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0-TIGHT COMPLETELY 0-SIMPLE SEMIGROUPS

BY

HSING Y. WU

Abstract

A semigroup is 0-tight if each of its congruences is uniquely
determined by each of the congruence classes which do not contain
zero. We classify finite 0-tight rectangular 0-bands, and charac-
terize 0-tight completely 0-simple semigroups. Finally, we obtain

correspoding results about tight completely simple semigroups.

1. Introduction

Throughout this paper we shall use the terminology and notation of
Howie [2]. We recall several definitions: a semigroup S is called 0-simple if,
for any a,b € S\ {0}, there exist z,y € S such that xay = b. A completely 0-
simple semigroup S is a 0-simple semigroup such that every idempotent z of
S has the property that zf = fz = f # 0 implies z = f. The following result
is due to Rees [6]. Every completely 0-simple semigroup is isomorphic to a
certain Rees matrix semigroup. This construction has led to an extensive

study of congruences on completely 0-simple semigroups (see [3], [5]).

We begin with an analysis of congruences on a particular finite com-
pletely O-simple semigroup. The result turns out to be the structure theorem
for finite O-tight rectangular 0-bands (see Theorem 2.3 in [8]). We recall that

a rectangular 0-band is a semigroup (I x A)U{0} whose product is given in
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terms of a A X I matrix P = (p);) with entries in {0, 1} as follows:

(4, \)(j, 1) = Y
0 if brxj = 0

(i,A)0 = 0(i, \) = 00 = 0,

where P is regular, in the sense that no row or column of P consists entirely
of zeros. The term tight was introduced by Schein [7]. A semigroup is
called O-tight if each of its congruences is uniquely determined by each of the
congruence classes which do not contain zero. Using this structure theorem

we then describe a characterization of 0-tight rectangular 0-bands.

The main aim of Section 3 is to characterize 0-tight completely 0-simple
semigroups. A completely 0O-simple semigroup MO°[G; I, A; P] is O-tight if
and only if the rectangular 0-band (I x A) U {0} is O-tight. For the notation
MPO[G; T, A; P], see p. 88 in [1].

By a similar approach to the study of 0-tight completely O-simple semi-
groups, we investigate further tight completely simple semigroups. We recall
that a semigroup S is called completely simple if S has no proper ideals and
every idempotent z of S has the property that zf = fz = f implies z = f.
A semigroup is called tight if each of its congruences is uniquely determined
by each of the congruence classes (see [7]). Our last result of Section 3 is a

characterization of tight completely simple semigroups.

2. 0-Tight Rectangular 0-Bands

Every semigroup S with zero has exactly one of the following proper-

ties:

(1) S is O-tight.

(2) No congruence on S except S x S is uniquely determined by each of its
congruence classes which do not contain zero.

(3) There exists a congruence p # S x S on S such that p is uniquely
determined by each of its congruence classes which do not contain zero.
Also, there exist two congruences on S which have the same congruence

class that does not contain zero.
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A semigroup with the property in (2) is called O-tight-free. A semigroup
with the property in (3) is of the third type.

Now we proceed to the classification of finite rectangular 0-bands. Sup-
pose S is a rectangular 0-band with I = {1,...,m} and A = {1,...,n}. In
[2] an equivalence relation £ on I is defined by the rule that

(Zaj)egf if {)\EApAZ:O}:{AeAijzo}

The relation & is related to a unique partition of m in the following way:
there are r £r-equivalence classes and m;-element Er-classes for 0 <7 < r <
|1] if

m=mji+---+m, (1)

where my,...,m, € Nand m; > --- > m,.

Similarly, an equivalence relationan £y on A is given by the rule that
(Ap)eép if {iel:py=0}={iel:p, =0}

Also, the relation &£, is related to a unique partition of n in the following:
there are s £px-equivalence classes and nj-element £x-classes for 0 < j < s <
|A| if

n=ni+---+ns, (2)

where ny,...,ns € Nand ny > --- > ns.

We recall that a proper congruence p on a completely O-simple semigroup
is defined by 0p = {0}. Supppose p is a relation on S\ {0}. According to
Lemma 3.5.6 in [2], every proper congruence p U {(0,0)} on S is defined by
the rule that

(i,A) p (G,p) < (i,5) €S and (A, p) €T, (3)

where S and T are equivalences such that S C £ and T C Ej.

Note that partitions of m and n do not always give the equivalences &;
and &y, respectively. In fact, & and £p are determined by the existence of
a regular matrix P (see Example 2.1). Now we investigate the cases where
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proper congruences are not uniquely determined by each of their congruence
classes which do not contain zero.

Case 1. Let P = (py;). Suppose the equivalence relations £ and &y
correspond to partitions of m and n, respectively, as follows:

m=mi+---+m, and n=n7 + -+ + ng,

where r, s > 2.

We look at the case where |I| > 2 or |[A| > 2. For |I| > 2, suppose
mi,...,m, are not all equal to 1. Clearly, for every equivalence Sy # I x I,
there exists an equivalence Sy # & such that iS; = iSy for some i € [
according to the selection rules for the counting problems.

Similarly, for |A| > 2, suppose nq, ..., ns are not all equal to 1. For every
equivalence 71 # A x A, there exists an equivalence 75 # T1, and A7y = A\7s
for some A € A. Let p; correspond to (S, T¢) for 1 <t < 2. We have

(i, )\)Pl = (i7 )\)/72,

for some (i, \) € I x A.

When S; = {i} and A7T7 = {\}, a one-element S;-class and a one-
element 7p-class give the existence of a one-element pi-class (see Example
2.2).

Case 2. Suppose r = 1 = s in case 1. Then there exists a proper
congruence p which corresponds to (I x I,14) and p is uniquely determined
by each of its congruence classes which do not contain zero. However, there
exists a congruence which has a one-element class that is not equal to {0}.
Hence such a finite rectangular O-bands is of the third type.

Remark. Suppose n > |A| > 2 and m > |I| > 2. When r = 1 and
s>2 orr >2and s =1, we cannot find a regular matrix P. In other
words, in each of these cases we cannot find a rectangular 0-band whose
multiplication is in terms some regular matrix P. Now suppose n > |A| > 2
and m > |I| > 2 Whenmy =---=m, =1andn; =--- = n, = 1, again
we cannot find a regular matrix P.

So far we have discussed the main part of the following classification.

(1) If |[A| =1 and |I| =1 or 2, then S is 0-tight.
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(2) If |A| =1 and m > |I| > 3, then S is of the third type.

(3) If |[A| =2 and |I| = 2, then S is O-tight.

(4) If |A] = 2 and |I| = 3, then S can be 0O-tight or O-tight-free or of the
third type.

(5) If |A] = 2 and m > |I| > 4, then S is either O-tight-free or of the third
type.

(6) If |A| =n >3 and |I| =n,...,2"—1, then S can be 0-tight or 0-tight-free
or of the third type.

(7) If [A| =n >3 and m > |I| > 2", then S is either O-tight-free or of the
third type.

Note that there is a duality between |A| and |I|. For example, in order
to know in which category a rectangular O0-band with |A| = 4 and |I| = 3
is, we simply check the rectangular 0-band with |A| = 3 and |I| = 4. Here
we point out the number 2" — 1 coincides with that in Corollary 2.2 in [4].

Next, we recall the Green’s equivalence H.
(a,b) e H < za=0b, yb=a, au=>b, bv = a for some z,y,u,v € St (4)

Also, a semigroup S is called congruence-free if S has no congruences other
than 1g and Sx.S. [2] is a reference for the classification of finite congruence-
free semigroups. The following theorem is the structure theorem for finite

0-tight rectangular 0-bands.

Theorem 2.1. Suppose I = {1,...,m} and A = {1,...,n} are finite
sets. If |I| < 2 and |A| < 2, then a rectangular 0-band is O-tight. In other
cases a rectangular 0-band is 0-tight if and only if it is congruence-free with
zero. Conversely, every finite 0-tight semigroup S with H = 1g is isomorphic
to one of this kind.

Proof. First every congruence-free semigroup with zero is 0-tight. We
show other cases apart from |I| < 2 and |A| < 2 by verifying the following

equivalent statements on a finite rectangular 0-band S:

(1) The finite rectangular 0-band S is 0-tight.
(2) 5] = 1] and SA = 1A-
(3) No two columns and no two rows of the matrix P are identical.
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We shall show that (1) < (2) < (3).

(1) = (2). Suppose & # 11 or €5 # 1a. From (1) and (2) on page 3, it
follows that mq,...,m, are not all equal to 1 or ny,...,ns are not all equal
to 1. By case 1 on page 4, there exists a proper congruence which is not
uniquely determined by each of its congruence classes that do not contain

zero. It is a contradiction.

(2) = (1). If & =17, then § = 1. Also, €y = 1, implies that 7 = 1,.
By (B on page 3, S has only one proper congruence, and hence S is O-tight.

(2) = (3). Suppose column ¢ and column j of the regular matrix P are
identical. Then

{)\EAZp)\iZO}:{)\EAZp)\jZO}.

This gives (i,7) € . It is a contradiction. Similarly, if £y = 14, then no
two rows of the matrix P are identical.

(3) = (2). Suppose no two columns of the matrix P are identical. Since
P has entries in {0,1}, we have & = 1. Similarly, Suppose no two rows of
the matrix P are identical. Since P has entries in {0,1}, we have &y = 14.
We are done. Conversely, first every 0-tight semigroup is 0-simple. Also, it
is known that every finite 0-simple semigroup S with H = 1g is isomorphic
to a finite rectangular 0-band. The remaining part of the proof follows the
classification of finite O-tight rectangular 0-bands. O

Now we apply Theorem 2.1 to arbitrary rectangular 0-bands.

Theorem 2.2. Suppose S is a rectangular 0-band. If |I| < 2 and
|A| <2, then S is O-tight. If |I| > 3 or |A| > 3, then the following statements
are equivalent:

(1) S is 0-tight.

(2) 1g is uniquely determined by each of its congruence classes which do not
contain zero.

(3) &r =115 and Ep = 14.

(4) S is congruence-free with zero.

Proof. Tt suffices to show that (2) implies (3). Let us assume that &y = 17
and £y # 15. Let ¢ and A be fixed elements in I and A, respectively. We
consider T-classes {\} and A\ {\}. Suppose the congruence p corresponds
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to (17, 7). Then p and 1g have the same congruence class {(i,\)}. We are
done. O

Example 2.2. Let |I| = 2 = |A|. We find out the reason why partitions
of m and n do not always give the equivalences & and &y, respectively.

Since P is regular, there are only 7 possible P’s. Let P; be a 2 x 2
matrix which consists of all 1’s. Suppose each of P» to P5 is a 2 X 2 matrix
which consists of one 0 and three 1’s. Suppose each of P; to P; is a 2 x 2
matrix which consists of two 0’s and two 1’s with either 0’s or 1’s on the

main diagonal.

We check the rectangular 0-band whose multiplication is in terms of P;.
Now & =1x1=1{1,2} x{1,2} and €y = A x A ={1,2} x {1,2}. In this
case, m=2=mn. Let S; =17, and So = I xI,and 71 = 15, and 75 = A x A.
Suppose pg¢ corresponds to (Sk,T¢), where 1 < k <2 and 1 <t < 2. Then
we obtain the following proper congruences which are uniquely determined
by each of their congruence classes that do not contain zero.

(1) p11 U{(0,0)}, the identity congruence.

(2) p12U{(0,0)} has classes {0},{(1,1),(1,2)},{(2,1),(2,2)}.
(3) a1 U{(0,0)} has classes {0}, {(1,1), (2, )} {(1,2), (2.2)}.
(4) p22 U{(0,0)} has classes {0},{(1,1),(1,2),(2,1),(2,2)},

Next, we look at the rectangular 0-band whose multiplication is in terms
of some Py, where 2 < f < 7. Then &y = 17y and £y = 1p. Nowm =141 =
n. For each 2 < f < 7, we obtain one proper congruence which is uniquely
determined by each of its congruence classes that do not contain zero. When
m =141 and n = 2, we cannot say & = 17y and £y = A x A. In other
words, if &1 = 17 and €4 = A X A, then we cannot find a regular matrix
equal to some Py for 1 < f < 7.

Example 2.2. Let m = 2+ 2 = n. We give an example of a 0-
tight-free rectangular 0-band. Now there are 2 two-element E;-classes and
2 two-element Ep-classes. Here we only discuss one possible arrangement of
elements of each class selected from the sets I and A.

Suppose Si-classes are {1,2},{3,4}, and Ss-classes are {1, 2}, {3}, {4},
and Ss-classes are {1}, {2}, {3}, {4}. Suppose Ti-classes are {1,3},{2,4},
and Ta-classes are {1,3}, {2}, {4}, and Ts-classes are {1}, {2}, {3}, {4}.
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Also, let pgs correspond to (Sk,T;), where 1 < k <3 and 1 <t < 3. We
obtain the following result:

(1) (1,3) pr1=(1,3) pra=(1,3) p2r=(1,3) po2 ={(1,1), (1,3), (2, 1), (2,3) }
(2) (1,1) p13 = (L, 1) p2s = {(1,1),(2,1)}.

(3) (17 1) P31 = (17 1) P32 = {(17 1)7 (173)}'

(4) (474) P23 = (474) P33 = {(4’4)}'

3. 0-Tight Completely 0-Simple Semigroups

The Green’s equivalence H (see (@) on page 5) plays a major role in
analyzing O-tight completely O-simple semigroups. Notice that H is a con-
gruence on a completely 0-simple semigroup. We consider a morphism which
maps a rectangular 0-band Y into the quotient semigroup S/H by sending
(i,)\) into H-class H;y, where H;y is either a group or Hjz% =0

We can show that Y is isomorphic to S/H. In other words, a completely
0-simple semigroup S is a rectangular 0-band Y of H-classes, where an H-
class H is either a group or H2 = 0. Conversely, suppose S is a rectangular
0-band Y of sets H, with o € Y. Here H,, is either a group or H,? = 0. We
can show that S is a completely O-simple semigroup.

Theorem 3.1. A compleltely 0-simple semigroup MO°[G;I,A; P] is 0-
tight if and only if the rectangular 0-band (I x A)U{0} whose multiplication
is in terms of P with entries in GV is O-tight.

Proof. Let S = MY[G;1,A; P], and let Y = (I x A)U{0}. Suppose that
Y is 0-tight. By Theorem 2.2 there are cases of equivalences &5 and 5. We
only verify the case where & = 17 and o = 1. In this case, S = 1; and

T = 1a.

Let p be a proper congruence on S. To show that p is uniquely determined
by each of its congruence classes that do not contain zero, it suffices to verify
the following:

(i,a,\)p ={(i,ga,\) : g € N}.

If (i,a,\) p (i,b,\), then we deduce that (pg;)ab™!(pg;) ™! € N for some
& € A such that pg; # 0 (see p. 88 in [2]). Since N is a normal subgroup of
G, we have ab~! € N. It follows that b = ga for g € N.
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To show the converse, if g € N, then (pg;)(ga)a™ (pe;) ™" = (pei)g(pei) ™
in N for every £ € A such that pg; # 0. Hence (i,a, ) p (3,0, A).

Notice that now every congruence on S is uniquely determined by each of
the congruence classes that do not contain zero. So S is a 0-tight semigroup.
Conversely, suppose S is O-tight. Since Yis a homomorphic image of S, Y is
0-tight. ([l

Unlike completely 0-simple semigroups, we do not need equivalences &y
and &) to investigate congruences on completely simple semigroups. We only
have to discuss the equivalence relations S and 7 on I and A, respectively

(see p. 90 in [2]). This makes our classification a lot easier.

To classify finite tight rectangular bands, we consider various partitions
of m and n. There is a specific difference between the classification of finite
rectangular 0-bands and that of finite rectangular bands. Let S be a finite

rectangular band. We adopt similar terminology in Section 2.

(1) If [A| =1 and |I| =1 or 2, then S is tight.

(2) If |A| =1 and m > |I| > 3, then S is tight-free.

(3) If |A| = 2 and |I] = 2, then S is tight.

(4) If |A| =2 and m > |I| > 3, then S is of the third type.
(5) If [JA| =n >3 and m > |I| > n, then S is tight-free.

Again there is a duality between finite sets I and A. As proved in
Theorem 1.1.3 in [2], a semigroup is a rectangular band if and only if it is
isomorphic to the direct product of a left zero semigroup A and a right zero

semigroup B. The proof of Corollary 3.2 follows the proof of Theorem 2.2.

Corollary 3.2. Let S be a rectangular band. Then the following state-

ments are equivalent:

(1) S is tight.
(2) 1g is uniquely determined by each of its congruence classes.
(3) |A] <2 and |B| < 2.

We recall that a completely simple semigroup is a rectangular band of
groups, and, conversely, a rectangular band of groups is completely simple
(see p. 80 in [1]). The next corollary follows Theorem 3.1.
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Corollary 3.2. A compleltely simple semigroup M|G;1,A; P| is tight
if and only if the rectangular band I x A is tight.
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