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Abstract

Infinite dimensional complex analysis on locally convex

spaces is used as the framework for products of distributions in

the sense of Columbeau without the necessary prerequisites of

Silva-differentiability on bornological vector spaces, or calculus on

convenient vector spaces, or nonstandard analysis. However, in-

variance under diffeomorphisms is beyond the scope of this paper.

1. Introduction

1.1. It is well known that the products of distributions need not be dis-

tributions, e.g. [21], and that linear partial differential equations with poly-

nomial coefficients need not have distributional solutions, e.g. [12]. Earlier

work on product of distributions includes [8] based on approximation and

[9] based on Fourier transform.

1.2. The idea of quotient algebras was found, e.g. in [19], and the

explicit descriptions, e.g. [3], based on Silva-differentiability on bornological

vector spaces [2] produce a major impact in the field. The simplification

[4] abandoned later in [5] indicates that a suitable framework of infinite

dimensional differential calculus is definitely required. Our quick response

with compact equicontinuous calculus on locally convex spaces [14] could not

survive among too many definitions of differentiation, e.g. [1]. Alternatively,
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nonstandard framework has been popular, e.g. in [13] and [18]. Recently,

the convenient spaces [11] have gained ground, e.g. in [7]. Examples of

differentiable but discontinuous maps in their setting can be found in [2,

p.51] and [11, p.2] but this is not the case in our [14] and [15].

1.3. This paper is to promote complex analysis on locally convex spaces

as a framework for the construction of generalized functions as in [3, Chap. 3].

However, invariance under diffeomorphisms and other aspects will be con-

sidered later.

2. Detections

2.1. A map from an open subset of a complex locally convex space

into a complex locally convex space is holomorphic if it is (directionally)

differentiable and locally bounded as recalled in [15, 2.1]. A discontinuous

linear form is differentiable but not holomorphic because it is not locally

bounded. Functions are scalar-valued in our convention. An operator on a

set X is a map from X into itself. For every map f on X, we may write

< f, x > = f(x) for all x ∈ X. All locally convex spaces are assumed to be

separated.

2.2. Let Ω be an open subset of Rν . A map on Ω into a locally convex

space is smooth if it has continuous partial derivatives of all orders. Let

D(Ω) be the test space of smooth complex functions with compact support

contained in Ω equipped with the natural inductive topology. A holomorphic

function on D(Ω) into the complex plane C is called a detection on Ω. Since

every continuous linear form is holomorphic, every distribution is a detection.

The set of all detections on Ω is denoted by dt(Ω).

2.3. Let T be a detection on Ω. For each integer j ∈ [1, ν], the partial

derivative ∂jT : D(Ω) → C is defined by

(∂jT )(ϕ) = − < DT (ϕ), ∂jϕ >

for every ϕ ∈ D(Ω) where the (total) derivative DT (ϕ) is a continuous linear

form on D(Ω). If T is a distribution, the new definition agrees with the old
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distributional derivative because DT (ϕ) = T . For convenience, an expres-

sion T (ϕ) is identified as the map ϕ→ T (ϕ) and we write d
dϕ
T (ϕ) = DT (ϕ)

similar to d
dt
[u(t)v(t)] = u(t) d

dt
v(t) + v(t) d

dt
u(t) in elementary calculus.

2.4. Theorem. The partial derivative ∂jT of a detection T is a de-

tection on Ω. Furthermore we have ∂i∂jT = ∂j∂iT . As a result, the partial

derivative with respect to a multi-index α = (α1, . . . , αν) ∈ N
ν is defined in

the usual way by ∂αT = ∂α1
1

· · · ∂αν
ν T where N is the set of all integers ≥ 0.

Proof. Since T is holomorphic, so is the function (ϕ,ψ) → DT (ϕ)ψ by

[15, 2.6]. Because the continuous linear operator ϕ → ∂jϕ is holomorphic,

the composite map ∂jT is a holomorphic function onD(Ω), that is a detection

on Ω. Next for every ϕ ∈ D(Ω), we get

(∂i∂jT )(ϕ)

= − < D(∂jT )(ϕ), ∂iϕ >

=

[

d

dϕ
< DT (ϕ), ∂jϕ >

]

(∂iϕ)

= < D2T (ϕ)(∂iϕ), ∂jϕ > +

〈

DT (ϕ),

[

d

dϕ
∂jϕ

]

(∂iϕ)

〉

by [16, 10-3.6]

= D2T (ϕ)(∂iϕ)(∂jϕ)+ < DT (ϕ), ∂j∂iϕ) >

= D2T (ϕ)(∂jϕ)(∂iϕ)+ < DT (ϕ), ∂i∂jϕ) >

= (∂j∂iT )(ϕ) . �

2.5. Theorem. The pointwise product ST of two detections S, T is a

detection. Furthermore for every multi-index α, we have

∂α(ST ) =
∑

β≤α

(

α

β

)

(∂α−βS)(∂βT ).

Proof. Since the product of two complex numbers is holomorphic, the

composite map ϕ → [S(ϕ), T (ϕ)] → S(ϕ)T (ϕ) is holomorphic in ϕ. Hence
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ST is a detection on Ω. Observe that

∂j(ST )(ϕ) = − < D(ST )(ϕ), ∂jϕ >

= −

〈

d

dϕ
[S(ϕ)T (ϕ)], ∂jϕ

〉

= − < S(ϕ)DT (ϕ) + T (ϕ)DS(ϕ), ∂jϕ >

= −S(ϕ) < DT (ϕ), ∂jϕ > −T (ϕ) < DS(ϕ), ∂jϕ >

= S(ϕ)∂jT (ϕ) + T (ϕ)∂jS(ϕ)

= (S∂jT + T∂jS)(ϕ).

Hence we obtain ∂j(ST ) = S∂jT + T∂jS. The general case follows by

induction. �

3. Moderate Detections

3.1. A test function ρ ∈ D(Rν) is normalized if
∫

ρ(x)dx = 1. For

each multi-index α and x = (x1, . . . , xν) ∈ R
ν, we write xα = xα1

1
· · · xαν

ν .

For each integer q ≥ 0, let Aq be the set of normalized test functions ρ

such that
∫

xαρ(x)dx = 0 for all α with 0 < |α| ≤ q. Clearly A0 is the

set of all normalized test functions. The property Aq+1 ⊂ Aq will be used

in §4.2. The condition
∫

xαρ(x)dx = 0 will be used in §6.7 and it allows

us to claim generalization of some others as in [3, 3.5.6]. The polynomials

{xα : |α| ≤ q} are linearly independent smooth functions and hence they

form an independent subset of the distribution space D′(Rν). The set Aq is

nonempty by [20, p.124]. For each test function ρ ∈ D(Rν), each x ∈ Ω and

each λ > 0, the function ρλx : Ω → C indexed by two parameters λ and x is

defined by

ρλx(y) =
1

λν
ρ

(

y − x

λ

)

for all y ∈ Ω. For the earlier role of Aq, see [17], [6], [10] and standard

regularization procedure. Write K ≤ Ω if K is a compact subset of Ω.

3.2. A detection T on Ω is moderate if ∀ K ≤ Ω, ∀α ∈ N
ν , ∃n ∈ N,

∀ ρ ∈ An, ∃ M > 0, ∃ r > 0, ∀ x ∈ K, ∀ λ ∈ (0, r), we have

|( ∂αT ) (ρλx)| ≤
M

λn
.
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The following theorem follows immediately by routine verification.

3.3. Theorem. The set md(Ω) of all moderate detections on Ω is

an algebra under pointwise operations. Furthermore, it is invariant under

partial differentiation.

3.4. Lemma. For each detection T on Ω and for each ρ ∈ A0, every

point a ∈ Ω has an open neighborhood V ⊂ Ω and r > 0 such that for every

λ ∈ (0, r), the following conditions hold.

(a) suppρλx ⊂ Ω for every x ∈ V .

(b) The map ξ : V → D(Ω) defined by ξ(x) = ρλx is smooth with

∂αξ(a) =

(

−
1

λ

)|α|

(∂αρ)λa .

(c) The function x→ T (ρλx) : V → C is smooth.

(d) If T = ∂αg for some continuous function g on V , then we have

T (ρλx) =

(

−
1

λ

)|α| ∫

g(x+ λy)∂αρ(y)dy.

Proof. (a) Choose an open ball B(a, 3s) ⊂ Ω. There is r ∈ (0, s)

such that r‖y‖ < s for every y ∈ suppρ. Then V = B(a, s) is an open

neighborhood of a and the closed ball K = B(a, 2s) is compact subset of Ω.

For each x ∈ V , we have

suppρλx ⊂ x+ λ supp ρ ⊂ B(a, s) + B(0, s) ⊂ B(a, 2s) ⊂ K ⊂ Ω.

(b) By induction, it suffices to prove that the partial derivative of ξ with

respect to x1 exists and satisfies the required equation. Let e1, . . . , eν denote
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the standard basis for Rν . For every y ∈ Ω, we have

∣

∣

∣

∣

ξ(a+ te1)− ξ(a)

t
(y)−

(

−
1

λ

)

(∂1ρ)λa(y)

∣

∣

∣

∣

=

∣

∣

∣

∣

1

t

1

λν

{

ρ

(

y − a− te1
λ

)

− ρ

(

y − a

λ

)}

+
1

λν+1
(∂1ρ)

(

y − a

λ

)∣

∣

∣

∣

≤
1

λν+1

∣

∣

∣

∣

∫

1

0

{

(∂1ρ)

(

y − a− s t e1
λ

)

− (∂1ρ)

(

y − a

λ

)}

ds

∣

∣

∣

∣

≤
|t|

λν+1

∫

1

0

∫

1

0

∣

∣

∣

∣

∂21ρ

(

y − a− τ s t e1
λ

)
∣

∣

∣

∣

dτds→ 0

uniformly on K as t → 0 in R. Because the supports of ξ and (∂1ρ)λx are

contained in K, we obtain

∂1ξ(a) = lim
t→0

ξ(a+ te1)− ξ(a)

t
=

(

−
1

λ

)

(∂1ρ)λa, in D(Ω).

(c) The composite Tξ of the smooth map ξ and the continuous linear

form T is smooth.

(d) Suppose T = ∂αg for some continuous function g on V . Then we

have

T (ρλx) =

∫

{∂αz g(z)}ρλx(z)dz

= (−1)|α|
∫

g(z)∂αz

{

1

λν
ρ

(

z − x

λ

)}

dz

=

(

−
1

λ

)|α| ∫

g(x+ λy)∂αy ρ(y)dy , where z = x+ λy. �

3.5. Lemma. Let T be a detection on Ω and ρ be a normalized test

function on R
ν. Then for each test function ϕ ∈ D(Ω), there is r > 0 such

that for every λ ∈ (0, r), the integral
∫

T (ρλx)ϕ(x)dx exists. Furthermore if

T = ∂αg for some function g continuous on a neighborhood of the support

of ϕ, then we have

∫

T (ρλx)ϕ(x)dx = (−1)|α|
∫∫

g(x)ρ(y)∂αxϕ(x− λy)dxdy.

Proof. Choose r > 0 and an open neighborhood V of the compact set
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suppϕ such that for each λ ∈ (0, r), the function x → T (ρλx) is smooth

on V . Hence the integral
∫

T (ρλx)ϕ(x)dx exists because the integrand is a

continuous function with compact support. Finally for T = ∂αg on V , we

have
∫

T (ρλx)ϕ(x)dx

=

∫∫

∂αy g(y)ρλx(y)ϕ(x)dxdy

= (−1)|α|
∫∫

g(y)∂αy ρλx(y)ϕ(x)dxdy

= (−1)|α|
∫∫

g(y)∂αy h(y − x)ϕ(x)dxdy where h(z) =
1

λν
ρ
( z

λ

)

= (−1)|α|
∫

g(y) [(∂αh) ∗ ϕ] (y)dy convolution

= (−1)|α|
∫

g(y)(h ∗ ∂αϕ)(y)dy

= (−1)|α|
∫∫

g(y)h(x)∂αy ϕ(y − x)dxdy

= (−1)|α|
∫∫

g(y)
1

λν
ρ
(x

λ

)

∂αy ϕ(y − x)dxdy

= (−1)|α|
∫∫

g(y) ρ(z)∂αy ϕ(y − λz)dydz where x = λz.

Replacing y, z by x, y respectively, the result follows. �

3.6. Lemma. Let Ω = ∪i∈IΩi be covered by open sets Ωi. Then a

detection T on Ω is moderate iff all restrictions T |D(Ωi) are moderate.

Proof. Suppose that all restrictions T |D(Ωi) are moderate. To show

that T is moderate on Ω, let K be a compact subset of Ω and let α be a

multi-index. There is a finite subset J of I such that K ⊂ ∪j∈JΩj . Since Ω

is locally compact, for each j ∈ J there is a compact subset Kj of Ωj such

that K = ∪j∈JKj . Choose integers nj for T |D(Ωj) according to §3.2. Let

n = maxj∈J nj. Pick any ρ ∈ An. Select Mj and rj ∈ (0, 1) according to

§3.2. Let M = maxj∈J Mj and r = minj∈J rj. Finally take any x ∈ K and

any λ ∈ (0, r). Then x ∈ Kj for some j ∈ J . Since 0 < λ < rj < 1, we have

|( ∂αT ) (ρλx)| ≤
Mj

λnj
≤
M

λn
.
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Therefore T is moderate on Ω. The converse is obvious. �

3.7. Theorem. Every distribution T is a moderate detection.

Proof. Consider the special case when T is a continuous function g on Ω.

Let K be a compact subset of Ω and α be a multi-index. Fix n = |α|. Select

any ρ ∈ An. Choose r > 0 such that Q = K + [0, r] supp ρ is a compact

subset of Ω. Let M =

(

sup
x∈Q

|g(x)|

)

∫

|∂αρ(y)|dy. Pick any x in K and any

λ in (0, r). By §3.4 d, we have

|(∂αT )(ρλx)| ≤
1

λ|α|

∫

|g(x+ λy)| |∂αρ(y)|dy ≤
M

λn
.

Hence g is a moderate detection. In general, let T be a distribution.

Then each a ∈ Ω has a neighborhood V and a continuous function g on V

such that T = ∂βg on V for some multi-index β. Then g and hence T = ∂βg

are moderate detections on V . The result follows from the last lemma. �

4. Null Detections

4.1. A detection S is null if ∀K ≤ Ω, ∀α ∈ N
ν , ∃n ∈ N, ∀ q ≥ n,

∀ ρ ∈ Aq, ∃M > 0, ∃ r > 0, ∀x ∈ K, ∀λ ∈ (0, r), we have

|(∂αS)(ρλx)| ≤Mλq−n.

Since Aq+1 ⊂ Aq, it is easy to verify the following theorem.

4.2. Theorem. The set null(Ω) of all null detections on Ω is an ideal

of the algebra md(Ω) of moderate detections. Furthermore, it is invariant

under partial differentiation.

4.3. Lemma. For every T ∈ D′(Ω), ϕ ∈ D(Ω) and ρ ∈ A0, we have

< T,ϕ >= lim
λ→0

∫

< T, ρλx > ϕ(x)dx .

Proof. By linearity in ϕ and smooth partition of unity, we may assume

that suppϕ is small enough so that T = ∂αg where g is a continuous function
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on an open neighborhood V of suppϕ. Choose r1 > 0 by §3.5. We may

assume thatK = suppϕ+[0, r1] supp ρ is a compact subset of V . By uniform

continuity of ∂αϕ, for every ε > 0 there is r2 > 0 such that for all x, y ∈ K

with ‖x − y‖ ≤ r2 we have |∂αϕ(x) − ∂αϕ(y)| ≤ ε. Let r = min{r1, r2}.

Then for each λ ∈ (0, r) and ρ ∈ A0, we obtain

∣

∣

∣

∣

∫

< T, ρλx > ϕ(x)dx − < T,ϕ >

∣

∣

∣

∣

≤

∣

∣

∣

∣

(−1)|α|
∫∫

g(x)ρ(y)∂αxϕ(x− λy)dxdy − (−1)|α|
∫

g(x)∂αxϕ(x)dx

∣

∣

∣

∣

≤

∣

∣

∣

∣

(−1)|α|
∫∫

g(x)ρ(y){∂αxϕ(x− λy)− ∂αxϕ(x)}dxdy

∣

∣

∣

∣

≤ ε

∫∫

|g(x)ρ(y)|dxdy

which is independent of the choice of λ. This completes the proof. �

4.4. Theorem. If a distribution S is a null detection, then S = 0.

Proof. Let ϕ ∈ D(Ω) be given. For K = suppϕ and α = 0, choose n

according to §4.1. For q = n+ 1 and ρ ∈ Aq, fix M, r > 0 by §4.1. Then for

all λ ∈ (0, r), we have

∣

∣

∣

∣

∫

< S, ρλx > ϕ(x)dx

∣

∣

∣

∣

≤Mλ

∫

|ϕ(x)|dx.

Hence < S,ϕ >=0 by the last lemma. Since ϕ is arbitrary, we get S=0. �

5. Detectors

5.1. For the ideal null(Ω) of the algebra md(Ω), the equivalence classes

of the quotient algebra dtr(Ω) = md(Ω)/null(Ω) are called detectors on Ω.

For each moderate detection T , let [T ] denote the equivalence class contain-

ing T . Since null(Ω) is invariant under all partial differential operators, for

each multi-index α the formula ∂α[T ] = [∂αT ] is independent of the choice

of T in [T ]. Hence the partial derivatives of detectors are well-defined.

5.2. Since every distribution T is a moderate detection, the linear map

T → [T ] : D′(Ω) → dtr(Ω) is injective by §4.4. Therefore the distribu-
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tion space D′(Ω) is identified as a subset of dtr(Ω). Since every continuous

function g is a distribution, the equivalence class [g] is a detector.

5.3. A detector H admits a distribution S if ∃T ∈ H, ∀ϕ ∈ D(Ω),

∃n ≥ 0, ∀ q ≥ n, ∀ ρ ∈ Aq, we have

< S,ϕ > = lim
λ→0

∫

T (ρλx)ϕ(x)dx.

Because every null detection admits the zero distribution, S is inde-

pendent of the choice of T ∈ H. Clearly a detector admits at most one

distribution. Since the above formula is linear in T , the set ad(Ω) of all

admissible detectors forms a vector subspace of dtr(Ω). Because every dis-

tribution admits itself, we have D′(Ω) ⊂ ad(Ω) ⊂ dtr(Ω). As the linear map

H → S : ad(Ω) → D′(Ω) is an idempotent, it behaves like a projection.

5.4. Theorem. For all continuous functions on Ω, the product detec-

tor [f ][g] admits the distribution fg which is the usual pointwise product of

continuous functions.

Proof. Let Tf , Tg, Tfg be the distributions identified with f, g, fg respec-

tively. Then for all ϕ, ρ ∈ D(Ω) with
∫

ρ(x)dx = 1, we have

∫

(TfTg)(ρλx)ϕ(x)dx− < Tfg, ϕ >

=

∫

Tf (ρλx)Tg(ρλx)ϕ(x)dx−

∫

f(x)g(x)ϕ(x)dx

=

∫
{
∫

f(x+ λy)ρ(y)dy

}{
∫

g(x+ λz)ρ(z)dz

}

ϕ(x)dx

−

∫

f(x)g(x)ϕ(x)dx

∫

ρ(y)dy

∫

ρ(z)dz

=

∫∫∫

{f(x+ λy)g(x+ λz)− f(x)g(x)}ϕ(x)ρ(y)ρ(z)dxdydz .

The first term f(x+ λy)g(x + λz) − f(x)g(x) is small by uniform continu-

ity of f, g on some compact neighborhood of suppϕ. The other terms are

independent of λ. Therefore [Tf ][Tg] admits Tfg. �

5.5. Theorem. Let f be a smooth function and S a distribution on

Ω. Then the product detector [f ][S] admits the distribution fS which is the

usual product in the classical distribution theory.
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Proof. We want to show that ∀ϕ ∈ D(Ω), ∃n ≥ 0, ∀ q ≥ n, ∀ ρ ∈ Aq, we

have

< fS,ϕ >= lim
λ→0

∫

(TfS)(ρλx)ϕ(x)dx.

In view of §4.3, it suffices to prove that

lim
λ→0

∫

S(ρλx){f(x)ϕ(x)}dx = lim
λ→0

∫

(TfS)(ρλx)ϕ(x)dx.

By linearity in ϕ, we may assume that suppϕ is small enough such that

S = ∂αg for some continuous function g on a neighborhood of suppϕ. It

follows from §3.5 that

∫

S(ρλx){f(x)ϕ(x)}dx

= (−1)|α|
∫∫

g(x)ρ(y)∂αx [f(x− λy)ϕ(x− λy)]dxdy. (1)

On the other hand, observe that

∫

(TfS)(ρλx)ϕ(x)dx

=

∫

< Tf , ρλx > < S, ρλx > ϕ(x)dx

=

∫

(∂αg)(ρλx)

{

ϕ(x)

∫

f(x+ λz)ρ(z)dz

}

dx by §3.4d

= (−1)|α|
∫∫

g(x)ρ(y)∂αx

{

ϕ(x− λy)

∫

f(x− λy + λz)ρ(z)dz

}

dxdy

by §3.5

= (−1)|α|
∫∫∫

g(x)ρ(y)ρ(z)∂αx [ f(x− λy + λz)ϕ(x − λy) ]dxdydz. (2)

Since
∫

ρ(z)dz = 1, the difference (1)–(2) is

(−1)α|
∫∫∫

g(x)ρ(y)ρ(z)∂αx {[f(x−λy)−f(x−λy+λz)]ϕ(x−λy)}dxdydz.

The first three terms g(x)ρ(y)ρ(z) are independent of λ. The last term is

∑

β≤α

(

α

β

)

{

∂βxf(x− λy)− ∂βxf(x− λy + λz)
}

∂α−β
x ϕ(x− λy).
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The term enclosed by braces is small by uniform continuity of the func-

tion x → ∂βxf(x) on any compact neighborhood of suppϕ while the second

term ∂α−β
x ϕ(x − λy) is bounded. Therefore the difference (1)–(2) is small.

This completes the proof. �

6. Compact Detections

6.1. The strong dual E ′(Ω) of the space E(Ω) of smooth functions on Ω

is the space of distributions with compact support. A holomorphic function

T on E ′(Ω) is called a compact detection. Clearly the set kd(Ω) of all compact

detections on Ω is an algebra.

6.2. Let T be a compact detection on Ω. Because the embedding

D(Ω) → E ′(Ω) is a continuous linear map, the restriction T |D(Ω) is also

holomorphic. Since T is continuous on E ′(Ω) and D(Ω) is dense in E ′(Ω),

the linear map T → T |D(Ω) : kd(Ω) → dt(Ω) is injective. This allows us

to identify kd(Ω) as a subspace of dt(Ω). On the other hand, a detection

S : D(Ω) → C is compact iff it has an extension T over E ′(Ω) which is

holomorphic with respect to the strong topology.

6.3. Lemma. The delta map δ : Ω → E ′(Ω) given by δ(x) = δx is a

smooth map. Furthermore for every multi-index α, we have

(∂αδ)(x) = (−1)|α|∂αδx.

Proof. By induction on |α|, for each g ∈ E(Ω) observe that

lim
λ→0

〈

∂αδ(x+ λej)− ∂αδ(x)

λ
, g

〉

= lim
λ→0

(−1)|α|
〈

∂αδx+λej − ∂αδx

λ
, g

〉

= lim
λ→0

(−1)|α|(−1)|α|
〈

δx+λej − δx

λ
, ∂αg

〉

= lim
λ→0

∂αg(x+ λej)− ∂αg(x)

λ
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= ∂j∂
αg(x)

= < δx, ∂j∂
αg >

= (−1)|α|+1 < ∂j∂
αδx, g > .

Hence the convergence

∂αδ(x + λej)− ∂αδ(x)

λ
→ (−1)|α|+1∂j∂

αδx

is weakly in the Montel space E ′(Ω); so it converges strongly in E ′(Ω). There-

fore we have (∂j∂
αδ)(x) = (−1)|α|+1∂j∂

αδx. This completes the proof. �

6.4. For each compact detection T , define ξT (x) = T (δx) for every

x in Ω. Then ξT is a smooth function on Ω. Since E(Ω) is reflexive, the

map ξ : kd(Ω) → E(Ω) is a linear surjection. Hence we get an identification

induced by the natural isomorphism kd(Ω)/ker(ξ) ≃ E(Ω).

6.5. The partial derivative ∂jT of a compact detection T on Ω is defined

by

(∂jT )(S) = −[(DT )S](∂jS)

for all S ∈ E ′(Ω). Then ∂jT is a compact detection satisfying

(∂jT )|D(Ω) = ∂j [T |D(Ω)]

where the second ∂j is defined in §2.3. Since both ∂i∂jT and ∂j∂iT are

continuous on E ′(Ω) and they agree on the dense set D(Ω), we have ∂i∂jT =

∂j∂iT on E ′(Ω). Consequently for every multi-index α, the partial derivative

∂αT is well-defined. Furthermore we have ξ(∂αT ) = ∂α(ξT ) where the

second ∂α is an ordinary partial differential operator on the smooth function

ξT . In fact for every x ∈ Ω, it follows by §6.3 and the Chain Rule that

ξ(∂jT )(x) = (∂jT )(δx) = −[(DT )(δx)](∂jδx)

and

∂j(ξT )(x) = ∂j(T ◦ δ)(x) = DT (δx)(∂jδ)(x) = DT (δx)(−∂jδx).

The general case follows by induction on |α|.
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6.6. Lemma. For each ρ ∈ Aq and each x ∈ Ω, there is r > 0 such

that the set

B =
{ρλx − δx

λq+1
: λ ∈ (0, r)

}

is bounded in E ′(Ω).

Proof. Let r > 0 be any small number such that x + [0, r] supp ρ ⊂ Ω.

It suffices to show that B is weakly bounded, i.e. for each f ∈ E(Ω) the set

< f,B > is bounded in C. Now by Taylor’s formula, for each small y ∈ R
ν

we have

f(x+ y) =
∑

|α|≤q

1

α!
∂αf(x)yα +

∑

|β|=q+1

gβ(x+ y)yβ.

where gβ are some smooth functions on Ω. Then by §3.4, we obtain

< f, ρλx − δx > =

∫

f(x+ λz)ρ(z)dz −

∫

f(x)ρ(z)dz

=
∑

0<|α|≤q

∫

1

α!
∂αf(x)(λz)αρ(z)dz +

∑

|β|=q+1

∫

gβ(x+ λz)(λz)βρ(z)dz

Since ρ ∈ Aq, we have
∫

zαρ(z)dz = 0 for all α with 0 < |α| ≤ q. Hence the

first term vanishes. Therefore we have

< f, ρλx − δx >= λq+1
∑

|β|=q+1

∫

gβ(x+ λz)zβρ(z)dz .

Since all gβ are bounded on the compact set x+ [0, r] supp ρ, the set B

is weakly bounded in E ′(Ω) and hence strongly bounded in E ′(Ω). �

6.7. Theorem. Let S, T be compact detections on Ω. The following

statements are equivalent.

(a) [S] = [T ], i.e. they represent the same detector.

(b) S(δx) = T (δx) , ∀x ∈ Ω, i.e. they have the same value at every point.

Proof. By linearity, we may assume S = 0.

(a ⇒ b) Let T be a null compact detection. Take any x ∈ Ω. For

K = {x} and α = 0, choose n by §4.1. Take q = n + 1 and ρ ∈ Aq.

There are r,M > 0 such that for all λ ∈ (0, r), we have suppρλx ⊂ Ω
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and |T (ρλx)| ≤ Mλ. It follows from §6.6 that ρλx − δx ∈ λB where B

is a bounded set in E ′(Ω) and hence ρλx → δx in E ′(Ω) as λ → 0. As

a holomorphic function, T is continuous on E ′(Ω). Therefore we obtain

T (δx) = lim
λ→0

T (ρλx) = 0.

(b ⇒ a) Suppose that T is a compact detection with T (δx) = 0 for all

x ∈ Ω. To show that T is null, let K be a compact subset of Ω and let α be

a multi-index. Fix n ≥ 0. Take any q ≥ n and ρ ∈ Aq. There is r ∈ (0, 1)

such that K + [0, r]supp ρ ⊂ Ω and that §6.6 holds. Since (T ◦ δ)(x) = 0, by

§6.3 we have

(∂jT )(δx) = −DT (δx)(∂jδx) = DT (δx)(∂jδ)(x) = ∂j(T ◦ δ)(x) = 0.

By induction, we get S(δx) = 0 for all x ∈ Ω where S = ∂αT . Now pick any

x ∈ K and any λ ∈ (0, r). For h = ρλx − δx ∈ λq+1B, we have

S(ρλx) = S(ρλx)− S(δx) ∈ co {DS(δx + th)h : t ∈ [0, 1]}

the closed convex hull. By [15, 2.3], the family

{DS(δx + th) : t ∈ [0, 1]}

is equicontinuous. From §6.6, the set

{DS(δx + th)b : t ∈ [0, 1] , b ∈ B}

is bounded. There is Mx > 0 such that |DS(δx + th)b| < Mx, that is

|S(ρλx)| < λq+1Mx . By §3.4 c, the function x → S(ρλx) is continuous.

Thus there is an open neighborhood Ux of x such that supp ρλy ⊂ Ω and

|S(ρλy)| < λq+1Mx for all y ∈ Ux. By compactness of K, we may choose a

finite open cover from Ux and defineM as the maximum of the corresponding

Mx. Hence for any y ∈ K and any λ ∈ (0, r), we have |S(ρλy)| ≤ λq+1M ,

that is |(∂αT )(ρλy)| ≤ Mλq−n . Therefore T is a null detection, that is

[T ] = 0. �
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