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TAUTOLOGICAL EQUATIONS IN GENUS 2 VIA
INVARIANCE CONSTRAINTS

BY

D. ARCARA AND Y .-P. LEE

Abstract

The main purpose of this work is to study genus two tauto-
logical equations. We verify the Invariance Conjectures of tauto-
logical equations [7] in genus two. In particular, a uniform deriva-

tion of all known genus two equations is given.

0. Introduction

The purpose of this paper is to verify the genus two case of Invariance
Conjectures of tautological equations proposed in [7]. In particular, applying
Theorem 5 in [8] (i.e. Conjecture 1 in [7]) and E. Getzler’s Hodge numbers
calculations [4], we are able to give a uniform derivation of all known genus
two tautological equations: Mumford—Getzler’s equation, Getzler’s equation
[4] and Belorousski-Pandharipande’s equation [2]. This, combined with [5]
in genus one and [1] in genus three, shows that this method generates and

proves all known tautological equations.

0.1. Tautological rings

One reference for tautological rings, which is close to the spirit of the

present paper, is R. Vakil’s survey article [10].
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Let M, , be the moduli stacks of n-pointed smooth genus g curves. They
have modular compactifications ﬂgm, the moduli stacks of stable curves,
introduced by P. Deligne, D. Mumford and F. Knudsen. M, , are proper,
irreducible, smooth Deligne-Mumford stacks. The Chow rings A*(M,,)
over Q are isomorphic to the Chow rings of their coarse moduli spaces.
The tautological rings R*(M,,) are subrings of A*(M,,), or subrings of
H 2*(ﬂg,n) via cycle maps, generated by some “geometric classes” which

will be described below.

The first type of geometric classes are the boundary strata. ﬂgm have
natural stratification by topological types. The second type of geometric
classes are the Chern classes of tautological vector bundles. These includes
cotangent classes v;, Hodge classes A\ and x-classes k.

To give a precise definition of the tautological rings, some natural mor-
phisms between moduli stacks of curves will be used. The forgetful mor-
phisms

ft; : ﬂgﬂz-}-l — Mg,n (1)

forget one of the n + 1 marked points. The gluing morphisms
Mgl,nl-i-l X Mgz,nz-i-l - M91+g27n1+n27 ﬂg—17n+2 - Mgm? (2)

glue two marked points to form a curve with a new node. Note that the
boundary strata are the images (of the repeated applications) of the gluing
morphisms, up to factors in Q due to automorphisms.

Definition 1. The system of tautological rings {R*(Mg)}gn is the
smallest system of Q-unital subalgebra (containing classes of type one and
two, and is) closed under push-forwards via the forgetful and gluing mor-
phisms.

The study of the tautological rings is one of the central problems in
moduli of curves. The readers are referred to [10] and references therein for
many examples and motivation. Note that the tautological rings are defined
by generators and relations. Since the generators are explicitly given, the
study of tautological Tings is the study of relations of tautological classes.
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0.2. Invariance conjectures

Here some ingredients in [7] and [8] will be briefly reviewed.

The strata can be conveniently presented by their (dual) graphs, which
can be described as follows. To each stable curve C' with marked points,
one can associate a dual graph I'. Vertices of I' correspond to irreducible
components. They are labeled by their geometric genus. Assign an edge
joining two vertices each time the two components intersect. To each marked
point, one draws an half-edge incident to the vertex, with the same label as
the point. Now, the stratum corresponding to I' is the closure of the subset
of all stable curves in ﬂgm which have the same topological type as C. For
each dual graph I'; one can decorate the graph by assigning a monomial, or
more generally a polynomial, of ¥ to each half-edge and x classes to each
vertex. The tautological classes in R*¥(M, ) can be represented by Q-linear
combinations of decorated graphs. Since there is no k, A-classes involved in
this paper, they will be left out of discussions below.

For typesetting reasons, it is more convenient to denote a decorated
graph by another notation, inspired by Gromov—Witten theory, called gwi.
Given a decorated graph T.

e For the vertices of I' of genus g1, g0, ..., assign a product of “brackets”
()g1()ga - - - To simplify the notations, () := ()o.

e Assign each half-edge a symbol 0*. The external half-edges use super-
indices 9%, 0Y, ..., corresponding to their labeling. For each pair of half-
edges coming from one and the same edge, the same super-index will
by used, denoted by Greek letters (u,v,....) Otherwise, all half-edges
should use different super-indices.

e For each decoration to a half-edge a by v-classes ¥, assign a subindex
to the corresponding half-edge 0.

e For each a given vertex (), with m half-edges, n external half-edges, an
insertion is placed in the vertex (9f ), ... 9,0 . .)g-

Example. Let I' be the following graph.
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The corresponding gwi is:

(9 0Y M) (97 O 8" )2 (D" ).

The key tool employed in this paper is the existence of linear operators
LI Rk(M ) Rk l+1(Mg 1 n+2) l= 17 27 vy (3)

where the symbol e denotes the moduli of possibly disconnected curves. The
existence is proved in [8] Theorem 5, originally Invariance Conjecture 1 in
[7]. t; is defined as an operation on the decorated graphs. The output graphs
have two more markings, which are denoted by 4, j. In terms of gwis,

L] ( 8;:, g’ ..<8;:,,...>g//)
1 . ) ;
— 5 ( ak,/_H > . <8]J€,, ...>g// —|— (6,1, --'>g’<8k”+l"->g”)
L - j i i j
+5(-1 (<a,§,+l g O g A (Bl g (D, .>g~) T
-1
1 m
+5 m;]( | LR (GG 0 SRS VRO (7 MO SRR
1 -1 . '
5 20 (O g (O DB g
m=0
1/ .
+§(Z m+1za,5,.. o, m>g<agn>g,_g))<ag,,...>g,,+...
=0
1 - .
+§<a,5,...>g,<z e+ Za e (O ) ,,<agﬂ>g,,_g)), (4)
m=0

where the notation 9} ... ((9/_1_,,) g (%)QQ) means that the half-edge inser-
tions 94 ... acts on the product of vertices (9] ; , )¢, (0% )g, by Leibniz rule.
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Note that (...)_1 :=0.

Remark. In terms of graphical operations, the first two lines stand
for “cutting edges”; the middle two for “genus reduction”; the last two for
“splitting vertices”. These are explained in [7].

There are three Invariance Conjectures proposed in [7]. Invariance Con-
jecture 1 has been stated above. The remaining two conjectures are

Invariance Conjecture 2. If vy(E) = 0 for all [, then £ = 0 is a
tautological equation.

Invariance Conjecture 3. Invariance Conjecture 2 will produce all
tautological equations inductively.

0.3. The algorithm of finding tautological equations

A general algorithm of finding the tautological equations, based on Con-
jectures 2 and 3, is explained in [7] Section 2. Since these remain conjectural,
one possible alternative to the general scheme is to

e Calculate the rank of tautological ring RF (M) to see if there is any
new equation. If so, write this new equation as

E:Zcmfm:O.

e Apply invariance equation (3]

to obtain the coefficients c,,.

Note that v1(T) lies in R* (ﬂ;_lm 1), whose structure is known by induction.
In the case of g = 2, one has the comfort of knowing genus one tautological
rings are completely determined by E. Getzler [3] and in preparation.

0.4. Main results

Theorem 1. Invariance Conjectures hold for (g,n,k)=(2,1,2),(2,2,2),
(2,3,2). In particular, a uniform derivation of all known genus two tauto-
logical equations is given by invariance condition (3).
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Remark. As explained in [7] and [8], our calculation in terms of gwis
can be translated verbatim into one for any (axiomatic) Gromov—Witten
theories. Therefore, it completes (the write-up of) a proof of Virasoro con-
jecture in the semisimple case and of Witten’s conjecture (on spin curves

and Gelfand-Dickey hierarchies), both up to genus two.

1. Mumford—Getzler’s Equation in ﬂz,l

In all calculations below, we will employ the “gwi” notations for deco-
rated graphs. It is explained in [7] that gwis are equivalent to the decorated
graphs, or a tautological class. The notations are obviously inspired by

Gromov—Witten invariants.

1.1. Tautological classes of R2(ﬂ271)

There are 8 boundary strata of codimension < 2 in MQJ: 1 stratum
in codimension 0, 2 strata in codimension 1, and 5 strata in codimension
2. If we insert ¢ classes, the 2 boundary strata in codimension 1 produce
5 different tautological elements in codimension 2. Note that the xk-classes
can be expressed in terms of boundary and -classes in genus two. So the

only decoration one would need is the 1/-classes.

Here is a list of all the 11 strata with ¢ classes in codimension 2:

(03)2, (07010")1, (070" 0" )1, (0701)1(0")1, (0°0")1(0 )1, (910")1(0")1,
<aﬂ>1<axaﬂa’/a’/>7 <axaﬂ>1<aual/au>’ <8Hal/>1<axapay>7
(D)1 (8Y)1 (BTHBY, (R HOMD ).

The 5 strata with -classes can be written in terms of the 5 strata
without -classes using TRR’s, and therefore we only have 6 terms which

could be independent. A general element can be written as

E = c1(08)s + {0V (85HD" ) + c3(07 )1 (910”9
ey (ORDY) 1 {DTOHYY + 5 (011 ()1 (D OHDYY + (DR DHR D).
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1.2. Calculating 1 (E)

Throughout this paper, the labelings 1,7 are assumed to be symmetrized

for 1 odd, and anti-symmetrized for | even.
() —%<aﬂ>1<araﬂaV><aiajaV>—4—18<ara“aﬂaV><aiajaV>
—i (01 (D) — i ()1 (5701 (oY
(O")1(0TOHOY ) — 21—4(8i8“8”><8x8j8”8”>+<8j>1<8i8”8”><8x8”8”>
—%<8i8j6”>(8x8“6”8”>—(8“)1(8x8i8”><8j8”6”>
(OO (OHOV D) — <8“>1<8i8m6“>(6j8”8”>+i<8i8m6“8“>(8j8”8”>
— % (0" 5% OM) (019" B ) — (0")1 (87 ") (9" D" D)
(O*QY)1 (D" OHDV) — 2(8“>1(8i8“8”><8m8j8”>+1—12<8i8“8“8”><8m8j8”>
—%<8i8j8”8”><8x8”8”>—(8i>1(8j8“8”><8x8”8”>
(0M)1(0")1(0°0"0") — %((9”>1(5i(9“5“>(5x5j5">—<3”>1(5i5j(9“>(5x3”3”>
(OFOHOHDV DY) > 4(D'OH ) (DTD OFDY) —2(D DT OHOM) (DT DV D)
1.3. Setting v1(E) =0

Now we will pick a basis, and set its coordinates to zero.

(08 (P01 VDI —%cl 204 — 05 = 0. (5)
(0107 010H) (0" D") + —er+ 5+ s = 0. (6)
(O (P00 (00"D")  —gzer+er— s —er =0, )

(00N DO s+ ges — 26 =0 ()

The remaining terms are related to each via WDV'V as follows:

(97010 9") (917" = (9°HOD'WD'DIDY) + 270" ) (D D 9"
—2(979 M) (3 91V ),
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(PPN ) = (9PN D) + (970"0") (0D DY)
— (00" (0",

Therefore, among the 5 vectors, only 3 of them are linearly independent.

- 11 1
(@ PPN TP F) + —gor = 5ea— s+ deg =0, 9)
(01N DD —icl - %q — ¢3+ 4eg = 0. (10)
(0O (DB 5+ 1—12c4 ~ deg = 0. (11)

The system of equations (@), (@), (@), @), @), (I0) and (II) has a unique

solution (up to scaling)

13 1 1 7 1
Cp=—=—Cl, C3= ——C], C4 = ——C], C5 = ———C], C6g = ———
2 5401 G = 5p0¢ ¢ 10 10¢L 960

We therefore obtain that, if we let ¢; = —1,

13 1
_ AT Y A TOLAYHYY —
(03)2 + 555(0")1(070"0"0") = 5=

1 7 1
o Qv T U QY o 14 T QL GV T Qu QL Y AV —
3 (00107 90") 4 15 (0)1(9")1 (079"} + o5 (070100 9) =0,

("), (01D D")

which is Mumford—Getzler’s equation.
1.4. Checking t2(E) =0

Let us now calculate to(F).

(0)y > —%<aiaﬂaﬂ><awaaaj><aaava”>

5)

(MO WD), i<aﬂ'aﬂaﬂ><aiaaaV><awaaaV>

—2—Z<ajaxaﬂ><aiava”><aaaaaﬂ>

(O10")1 (D01 D") —2—14<ajauaﬂ><a"aaaa><axa”aﬂ>
(TOHHI DY s — (DI DI (D' DD ) (D)
—(DIH O (D1 ° D) (D).
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The other graphs all have to(I') = 0.
Therefore, to(E) = 0 as

LURE WS S .
—c1+—c3+ —c3+ —cy—cg—cg=0.
576 LT 943 T g 3 T gt T TS

2. Getzler’s Equation in Hm
2.1. Tautological classes in ﬂg,g of codimension 2

A general linear combination of codimension 2 tautological classes in
My is, after removing the linearly dependent classes from the induced
equations (TRR’s and Mumford—Getzler’s),

E = c1(070Y)5 + co ()27 QYO") + ¢3(0°0YOHO" 8" )
Feg(0HOPD” )1 (97 0YD”) + 5 (DT OO DM ) (D ),
o6 (D OHMO” V(DYDY )1 + cr (YO OPDY YO )
Feg(DHOPDYY (07 DYDY )y + co(DT DDV )1 (0¥ MO
He10(QYOM D)1 (07OHD”) + 11 (9" )1 (0% DM D)
Fe12(0M07)1 (07 0Y M0 )1 + c13(0° VDM ) (0)1 (0¥ )1
Fera (DFOR VWO 1(0Y 0”1 + c15(0VOPD” ) (0M)1 (070" 1.

2.2. Setting v1(E) =0

The routine calculation of t; (£) is omitted. Again, a basis will be chosen

and the components set to zero.

() (VPN PO« 7 — g — co = 0. (12)
(VD) (TN DO« g — e — crp = 0. (13)
(F0M) (YOO DY —cr + s + 2—14c15 ~0. (14)
(DVORY (PO (D97 : —cg + c8 + 14 = 0. (15)

24
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(0" (97 OV T (D7 OV - —ﬁ@ P, (16)
(O, (FF VY (D7D —cy + iclg 0. (17)

<8i>1<8“>1<8m698”>(8”8j8“> : —201 —Co + 2613 — C14 — C15 = 0. (18)

(OPO) 1 (0T VN DY - 1—10@ besten— et = 0. (19)
(071 (0”1 ("IN D)+ —er — 2ens + 14 + crp = 0. (20)
o 7
()0 (070N (D) e+ era — a3 = . (21)
(DO FPPY ) : ey eq— 5+ —c1a =0, (22)
1 - 240 2 4 5 24 12 .
(0T OPY (B VOOV, - —icl C st 2—14c15 —0. (23)
(OO (070 (), - —icl Cestort icm —0. (24
(OO (VP OY (), —cs + s + 1—12c13 0. (25)
(TN (DD : ——cy— e+ s = 0 (26)
© 960 5161 = 0

(RO OD D)+ — — ey — Doy + g+ e = 0. (27)

' 576 24 24 ’
(OO OHOMNV (DI OV DY) : —2c3 + %% + %cs =0. (28)

The 7 vectors

(D" Y (DY 10" 0" ) (D)1, (D70'0"0" ) (DY OHD) (),
(070 01) (0'0"0" 0" W)y, (D7 YDHD") (DD ) (7)1,
(070 D' (""" WD)y, (00"0" WDV MDY ()1,
(07D ) (DY 910"V (D),
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are related by WDVV equations. There are 4 independent vectors.

(8x8i8”><8y6”6”8”><8j>1 . —%Cl — Cy + 205 — C11 — Cg = 0.

(RGN VD OY )y — e — co + 25 — 11 + 10 — 206 = 0.

12
. . 1 1
(0790 (909" 0") ()1 + —Soea—er—es+zeraten —eites=0.

(OTOVHOMY(HO I WD)+ —cg — c10 + g = 0.

11

(29)

(30)

(31)

(32)

All of the other remaining terms are related to each other via WDVV,

TRR’s and Getzler’s genus one equation. After applying the above equa-

tions, one can write them in terms of a basis.
(0% MY (DY DI O ) (OH ")
1+ co + 20cy — 24c5 + 24¢7 + 2¢9 + 26¢19 — 2¢11 = 0.
(8x8y8“>(8i8j8”>(6“8”>1 :
1 1
c1+ 562 + 12¢4 — 12¢5 + 12¢7 4+ 12¢19 — 5012 =0.

(YD OMY (89 9DV )1 -

1 1
—Cc1 — 562 — 10¢cq + 12¢5 — 12¢7 4 2¢c9 — 12¢19 — 5015 = 0.

(OO (& 91D (8Y )1 -

1 1
_— 562 — 10¢q4 + 12¢5 — 12¢7 — 10c19 — 5014 =0.

(D" OVOMY (D ") (D)1 -

—4c1 — 2¢9 — 20¢4 + 24c¢5 — 24¢7 — 2¢9 — 26¢19 + 2¢11 = 0.

(OO (VDI D" ()1 -

(37)

1
—3c1 — c9 — 8ca + 12¢5 — 12¢7 + 2¢9 — 10¢19 — 5012 —c13 = 0.(38)

(YD DI MY (D MDY ()1 -

3 1 1
—c1 4+ =co + 10cq4 —12¢5 + 12¢7 —2¢c9 4+ 12¢19 + 013—5614 =0. (39)

2 2
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(DY) (D" DI D" ) (D)1 -
1

3 1 1
—5C1 = 50 + 2¢4 + 2¢9 — 5¢12 ~ 5C15 = 0. (40)

(004D (90"} (6"} -
1
c1 +co + 8¢y — 12¢5 + 12¢7 + 12¢19 + 2¢11 + 5612 —c13=0. (41)

. 1 5) 5)
(070" D) (0 0 D) : Ser+ Sea— Ten =0, (42)
(07D Y (PP
1 1 5 1
—gcl — ﬂCQ + 4cg — 604 —c7— o+ ﬁcll = 0. (43)
(070" 0" ") (91 DV O )
1 1 5 1 1 1
—ﬂcl - ﬂCQ - 604 +c5 — 566 - 507 — ECH = 0. (44)
(0T (AN D)
1 1 5 5)
—Ecl — 4—802 — EC4 — Eclo =0. (45)
(VY (DD )
5) 1 5) 1 1 1
—@cl — 1—602 — 104 +c5 —c7 + ECQ — 5610 — ECH =0. (46)
(VO M) (DI
1 1 5 1 1 1
e + 212 + G0~ G +cr— 560 + SC10 + 261 = 0. (47)
(010" O (P
1 1 5 1
ECI + ECQ + 4¢3 + §C4 —2¢c5 +c7+cig+ ECH =0. (48)
(070" O (O VD )
1 1 5 1 1 1 1
e — g — 2 Sl — =g — =1y — —cp =0. (4
91 T 1% T g +cs 567 T 368~ 3¢ ~ 5lu 0. (49)

Solving equations (I2)-(9]), we can write all of the coefficients in terms

of cy:
3 1 1 23 1
g = =301, €3 = ———=C1, C4 = ==C], C5 = —=——=C], Cg = ——=C
2 1, €3 576 1, ¢4 30 1, &5 240 1, €6 48 1
1 1 1 1 7
Cr = ——5C1, €8 = 55C1, C9 = —5=C1, C10 = —55€C1, C11 = — C1,

48 30 30 30 30
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13 4 4
C = —=C C = ——C C = —=C C = —=C
12 5 1, €13 10 1, €14 5 1, €15 5 1

and these are the coeflicients of Getzler’s equation in ﬂg;.

2.3. Checking t2(E) =0
Again, one has to pick a basis and check all components vanish.

(0")1(07 0" 0Y) (D" O ) (9" D“O™) iCQ +cq4—c5 —cg+ ic12 = 0.

20 24
(IO D OY (DHOD) : ——co — 5+ oy — 5 = 0
" 1152 24 24 )

. , 1 1
J AT Y 7 QU YV U Qv ooy . _ —
(@07 0v) (00" 0") (04970 0°) : Jeser — 205 + 5ea = 0.

(D7), (5" OY O (D' OM V) (9 DD -

1 1 1
TG T g2 et oot o =0
(5“>1<8j5”8”><8i8“8‘1>(65”8y60‘> :
1

1 1 1
1261 + 2462 ¢4 —C5+ cg + 24012 + 24014+ 24015

(971 (0 VO (5 0 0% (970" ) - —icl s+ s+ c10 + iclg, — 0.

(0" 1 (7 0" 0")(0'0Y 0™) (Y DY %) —icl —c5+cg+ e+ 2—14014 =0.

. . 1 1 1 1
] AT AL AL 1 QU Q& Y Qv Ao\ . _ J— g
(7 F*OHO*) (D" 0" 0% ) (0¥ ¥ D) - 57661 203+2406+2468+2469 0.

. , 1 1 1 1
J QY QL Qb i GV o Ty aay . _ =
(7 YOHOH) (90" ™) (0" 9V O) - FgCl 203+24C7+2468+24610 0.

The 7 vectors

DOV Y (DYDY ) (8 DVD™), (B MB¥ ) (D' Y OM) (& §*O™),
DYDY O ) (99 DM (89 9%0™), (B ¥ "8 ) (D MO ) (& 9™D™),
&7 0%0%)
) )

(
(
(@' a YOy (0" 0 DO ) (0YOHD”) (0 0D,
(0" 0Y D) (07 00" ) (D 0% 0°
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are related by WDVV equations. 4 of them are linear independent.

(ORI (VDY ) (9 970 -
1 1 1 1 1
%01 + %02 — 2c3 + ECg + ﬂCQ + ﬂclo =0.
(0701 O ) (O VY (9 9707 2—14(;6 - 2—1408 - 2—14(;9 ~0.
(VORI WO N D)+ —er — g — ~ 1 = 0.
24 24 24

("Y1 ) (DO ) (DI D) -

1 des+ Sog + oo+ b2 0
—~c1—4c3 + g+ —c9g + —c —cy1 = 0.
988 1T B T g™ T g™ T gy t0 T 9 M

All of the remaining strata are related by WDVV equations. Only 3 of

them are linearly independent.

(D7) (O YD D) (D" 9O -

4 > + —i—l +1 = 0
—4e3 — —ca +cg + —cg + —ci0 — —c11 = 0.
3T g8t gl T 0 T pen

(709 0O (1) (8 VO —204 _ 209 ~0.
(VPN (@ 00) 000 —2es— 210 =0.

Therefore, vy(E) = 0.

2.4. Calculating v3(E)

Since | = 3 case is new, the calculation is presented.
(07 0f)2 — —i<aya"aj><axaaaﬂ><aaauai><aﬂaﬁaﬁ>

—i (0v0" 0M) (0" 07 ) (00" ") (907 0°)
—i (8*0°07) (0D ") (99 DP ¥ ) (9° "D )
—i (Y9N (0D M) (9*DP V) (9P "D )
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—%<aiaﬂaﬂ'><ayaﬁaV><awaaa”><aaaﬁaﬂ>
—%<aiaﬂaﬂ'><ayaﬁaV><awaaa”><aaaﬁaﬂ>
i<aa8y85><aﬁawaﬂ><aﬂaja”><avaiaa>
41 (BP9 (0 Y DP) (8P O &) (8 9'9%)
41 (B OHD™) (01D V) (DY DP) (9P ¥ DY)
42 <aaayaﬁ><aﬁafau><axauaa><aﬂaual>
41 (&7 0%V (0*0YP)(0° 0" o) (9" D" D'
41 (7Y D%V (DT D) (D' 9YDP) (9P "D )
+%<aya“aa><a“awa”><avalaa><aﬂaﬁaﬁ>

+%<axa”aa><ayaﬂaa><aﬂa"al><aﬂaﬁaﬁ>

+%(@xaﬂawwua@w(ayaaaﬂ<aaaﬂaﬁ>

(01)2(070%0") —% (0'0°0m)(0°0°07)(0" 0" 9") (9" 0" &)

+%<alaaaV><aaaﬁa”><aﬁaﬂaﬂ><awayaﬂ>
—ﬂ@ﬂaﬁ'aﬂ<aﬁaiau><avaaaa><axayaﬂ>
—2—14<aia'faj 00 0°) (070" 0*) (" 0¥ ")
+4—18(6#658%<aﬁaﬂ'a"><auaiaa><axayau>
i(@ﬂ'ava‘w<aﬂaﬁaa><aﬁa”ai><arayaﬂ>

+%(@ﬂa”a%<a”alaa><aﬂaﬁaﬁ><awayaﬂ>

(VOO V) — +4(D0" PV (DO ) (9H VD) (DYDY
—2(0'90")(9*0° M) (9P BY) (87 & D)

—4(0'0°0" ) (0°DP M) (8P 5* DY) (9 D)

15



16 D. ARCARA AND Y.-P. LEE [March
—4(0' 0% ) (DD O (9P IO (T Y D)
—4(0' 0% ) (D DP O (9P YO (8 & D)
—(DDDV)(9*DP ) (P OF M) (57 DT DY)
+4(D' OV (¥ DY) (8 5V 9P (9P "D )
+2(8'HO*) (0¥ M) (DT ¥ §P) (0P DY )

LY O (DX OO (89 97 0P (9P Y M)

(RO )1 (7YY > +— (070" PV (DP " T) (01D 9™) (B VDY)

+4(
4L
12
42 <azaﬂaﬁ><aﬁa”aﬂ>(@Vaaaaxawayaw
—<aza°‘a'f><aaaﬁaﬂ><aﬁaﬂaﬂ><axaya'f>
+%<aiaﬁaﬂ><ajaaaV><aaaﬁaﬂ><awaya”>
+%<aiaﬁa”><ajaaaﬂ><aaaﬁaﬂ><axaya">
—1—12<aiaaau><aaaﬁaﬁ><aﬂ'aﬂau><axaya'f>
—i(6%“6”)<8‘16585><8j6“6“>(6””696”>
+i<aiaaaa><ajaﬁa”><aﬁaﬂaﬂ><awaya”>
(01010 ) (000" )y +i<auauaj><aiayaﬁ><aﬁavax><avaaaa>
— (910D )(0'0 0" ) (00 V) (9" ")
+%<aﬂaﬂa”><aiaﬁay><aﬂ'aaaV><aaaﬁaw>
+%<aﬂaﬂa”><af'aﬁau><ajaaay><aaaﬁax>
—i<aﬂaﬂa'f><aiaaax><aaaﬁaﬁ><ajaya'f>
—i<auauau><aiaaay><aaaﬁaﬁ><aﬂ'a~’va”>
—i<aﬂaﬂa”><aiaaa”><aaaﬁaﬁ><aﬂ'aray>

+i (HOF") (D D)7 9P D" ) (0P 0" DY)
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(9*01D”)1 (8Y91D") +i<aiavaﬁ><aﬁa“af><aﬂaaaa><ayaja”>

—( ZaaaV><aaaﬁaﬂ><aﬁaﬂ'aw><ayaw>

; (919P MY (87 90" ) (0“DP %) (DY D" )
; (8'9° 0" ) (57 9*0) (82 9° 5% ) (8Y 9" )
—ﬂ@iaaaﬂ<aaaﬁaﬁ><ajauau><ayaﬂa”>
—%@iaaafw<aaaﬁaﬁ><ajaxa"><ayaﬂa”>

+i<aiaaaa><aﬂ'avaﬁ><aﬁamaﬂ><ayaﬂa”>

(Y1), (DTDHDY) +%<aiavaﬁ><aﬁauay><auaaaa><axaﬂ'a”>

—(D0*0¥)(8*0P ") (0P DT DY) (DT D"

+%<a@'aﬁaﬂ><aﬂ'aaay><aaaﬁay><awaﬂa”>
+%<aiaﬁa'f><ajaaaﬂ><aaaﬁay><axaﬂa'f>
—2—14<aiaaay><aaaﬁaﬁ><aﬂ'aﬂa”><axaﬂa”>
—1—12<aiaaaﬂ><aaaﬁaﬁ><ajayau><axaﬂa”>

+i<aiaaaa><aja”aﬁ><aﬁayaﬂ><araﬂa”>

The other graphs all have t3(I") = 0.

2.5. Checking r3(E) =0

Now the t3(F) has only a few independent strata.

1

17

: 1 1 1 1
iguany . - _ gt —Cot—c1o =
(0" 9" OM) - 28801+57602 263+1208+2469+24010 0.
. 1 1 1
i 0T Y\ . e o —
<88 8> 1152 Cco— 63+24C4 2468 0.
(D07 ) (01D 0 ) (9 9V 0% (905D : 1 +265— g — o — 10 = 0.
576 12 24 24
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The remaining strata, which are all equivalent as codimension 4 classes in
M 4, have coeflicient

1 1
—501 — ﬂcg =0.

3. The Belorousski-Pandharipande Equation in ﬂz,;;
3.1. Strata in ﬂz,;; of codimension 2
Throughout this section, we will always assume that the three external

labelings x,y, z are symmetrized.

Using Mumford—Getzler’s and Getzler’s equations for genus 2, all genus
2 terms with more than one descendent can be rewritten in terms of the
others. Also, using TRR’s, all genus 0 or 1 terms with a descendent can be
rewritten in terms of the others. We are therefore left with 21 strata which

could be independent.! |
A general linear combination is
E= ) c(070"0")(0"0Y0%)(0" )2 + c2(070Y070") (0} )2
S3(z,y,2)
+c3(OT0")2(O* DY D7) + 4 (07 0)2 (0" DY)
+¢5(070Y 070" 0" ) (0M)1(0" )1 + (0" YO 0")(0")1(0" 0" 11
+c7(0%0"0")(0M)1(070Y0%)1 + cg(0"0")1(0"0Y0") (0" 0* 11
+co(0T0YO70H) (0" 0)1(0")1 + c10(0T0H)1 (0" 0")1 (07 0Y07)
(0M)1(0"0%0")1(0V0Y0%) + c12(0"0Y 070" 0" 0" ) (0" )1
+¢13(070Y0M 0" 07) (0" 0%)1 + 14(0" 0" 0" 07) (0" 0Y0* )1
+c15(070Y0%0H)1 (0" 0" 0") + ¢16(070Y 070" 0" ) (00" )1
+c17(070Y010") (010" 0%)1 + 18(0"0"0") (00" 0Y0* )11
+¢19(070Y070) (0H 0V 0 )1 + €20(0T0YO) (0" 0" 0" 0% )1
+c21 (0T OY 07O O 0" 0”) = 0,

1We rewrote the strata here in the same order as in the Belorousski-Pandharipande equation,
with the extra strata (9%9Y9*9*9* 9 9*), which does not appear in the equation, at the end.
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3.2. Setting v1(E) =0

19

Again a basis is chosen for the output graphs of t;(FE), and the coeffi-

cients are set to zero.

(0" "DV D7) (D1,
(07O (O DV (D)y -
(070Y0'), (97 0" (90" 0" -
(070Y M) (970 ") (9" D" -
(070" M), (010 0 ) (V07 ) -
(070" 0" (0Y 070" (070" -
(0701 )1 (D01 ) (V0P )
(09010 ), (07010 ) (0V 07 )
(010101 (9" V0 ) (0" 07 ) -
(010" )1 (70" 0M) (0Y 07 ) -
(070), (0M), (0¥ 070" ) (0" I ") -
(070M)1 ()1 (D010 ) (0Y 07 )
(070M) 1 (DYDY (0")1 (07 07 ) -
(090" (0" )1 (070" ) (0Y 07 ) -
(0101, (0107 9Y)(0")1 (0" 07 ) -
(090", (0M)1 (9" 0" ) (0" 07 ) -
(010”)1 ()1 (97D ) (V07 )

(D10")1 (D D" ) (" OV DI

c1+co=0.
—3cy 4+ 3c3 + ¢4 = 0.
Cla — 3015 — C18 = 0.

5167~ cua +ci5 +c15 +c15 = 0.
1 1

—%Cg - %64 - 3015 =0.

1
—Coo + ﬂql =0.

1
30 10

1
%03 — C18 = 0.

Clg — Co0 — 0.

1
—%63 — 2c19 — €19 + ¢c99 = 0.

—cy4 4+ cg — 2¢7 4+ c19 — c11 = 0.

4 7
363 + 304 —cg+cio+c1 =0.

—2cg +c7+ 7+ 2cg = 0.
4

—c3 —c7 = 0.

5 3 7

—cg+ci0—c11 =0.

Cg — C11 =0.
—303—209—694-611 = 0.

1
1o ~ C16 + c19 +c19 = 0.

1
nC3+ ——ca — 17 + e +c20 = 0.
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(0", (910" V0T V) —ﬁcz pS—, (68)

, 1 131
(0791 (9'0" 0" 0" ) (010 ) + pgest g iseat gren—cisex = 0. (69)

(0P, (8")1 (D10 ) (VY 1—70@ P (70)
(D) (DO WO VI D)+ oy o —crat 19 =0.  (T1)
! T 240 0 24 2o =
- | | 1

T aY i J Oz alaLargry .- _ _ —
(70101 (D 70O} < e+ s+ 5 e+ Ben = 0. (72)
(PN F NP ) iclz + icls T — (73)
(O7010° ) (PP ert zero +on = 0. (74)
(ORI NP NP iclg 4 %CM 61 = 0. (75)

The coefficients of the Belorousski-Pandharipande equation are the only
solution of the equations (B0)-(75).
3.3. Checking v2(E) =0

Since the whole output graphs are far too numerous, we shall present

the the coefficients of the following four (disconnected) graphs are zero:
(9°0%) 1 (T OYOMY(DF DDV ) (DY DYDY,  (D'OM)1 (DHDTDY) (P 070" ) (D D*O™)

(OH0")1(D'OM D) (DI TN DYD?), (87 O")1(9"0'0Y) (7 070 ) (8" 9*D)

In the following, the graphs I appearing in BP equation such that to(I")

contain any of the above four graphs will be listed.

(D01 )(D"0Y D) (8" )y %(0#3@1<aiaﬂa”><ajawaa><aaay82> T

(DT (VD) %(@iaﬂh(@ﬂaway><aﬂ‘azaV><avaaaa> T
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(") (01D 7) i<aiar>1<ajayaﬂ><aﬂaza”><a"aaaa> T
R s Ot S T —1—12<axau>1<auaiay><ajaza'f><a”aaaa> T

(TOMY 1 (01D”)1 (0" VD7) —i(@iaﬂl<ajayaﬂ><aﬂazau><a'faaaa>
—iwiauh<aﬂaxay><ajazau><avaaaa> T
(DTQVOHIHIYN (DY D)1 s — (D)1 (80 DYOM) (9" )(D DD
+2("0M)1 (91D DY) 2D} (D” OV + - - -
(TQVO7OMY (MDY DY) s —6(OT M) (9" 9Y) (D578 ) (9 O D)
+3(010%) (91 9Y M) (01929 )" D7) + - - -
(OTOVOFOHI ) (M), > (9MO”)1(D'D"” ) (DTN (DY) + - - -
(DT ) (" YD), s 2(0°07)1 (DI DVOM) (MO ) (8”9
—2(TOM)1 (9D V) (DI 2D )(D” VD) + - - -
(DY) (D1 Y D7)y > —2(DHD”)1 (DD ) (D DD ) (9D D7)
H(D'0%)1 (7 9V M) (91D ) (D 9°O™)
H(DIOMY | (OO YYD 07 D) D” 7D + - -

Checking the coefficients:

(9'07)1 (87 8V (9152 9”) (¥ B0

1 1
5164~ 55010 ~ 13 + 3c15 + 2¢18 + 90 = 0.
7 X | Nz QU |aYe BaTe ] 1 1
(010 )1 (00 0") (7 9°0" (0 0°0%) 513 — Srero+ eao = 0.

(918”1 (8 910”) (D 9" D) (DY) 1—10010 + e16 — 2620 = 0.

(8%“)1<8“8i8y><8j628”><8”8a8a> : —%Cg + 2013 - 6015 - 2618 =0.
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3.4. Checking r3(E) =0

In the same spirit as the case [ = 2, only the following four disconnected
output graphs will be presented here.

(8I89828’> <8j80‘aﬂ> (auaaau> <8V8’88’8>7
(O0)1(07 0V 0 (907 0) (" ') (9070,
(010700 o) (V07 0" ) (0" 0% (07 07,

(OM) 1 (D1 D) (YD D¥ ) (8 DT 9™) (9°DP DP).

(07 0"0”) (O OV D) (D )y
— S (07010 (010007 (010 (0°0°0°) + -

b
5760

+%<awayazaj><aiaaaV><aaaﬁaV><aﬁaﬂaﬂ>

(DI O) (M) (9FYO* ) (51 9% (*9P §P) (91 D¥ D)

(B9 (01 DYD?) (87)1 (0°0HDP) (8PP D¥) (¥ ¥ ™) (9 DY D7)

L

24
_iwjh (8i6”6“>(8“69”8'8><858”8a>(6”8982>
—2—14<axa'faj )(0¥)1(9'0 M) (0*9PDP) (019 57
—%wwavavaﬂ' Y(D'00M) (9P %) (010 &7

(0% )2 (O DY D?) N1 (90" DP) (9P 919" ) (DY 9*OV) (OH VD7)

1
_ﬂ<
—i(@jh(5i8”8$>(80‘8“85><858"80‘>(8“8y82>
—l—%(@“h(8“5iﬁx><8”668°‘>(868j80‘><8"8982>
+%<aiaﬂaﬂax>(@Vaﬁaa><aﬁajaa><a”ay62>
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(0F0M0")(0")1 (0" 00" 1 = 51

(0M)1(0"0%9")1(0"0Y0%) =

(0"0Y07 010" 0") (0" )1 —

(TP (8" YD), —

(DT OVOOMY | (DD D)

(OTO1D) (DM DYD? ), —

(079907 0) (0" 0" 0" )1

(7 9Y01) (00" 0 01 >

23

<8“> <8“8z8j>(8i8280‘>(60‘8”6y><8”8685>
i@j )1(0°0"0")(910°0%) (907 0") (9" 0" %)
—i(({)“h<3j3z(9“>(8i80‘8”>(80‘8585>(8”8y82>
(8j>1(825“5”)(5”80‘8“)(60‘856'3)(858169)
—3<8“>1(5j5$8“><8i8°‘8”> (aaaﬁau><8ﬁay§z>
i<ajaraﬂaﬂ><aiaza”><avaaay><aaaﬁaﬁ>
2—14<awayazaj><aiaaaﬂ><aaaﬁaﬁ><auavav>
—(0)1(8'9%0") (90707 ) (97 & ) (918" ")
_|_3<3M>1(@uaiax><8j3,85a><565y8z><8a8u8u>
—I—é<8i8x5”5u><6j8’88a>(568y82><80‘8”8”>
—<8j>1<afaﬂaV><aiaaaZ><aaaﬁay><aﬁauav>
+2<8“>1(8“8i8y>(8:”60‘8”><8j8582><858aal’>
PO (50 () (000 )

> i<8x8y828j>(8i8”8”><8”8°‘8”><8°‘8585>+

o0 <awayaﬂ><azaaa“><aaaﬁaﬁ><aﬂa”avc‘92>
—(DTDYOMN()1 (D007 (9% 9P ) (9P 9"
< ) (O 7 ) 970" )(0° 0" 0%) (9" 94 O)
+51 <azazauau><ajaﬁa"><aﬁavaa><axayaa>
+
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Checking the coefficients:

o 1 1
T QY 9z I ] A QM H A QY v 9B 98\ . - J— =
(0" 0") (P 9O (O* 0D (0" D7 D7) - 11502 24615—1—24619 0.
(D)1 (8% DY O") (0120 ) (97 D' D) (0P DP)
1 1 1
—57C1 — 7563 — T5Ca+ i+ ci2 — 15 — cig — ¢ = 0.

24 12 12 24
(D' OH MY (DY B ) (DY &7 D) (0P D7)

1 1 1 1
5 + R + 57 C14 + 3C1s + 72618 = 0.
(B") (O*O' O™V (DY D7DV (DY & D) (9°DP 9P
1 1 1

1
510 + 5264 + YRy 3c12 + 3c1s + 2¢18 + co9 = 0.

3.5. Checking v4(E) =0
Since | = 4 case is new, the calculation is presented.

(OO Y (OFOYO*N (DY )y >
1
5760

+%<awaﬂaﬂ'><aﬂay82>(@iaﬁaa><aﬁmaa><a‘@”y>

+%(8””8*‘8">(8“8y82>(8i858”>(85878’*>(8j8‘180‘>

(OFOH D7) (OFYD*) (D 0PV ) (9P 87 D7) (87 DY)

L
1920
+ ﬁlo (07 010")(0'0" 9°) (9”070 (9° 9 07 ) (& 6V )

(OFOM)o (D DYD?) (9197 0°) (0 9P57) (9P 07 ) (0" "0 ) (89 0¥ )

+%<aia"aa><aaaﬁa'f><aﬁmaﬂ><maxaﬂ><ajayaZ>

+%<8~fauaa><aaaiaﬁ><aﬁa”8”><8j8”0”><8“5y52>
+%<8iaﬁaﬂ><mawaa><aaaﬁm><aja”a”><8“8yaz>

+%<aiaﬁaﬂ><aﬁa’vm><awaaa”><aaajaV><aﬂayaZ>
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(D702 (P VD) —ﬁ<a@'awaa>(@aaﬁaﬂ><aﬁmaV><aﬂavaV><ajayaZ>

+ﬁ<aiafaa><aaaﬁa”><aﬁme9”><maﬂaﬂ><ajayaZ>

+%<aﬂaﬂﬂaa><aaaiaﬁ><aﬁa’ya’v><aﬂ'a”aV><aﬂayaZ>
+%<a"aﬁax><avaﬂaa><aaaﬁm><aﬂ'ava”><aﬂayaZ>
+%<aiaﬁax><aﬁmm><aﬂaaaV><aaaﬂ'aV><aMayaZ>
(070070, (010" 0") +i (0'0°0”)(0"0°0™)(9° 07 07) (07 " 0¥ ) (0 O D)
—é<a"ayaa><aaaﬁax><aﬁaw><aﬂ'azaﬂ><aﬂauau>
—é<8i8”8°‘>(8“8’88x><8’88787>(8j8982>(8“8"8”>
+é<aiaﬁax><aﬁmm><afaaaﬂ><aaayaZ><auavaV>
+2—14<aiaﬁaﬂ><aﬁa’vm><aﬂ'aaa2><aaaway><aﬂava”>

+2—14<aiaﬁaﬂ><aﬁa’@2><maray><ajaaaa><aﬂava”>

! (O OV) (D10 0™) (0D OV (9P &7 D7) (& Y D7)

(070" ) (0" )1~ — o

g 00 (070 (0700 007 7 09 )
_’_% <8mauau> <8zaﬁay> <858V87> <aj8aaz> <80¢8“8V>

+§<8~"faua”><8"8582><85878y><8”8“8”><3j 970"

(7 0V01) (007 0 0° ) o + 5 {00V (0101 0 (0¥ 001 (07 0°) (070" o)

- i (079" o) (9107 0°) (9 0% ") (977 97) (&9 6 &)
- i (D" (D0 9) P9 (9P 9787 ) (& 997
+2—14<a~’vayaﬂ><aiaﬁaﬂ><66876”><6j8°‘az><8“@”8”>
+§<araya“><aiaﬂaZ><aﬁaw><ajaaa”><8“8“8”>

+2—14<afayaﬂ><a@'aﬁaZ><aﬁaWaV><a’Yaﬂa”><ajaaaa>
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The other graphs all have t4(I") = 0.

Now let’s check all the coefficients:

(O OV V(MY ) (D' ") (9P &) (DT 9™ D°)
1 1

1
e ——Cs+ ——cq o+ — 15 = 0.
5761 T g @ T ogg 4 T g T g C18

(8197 0°) (0P 0" ) (9P &7 7 ) (9H" V(D VD7)
1 1 1 1 0
@63 + —115204 - §015 ~ 51018 + oq¢20 =0
(O (OHYO*) (D' DRV V(BP9 (8Y D D)
1 1

15 — —c90 = 0.
11521 T 9415 — 420

(75O (9HD” OV (DY) (9 DP D) (9P D)
1 1 1 1

g — ——cy — —C1s — 18 = 0.
5767 576t T 11 T g8

3.6. Conclusion

By Lemma 1 in [7], t;(E) = 0 for [ > 3 (respectively 4,5) for (g,n, k) =
(2,1,2), (respectively (2,2,2),(2,3,2)). Therefore, Invariance Conjectures 1
and 2 are proved. By a Betti number calculation of E. Getzler [4], they are
the only tautological equations for the corresponding (g,n, k). Therefore,
Invariance Conjecture 3 also holds.
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