) on both sides, and let Tn =
∑n

ℓ=1 aℓ, then the above equation is

Tn+1 = π(i) + ρπ(i)Tn + ρ

n−1
∑

j=1

(1− ρ)jπj(i)Tn−j + ρ
{

n
∑

j=1

(1− ρ)jπj(i)
}

a0

+

n+1
∑

j=2

(1− ρ)jπj(i). (4.13)
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Because the run length of i, Ti is a nonnegative discrete random variable,

thus E(Ti) =
∑∞

n=1 P (Ti ≥ n) =
∑∞

n=1 an = lim
n→∞

Tn, and by letting n→ ∞

on both sides in Eq.(4.13), then E(Ti) is solved as

E(Ti) =
π(i){1 + ρ(1− ρ)(1 − π(i))}

(1− π(i)){1 − ρ(1− ρ)π(i)}

△
=

P (i)

1− P (i)
, (4.14)

where P (i) = π(i) + ρ(1− ρ)π(i)(1− π(i)).

It is found that P (i) ≥ π(i) for any 0 ≤ ρ ≤ 1 and E(Ti) ≥
π(i)

1−π(i) .

If ρ = 0 or ρ = 1, then according to Eq.(4.14), {Xn} is reduced to a

sequence of i.i.d. random vectors {Yn} with E(Ti) =
π(i)

1−π(i) and in general,

for 0 < ρ < 1, E(Ti) ≥ π(i)
1−π(i) . Therefore, in the MZ-MA(1) process, the

expected length of a run of i is greater than the expected run length of an

i.i.d. sequence of random vectors. This property is analogous to that of the

MZ-AR(1) process which is Property 2.2 in Subsection 2.5.

4.5. Exact distribution of the extremes in the MZ-MA(1) process

Give a sequence of random variablesX1,X2, . . . ,Xn from the MZ-MA(1)

process, n ∈ {1, 2, . . .} define mn = min{X1,X2, . . . ,Xn} as the coordinate-

wise minima of {Xi}
n
1 . The exact survival function of mn is derived from

the joint survival function of mn and Yn.

Let ψn(, ) be the joint survival function of mn and Yn, i.e. for any

k1, k2 ∈ Em, ψn(k
1, k2) = P (mn ≥ k1, Yn ≥ k2), by Eq.(4.7) mn can be

expressed as mn =

{

min{mn−1, Yn}, w.p. (1− ρ)

min{mn−1, Yn−1}, w.p. ρ
, then

ψn(k
1, k2) = ψn−1(k

1, 0)F Y (max(k1, k2))(1− ρ) + ψn−1(k
1, k1)F Y (k

2)ρ,

(4.15)

where ψn−1(k
1, k1) is obtained from Eq.(4.15) as

ψn−1(k
1, k1) = ψn−2(k

1, 0)F Y (k
1)(1− ρ) + ψn−2(k

1, k1)F Y (k
1)ρ, (4.16)

and therefore, the exact survival function of mn can be solved recursively



46 HSIAW-CHAN YEH [March

from the following Eq.(4.17)

Fmn(k
1) = ψn(k

1, 0) = ψn−1(k
1, 0)F Y (k

1)(1− ρ) + ψn−1(k
1, k2)ρ, (4.17)

for all n ∈ {2, 3, . . .} with initial conditions ψ1(k
1, 0) = P (X1 ≥ k1) =

F Y (k
1), ψ0(k

1, 0) = 1 and ψ0(k
1, k1) = F Y (k

1) and the exact survival func-

tions of m2,

ψ2(k
1, 0) = (F Y (k

1))2(1− ρ) + F Y (k
1)(1− ρ)ρ+ (F Y (k

1))2ρ2.

A similar analysis is for the sample maximaMn = max{X1,X2, . . . ,Xn}.

The exact cdf of Mn is derived from the joint cdf of Mn and Yn. Let

ϕn(, ) be the joint cdf of Mn and Yn. By Eq.(4.7), Mn can be expressed

as Mn =

{

min{Mn−1, Yn}, w.p. (1− ρ)

min{Mn−1, Yn−1}, w.p. ρ
, then

ϕn(k
1, k2) = ϕn−1(k

1,∞)FY (min(k1, k2))(1 − ρ) + ϕn−1(k
1, k1)FY (k

2)ρ,

(4.18)

The exact cdf of Mn is obtained by setting k2 → ∞ coordinatewisely,

then

FMn(k
1) = ϕn(k

1,∞) = ϕn−1(k
1,∞)FY (k

1)(1− ρ) + ϕn−1(k
1, k1)ρ, (4.19)

for all n = 2, 3, . . . with initial conditions ϕ1(k
1,∞) = FY (k

1), and

ϕ2(k
1,∞) = (FY (k

1))2(1− ρ) + FY (k
1)(1 − ρ)ρ+ (FY (k

1))2ρ.

As for the geometric extremes, the MZ-MA(1) process is not closed un-

der the geometric minima. This property is different from that of MZ-AR(1)

process. The limiting distributions of mn and Mn in the MZ-MA(1) process

as n→ ∞ are not easy to derive from Eqs.(4.17) and (4.19) respectively.

5. The Multivariate Discrete Mixed Autoregressive

Moving-Average Process MD-AR(p, q)

The mixed process MD-ARMA(p, q) model is constructed by coupling

the two processes, MD-AR(p) and MD-MA(q), by means of a common m-
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variate discrete innovation process, {Yn}. The mixed MD-ARMA(p, q) pro-

cess is generated by the probabilistic model

An = VnAn−Dn + (Im − Vn)Yn−Fn (5.1)

where the sequences {Vn}, {Yn}, and {Dn} are defined as in the MD-AR(p)

process Eq.(3.2), and {Fn} is a sequence of i.i.d. univariate discrete random

variables with pmf P (Fn = i) = βi, i = 0, 1, 2, . . . , q,
∑q

i=0 βi = 1. Eq.(5.1)

can be written explicitly as

An =























































































An−1, w.p. ρα1,

An−2, w.p. ρα2,

...
...

...

An−p,
... ραp,

Yn, w.p. (1− ρ)β0,

Yn−1, w.p. (1− ρ)β1,

...
...

...

Yn−q,
... (1− ρ)βq.

(5.2)

It is discerned that if ρ = 0 in Eq.(5.2), then the MD-ARMA(p, q)

process is reduced to the MD-MA(q) process and if all the βi’s, i = 1, 2, . . . , q,

βi = 0, while β0 = 1, i.e., P (Fn = 0) = 1, then the MD-ARMA(p, q) process

yields the MD-AR(p) process.

Analogous to Property 2.1 and 3.1, we will consider only the case of

the random vectors {A0, A−1, . . . , A−(p−1)} in the MD-ARMA(p, q) process

identically distributed as the marginal distribution of the innovation process

{Yi} for all i ∈ {−(q − 1), . . . ,−1, 0, 1, . . .}.

5.1. The correlation structure of the MD-ARMA(p, q) process

Given any lag ℓ, ℓ ∈ {0,±1,±2, . . .}, for any two m-variate random

vectors An and An−ℓ in the MD-ARMA(p, q) process, the autocovariance

matrices between An and An−ℓ are defined as Γ(ℓ) = Cov (An, An−ℓ) and let
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ΣY,A(ℓ− j) = Cov (Yn−j, An−ℓ), for any j ∈ {0, 1, . . . , q}, then

Γ(ℓ) = ρ

p
∑

j=1

αjΓ(ℓ− j) + (1 − ρ)

q
∑

j=0

βjΣY,A(ℓ− j). (5.3)

Consider the following cases: for

(i) ℓ = 0, then

ΣY,A(0) = (1− ρ)β0ΣY , (5.4)

In general, for any ℓ assuming p ≥ q,

(ii) −q ≤ ℓ ≤ −1,

ΣY,A(ℓ) = ρ

−ℓ
∑

j=1

αjΣY,A(ℓ+ j) + (1− ρ)β−ℓΣY . (5.5)

(iii) ℓ < −q, then ΣY,A(ℓ) = ρ

min{p,−ℓ}
∑

j=1

αjΣY,A(ℓ+ j),

(iv) −q ≤ ℓ ≤ −1 and given p < q, then

ΣY,A(ℓ) = ρ

min{−ℓ,p}
∑

j=1

αjΣY,A(ℓ+ j) + (1− ρ)β−ℓΣY . (5.6)

On the other hand, if p < q, then for any ℓ,

(v) ℓ ≤ −q,

ΣY,A(ℓ) = ρ

p
∑

j=1

αjΣY,A(ℓ+ j), (5.7)

(vi) ℓ > 0,

ΣY,A(ℓ) = 0m×m. (5.8)

Refer to Eq.(5.4), consider the following cases:

(1) ℓ > q, the autocovariance of the MD-ARMA(p, q) process is reduced to

Γ(ℓ) = ρα1Γ(ℓ− 1) + ρα2Γ(ℓ− 2) + · · ·+ ραpΓ(ℓ− p). (5.9)

This relation is the same as the Eqs.(3.7), (3.8).
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(2) 1 ≤ ℓ ≤ q, the autocovariance of the MD-ARMA(p, q) process is

Γ(ℓ) = ρ

p
∑

j=1

αjΓ(ℓ− j) + (1− ρ)

q−ℓ
∑

j=0

βℓ+jΣY,A(−j). (5.10)

From Eqs.(5.9) and (5.10), it is found that the autocovariance structure

of the MZ-ARMA(p, q) process is analogous to that of the univariate con-

tinuous linear normal ARMA(p, q) process, i.e. after lag q. The set of the

autocovariance matrices {Γ(ℓ)}ℓ>q of the MD-ARMA(p, q) process satisfies

the multivariate version of the Yule-Walker equations which is the structure

of the pure MD-AR(p) process.

6. Conclusions and Summary

Several models MD-AR(1), MD-AR(p), MD-MA(q), and MD-ARMA

(p, q) for multivariate integer-valued stationary stochastic processes with

any multivariate discrete random vector as marginal distribution are pre-

sented in this paper. These models are the multivariate extension of the

univariate discrete time series model proposed by Jacobs and Lewis (1978).

The correlation structure of each model is derived detailedly in this arti-

cle. Yeh (2002) developed four generalized multivariate Zipf(I), (II), (III),

(IV) distributions. Utilizing these four multivariate Zipf random vectors

as the marginal distributions in the multivariate discrete time series models

and thus the multivariate Zipf processes MZ-AR(1), MZ-AR(p), MZ-MA(q),

MZ-ARMA(p, q) are constructed. Some distributional properties of the two

submodels, MZ-AR(1) and MZ-MA(1) are studied thoroughly.

In summary of this paper, it is found that

(1) All the MD-AR(p), MD-MA(q), and MD-ARMA(p, q) processes are suit-

able for any multivariate discrete random vectors.

(2) The autocovariance matrices of the MD-AR(p) process satisfy the mul-

tivariate Yule-Walker equations. The autocovariance matrices of the

MD-MA(q) process have a cut-off pattern after lag q. As for the mixed

model MD-ARMA(p, q) process, the autocovariance matrices of lags af-

ter the order q also satisfy the multivariate Yule-Walker equations. All
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these characteristics of the correlation structures in the multivariate dis-

crete time series models are analogous to that of the linear multivariate

Gaussian processes (Tiao and Box (1981)).

(3) All the multivariate Zipf processes, MZ-AR(1), MZ-AR(p), MZ-MA(q),

MZ-ARMA(p, q) processes give a common generalized multivariate

Zipf(I), (II), (III), (IV) marginal distributions under the stationary con-

dition.

(4) The multivariate Zipf processes MZ-AR(1), MZ-MA(1), are time-

reversible, and their expected run lengths are always greater than or

equal to the expected run length for an i.i.d. sequence of the multivariate

Zipf random vectors.

(5) The MZ-AR(1) process with multivariate Zipf(III) as marginal distribu-

tion is closed under geometric minima.

Acknowledgements

The author would like to thank the anonymous referee for some helpful

comments to improve this paper.

APPENDIX

A.1. Proof of Property 2.1

Proof. For fixed k = (k1, . . . , km), let an = FAn(k), b = F Yn(k).

By model (2.1), an inductive argument can be represented as

an = ρan−1 + (1− ρ)b (A.1)

If A0
d
=Yn, i.e. a0 = b, then a1 = ρb+ (1− ρ)b = b, by induction. Then

all an = b, so An
d
=Yn for any n = 1, 2, . . . and hence (i) is followed.

If A0 has an arbitrary distribution, then by recursively using Eq(A.1)

to yield

an = ρna0 + (1− ρ)b
{

1 + ρ+ ρ2 + · · · + ρn−1
}

=ρna0 + (1− ρ)b
{1− ρn

1− ρ

}

= ρna0 + b(1− ρn),
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since 0 < ρ < 1 so as n → ∞ lim
n→∞

an = b i.e., dAn → π and hence (ii) is

followed.

A.2. Proof of Property 2.2

Proof. From Eq.(2.13), the expected run length

E(Ti) =

∞
∑

ℓ=1

P (Ti ≥ ℓ) =
π(i)

(1− ρ)(1 − π(i))
. (A.2)

Clearly, E(Ti) ≥
π(i)

1−π(i) , for 0 ≤ ρ ≤ 1.

Consider two particular cases:

(i) ρ = 0, i.e., Vn = 0m×m w.p. 1, then An = Yn for all n = 1, 2, . . ., so the

MZ(IV)-AR(1) process is reduced to the sequence of i.i.d. multivariate

Zipf(IV) random vectors and in this case E(Ti) ≥
π(i)

1−π(i) .

(ii) If ρ = 1, i.e., Vn = Im w.p. 1, then An = An+1 for all n = 1, 2, . . ., hence

once A1 = i, then A1 = A2 = A3 = · · · = i, so E(Ti) = ∞.

A.3. Proof of Property 3.2

Proof. Let Rn be the random index of the Yk, 1 ≤ k ≤ n, that An

chooses, i.e., An = YRn . Referring to Eq.(3.2), know that An can be any one

of the {Yn, Yn−1, . . . , Y1}. The possible value of Rn is {1, 2, . . . , n}. Similar

definition for the random variable Rn−ℓ, it is the random index of the Yk,

1 ≤ k ≤ n − ℓ, that An−ℓ chooses, i.e., An−ℓ = YRn−ℓ
. The possible value

of Rn−ℓ is {1, 2, . . . , n − ℓ}. Clearly, the random variable Rn (or Rn−ℓ) is

independent of the {Yk}. By definition, then

E(AnA
′
n−ℓ) = E(YRnY

′
Rn−ℓ)

=

n−ℓ
∑

k=1

E(YkY
′
K)P (Rn = Rn−ℓ = k)

+
n
∑

k=1

n−ℓ
∑

j=1
(j 6=k)

E(YkY
′
j )P (Rn = k,Rn−ℓ = j). (A.3)
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Note that all the Yn’s are i.i.d. m-variate discrete random vectors, hence the

first term above becomes

E(Y1Y
′
1)

n−ℓ
∑

k=1

P (Rn = Rn−ℓ = k) = E(Y1Y
′
1) · P (Rn = Rn−ℓ). (A.4)

The second term becomes

E(Y1)(E(Y2))
′

n
∑

k=1

n−ℓ
∑

j=1
(j 6=k)

P (Rn=k,Rn−ℓ=j)

= E(Y1)(E(Y2))
′P (Rn 6= Rn−ℓ)=E(Y1)(E(Y1))

′{1−P (Rn=Rn−ℓ)}. (A.5)

Then

E(An, A
′
n−ℓ)

= E(Y1Y
′
1)P (Rn = Rn−ℓ) + E(Y1)(E(Y1))

′{1− P (Rn = Rn−ℓ)}

= {E(Y1, Y
′
1)− E(Y1)(E(Y1))

′}P (Rn = Rn−ℓ) + E(Y1)(E(Y1))
′. (A.6)

From Property 3.1, conclude that the random vectors An’s in the MD-

AR(p) process are identically distributed as the Yn’s, so E(Y1Y
′
1)

−E(Y1)(E(Y1))
′ = Var −Cov (Y1) = Var −Cov (An) = Var −Cov (An−ℓ) =

Γ(0) and E(Y1)(E(Y1))
′ = E(An)(E(An−ℓ))

′, refer to Eq.(A.6)

Γ(ℓ) = Cov (An, An−ℓ) = E(AnA
′
n−ℓ)− E(An)(E(An−ℓ))

′

= Γ(0)P (Rn = Rn−ℓ) = Γ(0)PA(ℓ). (A.7)

It is discerned that Eq.(A.7) is true for any positive and negative lags, i.e., ℓ ∈

{±1,±2, . . .} and PA(0) = 1. Plugging this relation Γ(ℓ) = Γ(0)PA(ℓ) into

Eqs.(3.7) and (3.8), cancelling out the matrix Γ(0) on both sides, then the

univariate Yule-Walker equation for the probabilities {PA(ℓ)}
∞
1 is obtained.

It is PA(ℓ) = ρ
∑p

j=1 αjPA(ℓ− j), for any ℓ ∈ {1, 2, . . .}.
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