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Abstract

.

Some oscillation criteria for the second order semilinear

elliptic differential equation

N∑

i,j=1

Di[aij(x)Djy] + p(x)f(y) = 0, x ∈ Ω(r0), (E)

are established. Particularly, Hille’s theorem [Trans. Amer.

Math. Soc. 64, 234-252(1948) ] is extended to (E).

1. Introduction and Preliminaries

In this paper we treat the oscillation problem of the second order semi-

linear elliptic differential equation of the form

N
∑

i,j=1

Di[aij(x)Djy] + p(x)f(y) = 0 (1.1)

in an exterior domain Ω(r0) ⊆ R
N , where x = (x1, · · · , xN ) ∈ Ω(r0), N ≥ 2,

Diy = ∂y/∂xi for all i, Ω(r0) = {x ∈ R
N : |x| ≥ r0} for some r0 > 0, | · | is

the usual Euclidean norm in R
N .

Throughout this paper, we assume that the following conditions hold.
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(A1) A = (aij) is a real symmetric positive definite matrix function with

aij ∈ C1+ν
loc (Ω(r0),R) for all i, j, and ν ∈ (0, 1).

Denote by λmax(x) ∈ C(Ω(r0),R
+) the largest eigenvalue of the matrix

A. We suppose that there exists a function λ ∈ C([r0,∞),R+) such

that

λ(r) ≥ max
|x|=r

λmax(x) for r ≥ r0, and

∫ ∞

r0

s1−N

λ(s)
ds = ∞;

(A2) p ∈ Cν
loc(Ω(r0),R), p(x) does not eventually vanish;

(A3) f ∈ C(R,R) ∪ C1(R − {0},R), yf(y) > 0 and f ′(y) ≥ k > 0 for all

y 6= 0.

As usual, a function y ∈ C2+ν
loc (Ω(r0),R) is called a solution of (1.1) if

y(x) satisfies (1.1) for all x ∈ Ω(r0). We restrict our attention only the

nontrivial solution of (1.1), i.e., to the solution y(x) satisfying sup{|y(x)| :
x ∈ Ω(r)} > 0 for every r ≥ r0. Regarding the question of existence of

solution of (1.1) we refer the reader to the monograph [2]. A nontrivial

solution y(x) of (1.1) is said to be oscillatory in Ω(r0) if the set {x ∈ Ω(r0) :

y(x) = 0} is unbounded, otherwise it is said to be nonoscillatory. (1.1) called

oscillatory if all its nontrivial solutions are oscillatory.

For many years, a great deal of attention has been paid to the oscillation

of (1.1) with variable coefficient p(x), and various approaches have evolved.

One of the most effective methods of procedure is that which seeks to reduce

the problem to the one-dimensional Riccati inequality. Particularly, with

outstanding contributions from Noussair and Swanson [7], some classical

oscillation theorems ( such as Fite [1], Kamenev [5, 6] and others ) for

second order linear ordinary differential equation

y′′(t) + p(t)y(t) = 0, p ∈ C([t0,∞),R) (1.2)

have been extended to (1.1) (see, for example, [7, 9-15] and the references

cited therein). However, as we know, the oscillatory theory for (1.1) has not

yet been elaborated unlike that of (1.2) (see, [8]). In view of this fact, it is

therefore of interest to find new oscillation results for the semilinear elliptic

equation (1.1).
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In [7], Noussair and Swanson discussed the oscillation of (1.1) and gave

some oscillation theorems, one of which is as follows.

Theorem 1.1. If
∫

Ω(r0)
p(x)dx = ∞,

then (1.1) is oscillatory.

This result is given in [7] in a more general form. But the above partic-

ular form of Noussair and Swanson’s theorem is base one.

The case
∫

Ω(r0)
p(x)dx < ∞

remains of interest and can produce either oscillatory or nonoscillatory be-

havior for (1.1).

The motivation for present work has come chiefly from the idea due to

Hille [4] and Noussair and Swanson [7]. The aim of this paper is to study

oscillation properties of (1.1) via Riccati technique and derive new oscillation

criteria for this equation under the assumption

0 <

∫

Ω(r)
p(x)dx < ∞, for r ≥ r0 (1.3)

Especially, thereby extending Hille’s Theorem to (1.1).

The following notations will be used throughout this paper.

PM (r) =

∫

Sr

p(x)dσ, P (r) =

∫

Ω(r)
p(x)dx,

and

ϕ(r) =
kr1−N

ωNλ(r)
, Ψ(r) =

∫ r

r0

ϕ(s)ds,

where Sr = {x ∈ R
N : |x| = r} for r > 0, dσ and ωN denote the spherical

integral element in R
N and the surface of the N−dimensional unit sphere,

respectively.
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The following Lemma will be useful for establishing oscillation criteria

for (1.1). It is similar to Hartman’s Lemma [3].

Lemma 1.1. Let (1.3) hold. Suppose that (1.1) has a nonoscillatory

solution y(x) 6= 0 for x ∈ Ω(r1), (r1 ≥ r0), and let

W (x) =
1

f(y)
(A∇y)(x), and Z(r) =

∫

Sr

W (x) · µ(x)dσ,

then Z(r) > 0, and satisfies

Z ′(r) + ϕ(r)Z2(r) + PM (r) ≤ 0 for r ≥ r1. (1.4)

Furthermore,

Z(r) =

∫

Ω(r)
f ′(y)(W TA−1W )(x)dσ + P (r) (1.5)

≥
∫ ∞

r
ϕ(s)Z2(s)ds+ P (r), (1.6)

where ∇y = (D1y, · · · ,DNy)T , µ(x) = x/|x|, (x 6= 0), denotes the outward

unit normal.

Proof. Differentiating W (x) and making use of (1.1), we have

divW (x) = −p(x)− f ′(y)(W TA−1W )(x). (1.7)

Then, by Green’s formula, we get

Z ′(r) =

∫

Sr

divW (x)dσ = −PM (r)−
∫

Sr

f ′(y)(W TA−1W )(x)dσ. (1.8)

In view of (A1), we find that

(W TA−1W )(x) ≥ λ−1
max(x)|W (x)|2.

The Schwartz inequality gives that

∫

Sr

|W (x)|2dσ ≥ r1−N

ωN

[
∫

Sr

W (x) · µ(x)dσ
]2

=
r1−N

ωN
Z2(r).
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Thus, by (1.8), we obtain

Z ′(r) +
kr1−N

ωNλ(r)
Z2(r) + PM (r) ≤ 0, (1.9)

which follows that (1.4) holds.

On the other hand, using integrating (1.8) from b to r, (b ≥ r1), we have

Z(r)− Z(b) +

∫ r

b
PM (s)ds +

∫ r

b
dτ

∫

Sτ

f ′(y)(W TA−1W )(x)dσ = 0.

(1.10)

By virtue of (1.3), if u(r) is defined by

u(r) =

∫ r

b
dτ

∫

Sτ
f ′(y)(W TA−1W )(x)dσ,

then

lim
r→∞

[Z(r) + u(r)] = C, (1.11)

where C is a finite constant.

Now, we show that

lim
r→∞

u(r) < ∞. (1.12)

Otherwise, limr→∞ u(r) = ∞, then, by (1.11),

lim
r→∞

Z(r)u−1(r) = −1.

Thus, there exists r∗ > b such that for r ≥ r∗,

Z(r)u−1(r) ≤ −1

2
. (1.13)

Note that

u(r) ≥ k

ωN

∫ r

b

s1−N

λ(s)
Z2(s)ds. (1.14)

By (1.13), we have

k2

4ω2
N

r1−N

λ(r)
≤ k2

ω2
N

r1−N

λ(r)

Z2(r)

u2(r)
≤ r1−N

λ(r)
Z2(r)

[
∫ r

b

s1−N

λ(r)
Z2(s)ds

]−2

,
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consequently,

k2

4ωN

∫ r

r∗

s1−N

λ(s)
ds ≤

∫ r

r∗

r1−N

λ(r)
Z2(r)

[
∫ r

b

s1−N

λ(r)
Z2(s)ds

]−2

ds

≤
[

∫ r∗

b

s1−N

λ(r)
Z2(s)ds

]−2

,

which contradicts (A1). So (1.12) hold. From (1.11), it follows that limr→∞

Z(r) exists. If limr→∞Z(r) = d 6= 0, there exists a sufficiently large r2 such

that Z2(r) ≥ d2/2 for r ≥ r2, then, by (1.12) and (1.14),

kd2

2ωN

∫

r2

s1−N

λ(s)
ds ≤ lim

r→∞
u(r) < ∞.

This contradicts (A1), which implies that limr→∞Z(r) = 0. Taking limit in

(1.10) as r → ∞, we get (1.5) holds. Noting (1.5) and (1.3), we get Z(r) > 0

for r ≥ r1. From (1.5) and (1.14), we establish (1.6). Thus, the proof is

compete. �

2. Main Results

In this section, we will give new oscillation criteria for (1.1). First of

all, we establish Hille-type oscillation theorem [4] for (1.1). Throughout this

paper we always assume that condition (1.3) holds without further mention-

ing.

Theorem 2.1. If

lim inf
r→∞

Ψ(r)P (r) >
1

4
, (2.1)

then (1.1) is oscillatory.

Proof. Let y = y(x) be a nonoscillatory solution of (1.1). Without loss

of generality, let us consider that y = y(x) > 0 on Ω(r1), (r1 ≥ r0), then it

follows from Lemma 1.1 that (1.6) holds. Moreover, by (2.1), there exist an

α > 1/4 and r2 ≥ r1 such that

P (r) ≥ α

Ψ(r)
for r ≥ r2.
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Hence, in view of (1.6), we find that Z(r) ≥ α/Ψ(r) for r ≥ r2. Applying

the same step, we get

Z(r) ≥
∫ ∞

r

α2

Ψ2(r)
ϕ(s)ds + P (r)

=
α2 + α

Ψ(r)
for r ≥ r2.

Repeating the above procedure n-times, we conclude that

Z(r) ≥ βn
Ψ(r)

for r ≥ r2,

where β1 = α and βn+1 = β2
n + α for n = 1, 2, · · · .

As we see, the sequence {βn} is nondecreasing and bounded, while

limr→∞ βn = β is a solution the quadratic equation β2 − β + α = 0. This

implies that 1− 4α ≥ 0 which contradicts α > 1/4. �

Theorem 2.2. If

lim inf
r→∞

∫∞
r ϕ(s)P 2(s)ds

P (r)
>

1

4
, (2.2)

then (1.1) is oscillatory.

Proof. Let y = y(x) be a nonoscillatory solution of (1.1). Without loss

of generality, let us consider that y = y(x) > 0 on Ω(r1), (r1 ≥ r0), then it

follows from Lemma 1.1 that (1.6) holds. By (2.2), there exist an α > 1/4

and r2 ≥ r1 such that

∫ ∞

r
ϕ(s)P 2(s)ds ≥ αP (r) for r ≥ r2.

Using this inequality and (1.6), as in the proof of Theorem 2.1, we get

Z(r) ≥ cnP (r) for r ≥ r2,

where c1 = 1 and cn+1 = αc2n + 1 for n = 1, 2, · · · .
It is easy to see that the sequence {cn} is nondecreasing and bounded,

while limr→∞ cn = c is a solution the quadratic equation αc2 − c + 1 = 0.

This implies that 1− 4α ≥ 0 which contradicts α > 1/4. �
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Theorem 2.3. If

∫ ∞

r0

Ψα(s)PM (s)ds = ∞ for some α ∈ (0, 1), (2.3)

then (1.1) is oscillatory.

Proof. Let y = y(x) be a nonoscillatory solution of (1.1). Without loss of

generality, let us consider that y = y(x) > 0 on Ω(r1), (r1 ≥ r0). By Lemma

1.1, (1.4) has a positive solution Z(r) on [r1,∞). Let h(r) = Ψα(r)Z(r) for

r ≥ r1, then, by (1.4), for r ≥ r1,

h′(r) ≤ −Ψα(r)PM (r)−Ψα(r)ϕ(r)

[

Z(r)− α

2Ψ(r)

]2

+
α2

4
Ψα−2(r)ϕ(r)

≤ −Ψα(r)PM (r) +
α

4
Ψα−2(r)ϕ(r).

Integrating this inequality and using (2.3), we lead to a contradiction. �

Theorem 2.4. If

∫ ∞

r0

[

Ψ(s)PM (s)− ϕ(s)

4Ψ(s)

]

ds = ∞, (2.4)

then (1.1) is oscillatory.

Proof. Let y = y(x) be a nonoscillatory solution of (1.1). Without loss of

generality, let us consider that y = y(x) > 0 on Ω(r1), (r1 ≥ r0). By Lemma

1.1, (1.4) has a positive solution Z(r) on [r1,∞). Set h(r) = Ψ(r)Z(r)− 1
2

for r ≥ r1, then, by (1.4), for r ≥ r1,

h′(r) ≤ ϕ(r)Z(r) + Ψ(r)[−ϕ(r)Z2(r)− PM (r)]

= −ϕ(r)

Ψ(r)
h2(r) +

ϕ(r)

4Ψ(r)
−Ψ(r)PM (r).

Integrating this inequality and using (2.4), we conclude that there exists

b1 ≥ r1 such that h(r) ≤ −1 for r ≥ b1. This implies Z(r) < 0 for r ≥ b1,

which is a contradiction. �
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Theorem 2.5. If

lim
r→∞

[
∫ r

r0

P (s)ds

] [

(1 + Φ(s))

∫ r

r0

λ(s)

s2−N
ds

]−1/2

= ∞, (2.5)

where

Φ(r) =

∫ r

r0

exp

[

− 4k

ωN

∫ s

r0

τ1−N

λ(τ)
P (τ)dτ

]

ds,

then (1.1) is oscillatory.

Proof. Let y = y(x) be a nonoscillatory solution of (1.1). Without loss

of generality, let us consider that y = y(x) > 0 on Ω(r0). By Lemma 1.1, we

have

Z(r) = u(r) + P (r),

where

u(r) =

∫

Ω(r)
f ′(y)(W TA−1W )(x)dσ.

Hence

−u′(r) =

∫

Sr

f ′(y)(W TA−1W )(x)dσ ≥ k

ωN

r1−N

λ(r)
Z2(r)

=
k

ωN

r1−N

λ(r)
[u(r) + P (r)]2 ≥ 4k

ωN

r1−N

λ(r)
P (r)u(r).

This implies that

u(r) ≤ u(r0) exp

(

− 4k

ωN

∫ r

r0

s1−N

λ(s)
P (s)ds

)

.

Thus
∫ r

r0

ds

∫ ∞

s

τ1−N

λ(τ)
Z2(τ)dτ ≤ k1Φ(r), k1 > 0,

and consequently,

∫ r

r0

(s− r0)
s1−N

λ(s)
Z2(s)ds + (r − r0)

∫ ∞

r

s1−N

λ(s)
Z2(s)ds ≤ k1Φ(r).
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So
∫ r

r0

s2−N

λ(s)
Z2(s)ds ≤ k22[1 + Φ(r)], k2 > 0.

From this and Schwarz’s inequality, we have

(
∫ r

r0

Z(s)ds

)2

≤
(
∫ r

r0

s2−N

λ(s)
Z2(s)ds

)(
∫ r

r0

λ(s)

s2−N
ds

)

≤ k22 [1 + Φ(r)]

∫ r

r0

λ(s)

s2−N
ds. (2.6)

It from (1.6) and (2.6) that

∫ r

r0

P (s)ds ≤
∫ r

r0

Z(s)ds ≤ k2

[

(1 + Φ(r))

∫ r

r0

λ(s)

s2−N
ds

]1/2

,

i.e.,
[
∫ r

r0

P (s)ds

] [

(1 + Φ(r))

∫ r

r0

λ(s)

s2−N
ds

]−1/2

≤ k2,

this contradicts (2.5). �

Corollary 2.1. If Φ(r) < ∞ and

lim
r→∞

[
∫ r

r0

P (s)ds

] [
∫ r

r0

λ(s)

s2−N
ds

]−1/2

= ∞, (2.7)

then (1.1) is oscillatory.

Example 2.1. Consider the semilinear elliptic equation

∂

∂x1

(

1

|x|2
∂y

∂x1

)

+
∂

∂x2

(

1

|x|2
∂y

∂x2

)

+
ν

|x|4 (y + y3) = 0, (2.8)

where x ∈ Ω(1), N = 2, and ν > 1. Clearly

λ(r) =
1

r2
, p(x) =

ν

|x|4 ,

then

ϕ(r) =
r

2π
, Ψ(r) =

r2 − 1

4π
, P (r) =

πν

r2
.
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Thus

lim inf
r→∞

Ψ(r)P (r) =
ν

4
,

or

lim inf
r→∞

∫∞
r ϕ(s)P 2(s)ds

P (r)
=

ν

4
.

Thus, by Theorem 2.1 or Theorem 2.2, (2.8) is oscillatory for ν > 1.

Example 2.2. Consider the semilinear elliptic equation

∂

∂x1

(

1

|x|2
∂y

∂x1

)

+
∂

∂x2

(

1

|x|2
∂y

∂x2

)

+
1 + k sin |x|

|x|γ (y + y5) = 0, (2.9)

where x ∈ Ω(1), N = 2, k ∈ R, and 2 < γ ≤ 3. Clearly

λ(r) =
1

r2
, p(x) =

1 + k sin |x|
|x|γ ,

then

ϕ(r) =
r

2π
, Ψ(r) =

r2 − 1

4π
, PM (r) =

2π(1 + k sin r)

rγ−1
.

Thus

∫ ∞

1
Ψ1/2(r)PM (r)dr =

√
π

∫ ∞

1

(1 + k sin r)(r2 − 1)1/2

rγ−1
dr = ∞ for γ ≤ 3.

Thus, by Theorem 2.3, (2.9) is oscillatory for 2 < γ ≤ 3.

Example 2.3. Consider the semilinear elliptic equation

∂

∂x1

(

1

|x|
∂y

∂x1

)

+
∂

∂x2

(

1

|x|
∂y

∂x2

)

+
3− 2|x| cos

√

|x| −
√

|x| sin
√

|x|
|x|3 y = 0, (2.10)

where x ∈ Ω(1), N = 2, and 0 < γ ≤ 1. Clearly

λ(r) =
1

r
, p(x) =

3− 2|x| cos
√

|x| −
√

|x| sin
√

|x|
|x|3
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then

P (r) =

∫

Ω(r)
p(x)dx =

2π(3 − 2 cos
√
r)

r
≥ 2π

r
,

Φ(r) =

∫ r

1
exp

[

− 4k

ωN

∫ s

1

τ1−N

λ(τ)
P (τ)dτ

]

ds

≤
∫ r

1
exp

(

−4

∫ s

1

1

τ
dτ

)

ds

≤
∫ r

1

1

s4
ds < ∞ as r → ∞,

and

lim
r→∞

[
∫ r

1
P (s)ds

] [
∫ r

1

λ(s)

s2−N
ds

]−1/2

≥ lim
r→∞

[
∫ r

1

2π

s
ds

] [
∫ r

1

1

s
ds

]−1/2

= lim
r→∞

2π
√
ln r = ∞.

Thus, by Corollary 2.1, (2.10) is oscillatory.
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