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GEOMETRIC AND APPROXIMATE PROPERTIES OF

CONVOLUTION POLYNOMIALS IN THE UNIT DISK

BY

S. G. GAL

Abstract

The purpose of this paper is to prove several results in

approximations through complex convolution polynomials with

Jackson-type rate or with best approximation rate, having the

quality of preservation of some properties in geometric function

theory, like the preservation of: coefficients’ bounds, positive real

part, bounded turn, close-to-convexity, starlikeness, convexity, spi-

rallikeness, α-convexity. Also, some sufficient conditions for star-

likeness and univalence of analytic functions are preserved.

1. Introduction

Let us consider the open unit disk D = {z ∈ C; |z| < 1} and A(D) =

{f : D → C; f is analytic on D, continuous on D, f(0) = 0, f ′(0) = 1}.

Recall that a function f ∈ A(D) is starlike if it is univalent on D and

f(D) is a starlike plane domain with respect to 0, and is convex if it is

univalent on D and f(D) is a convex plane domain.

Concerning the shape preserving complex approximation, firstly let us

recall the following two known results.
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Theorem 1.1 ([12]). Let

Ωn(u) =
(n!)2

(2n)!

(

2 cos
u

2

)2n
,

be the de la Vallée-Poussin kernel and let the complex convolution polyno-

mials of f of degree ≤ n be defined as

Pn(f)(z)=
1

2π

∫ π

−π
f(reit)Ωn(x− t)dt=

1

2π

∫ π

−π
f(zeiu)Ωn(u)du, z=reix ∈ D.

If f ∈ A(D) is starlike (convex) then the polynomials Pn(f)(z) are star-

like (convex, respectively), for all n ∈ N.

Theorem 1.2 ([14]). Let us consider the nth Cesáro kernel of order

α > 0, given by

Kα
n (u) =

n
∑

k=0

(Aα−1
n−k/A

α
n)Dk(u),

Dk(u) =

sin

(

k +
1

2

)

u

sin
u

2

and

Aα
m =

(

m+ α

m

)

=
(α+ 1) · · · (α+m)

m!
.

Define the convolution complex polynomial

sαn(f)(z) =
1

2π

∫ π

−π
f(zeiu)Kα

n (u)du,

z = reix ∈ D, n ∈ N.

If f ∈ A(D) is convex then sαn(f)(z), α ≥ 3, n ∈ N are convex on D.

Remarks. 1) In [16], the concept of n-starlikeness, n = 0, 1, 2, . . ., is in-

troduced by the condition ReD
n+1(f)(z)
Dn(f)(z) > 0, z ∈ D, where D0(f)(z) = f(z),

D1(f)(z) = zf ′(z), Dn+1(f)(z) = D[Dn(f)](z). For n = 0 we recapture the

usual starlikeness and for n = 1 the usual convexity, respectively. It is known

([16, Corollary 3.2]) that f is n-starlike if and only if zf ′(z) is (n−1)-starlike.
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Since the polynomials in Theorem 1.1 preserve the convexity of f , reasoning

by recurrence as in [12], we immediately obtain that Pn(f)(z) preserve the

n-starlikeness, for all n = 0, 1, 2, . . . , i.e.

Re
Dn+1(f)(z)

Dn(f)(z)
> 0, z ∈ D,

implies

Re
Dn+1(Pn(f))(z)

Dn(Pn(f))(z)
> 0, z ∈ D.

2) Regarding the approximation error, in the case of Theorem 1.1 we

have only the rather weak estimate

|f(z)− Pn(f)(z)| ≤ 3ω1

(

f ;
1√
n

)

D

,

(see [4]), while in the case of Theorem 1.2 even a worst estimate can hold.

Some related problems to Theorem 1.1 were solved in [15], but without

connection to improve the approximation rate.

On the other hand, in the very recent papers [4-5], classes of convolution-

type integral complex operators were considered and their approximation

properties regarding rates, global smoothness preservation properties and

some geometric properties were presented. Starting from Jackson kernels,

Beatson [2] constructed new trigonometric kernels about which he observed

(without proof, see [6] for a proof) that are bell-shaped. In [5], convolution-

type complex polynomials based on these Beatson kernels were introduced,

for which global smoothness preservation properties and Jackson-type esti-

mates with respect to ω1

(

f ; 1
n

)

D
were proved. It is also showed in the same

paper that these operators transform the convex univalent functions only

into close-to-convex univalent polynomials.

One of the main questions proposed to be solved by the present paper is

to improve the rate of approximation in [12]. It is then natural to consider

the following.

OPEN QUESTION. Let f ∈ A(D). Can one construct a sequence of

complex convolution polynomials Pn(f)(z), n = 1, 2, . . . , with the degree of
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Pn(f)(z) ≤ n, of the form

Pn(f)(z) =
1

2π

∫ π

−π
f(reit)Qn(x− t)dt =

1

2π

∫ π

−π
f(zeiu)Qn(u)du,

z = reix ∈ D, such that for some p ≥ 1

|f(z)− Pn(f)(z)| ≤ Cωp

(

f ;
1

n

)

D

,

and moreover, if f is starlike on D then all Pn(f)(z) are starlike on D and

if f is convex on D then all Pn(f)(z) are convex on D ?

In this paper we give, among others, some partial answers to it, in the

sense that the above Open Question is solved for some subclasses of starlike

and convex functions. Thus, Section 2 contains new properties of the Beatson

kernels and of the convolution polynomials introduced by [5] and based on

them. In Section 3, we obtain many approximation results through convolu-

tion polynomials based on various trigonometric kernels (of Fejér, Jackson,

Beatson, Cesáro, de la Vallée-Poussin mean), producing Jackson-type ap-

proximation rate or best approximation rate and preserving some properties

in geometric function theory, like the coefficients’ bounds, positive real part,

bounded turn, close-to-convexity, starlikeness, convexity, spirallikeness, α-

convexity. Also, some sufficient conditions for starlikeness and univalence of

analytic functions are preserved.

2. New Properties of Beatson Kernels

Let Kn,r(t) be the Jackson kernels given by

Kn,r(s) =

(

sin ns
2

sin s
2

)2r

and cn,r chosen such that 1
π

∫ π
−π Kn,r(s)ds = cn,r, and let us consider the

Beatson kernels

Bn,r(t) =
n

2πcn,r

∫ t+π/n

t−π/n
Kn,r(s)ds.

Firstly we prove the following lemma, which might be of independent

interest.
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Lemma 2.1. For all n, r ∈ N, n, r ≥ 2 and k ∈ {0, 1, . . . , 2r − 2} we

have
∫ π

0
tkBn,r+1(t)dt ≤ Cn−k.

Proof. If k = 0 then

∫ π

0
tkBn,r+1(t)dt =

∫ π

0
Bn,r+1(t)dt ≤

∫ 2π

0
Bn,r+1(t)dt = π.

Let k ∈ {1, 2, . . . , 2r − 2}. Integrating by parts, we get

∫ π

0
tkBn,r+1(t)dt =

n

2πcn,r+1(k + 1)
πk+1

∫ π+π/n

π−π/n
Kn,r+1(u)du

− n

2πcn,r+1(k + 1)

∫ π

0
tk+1Kn,r+1(t+ π/n)dt

+
n

2πcn,r+1(k + 1)

∫ π

0
tk+1Kn,r+1(t− π/n)dt

=: I1 − I2 + I3.

We will estimate each integral I1, I2, I3. For this purpose, the following

relations (see e.g. [8, p.57]) are useful:

cn,r ≈ n2r−1,

∫ π

0
tkKn,r(t)dt ≈ n2r−1−k.

Firstly we have

I3 ≤ Cn−2r

∫ π

0
tk+1Kn,r+1(t− π/n)dt

= Cn−2r

∫ π−π/n

−π/n
(v + π/n)k+1Kn,r+1(v)dv

= Cn−2r

∫ π−π/n

0
(v + π/n)k+1Kn,r+1(v)dv

+Cn−2r

∫ 0

−π/n
(v + π/n)k+1Kn,r+1(v)dv

≤ 2Cn−2r

∫ π

0
(v + π/n)k+1Kn,r+1(v)dv

≤ Cn−2rn2(r+1)−1−(k+1) = Cn−k.
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Secondly we obtain

I2 ≤ Cn−2r

∫ π

0
tk+1Kn,r+1(t+ π/n)dt

= Cn−2r

∫ π+π/n

π/n
(v − π/n)k+1Kn,r+1(v)dv

≤ Cn−2r

∫ π+π/n

π/n
(v + π/n)k+1Kn,r+1(v)dv

= Cn−2r

∫ π

π/n
(v + π/n)k+1Kn,r+1(v)dv

+Cn−2r

∫ π+π/n

π
(v + π/n)k+1Kn,r+1(v)dv

≤ Cn−2r

∫ π

0
(v+ π/n)k+1Kn,r+1(v)dv+Cn−2r

∫ π+π/n

π
vk+1Kn,r+1(v)dv

≤ Cn−k + Cn−2r

∫ π+π/n

π
vk+1Kn,r+1(v)dv.

Denoting

J2 = Cn−2r

∫ π+π/n

π
vk+1Kn,r+1(v)dv,

by the substitution nv/2 = t, we get

J2 = Cn−2r/n

∫ nπ/2+π/2

nπ/2
(2t/n)k+1(sin(t)/ sin(t/n))2(r+1)dt

= Cn−2r−k−2

∫ nπ/2+π/2

nπ/2
tk+1(sin(t)/ sin(t/n))2(r+1)dt.

But for t ∈ [nπ/2, nπ/2 + π/2], we have t/n ∈ [π/2, π/2 + π/(2n)] ⊂ [0, π],

for all n ≥ 2 and consequently

sin(t/n) ≥ sin(π/2 + π/(2n)) = cos(π/(2n)) ≥ cos(π/4).

From this we obtain, by noting that k ≤ 2r − 2 ≤ 2r + 1,

J2 ≤ Cn−2r−k−2

∫ nπ/2+π/2

nπ/2
tk+1dt ≤ Cn−2r−k−2(nπ/2 + π/2)k+1

≤ Cn−2r−k−2+k+1 = Cn−2r−1 ≤ Cn−k.
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As a conclusion, we get I2 ≤ Cn−k. Finally, making the substitution nu/2 =

v, we have

I1 ≤ Cn−2r

∫ π+π/n

π−π/n
Kn,r+1(u)du

= Cn−2r−1

∫ nπ/2+π/2

nπ/2−π/2
(sin(v)/ sin(v/n))2(r+1)dv

= Cn−2r−1

∫ nπ/2

nπ/2−π/2
(sin(v)/ sin(v/n))2(r+1)dv

+Cn−2r−1

∫ nπ/2+π/2

nπ/2
(sin(v)/ sin(v/n))2(r+1)dv =: J1 + L1.

But v ∈ [nπ/2 − π/2, nπ/2] is equivalent to v/n ∈ [π/2 − π/(2n), π/2], it

follows sin(v/n) ≥ C(v/n) and

J1 ≤ Cn−2r−1

∫ nπ/2

nπ/2−π/2
(sin(v)/(v/n))2(r+1)dv

= Cn

∫ nπ/2

nπ/2−π/2
(sin(v)/v)2(r+1)dv

≤ Cn

∫ nπ/2

nπ/2−π/2
(1/v)2(r+1)dv

≤ Cn(1/((n − 1)π/2)2(r+1) ≤ Cn−2r−1 ≤ Cn−k,

for all n ≥ 2. Also, by the substitution v/n = t, we get

L1 = Cn−2r

∫ π/2+π/(2n)

π/2
(sin(nt)/ sin(t))2(r+1)dt

≤ Cn−2r

∫ π/2+π/(2n)

π/2
(1/ sin(t))2(r+1)dt

≤ Cn−2r(π/(2n))(1/ sin(π/2 + π/(2n)))2(r+1)

≤ Cn−2r−1(1/ cos(π/(2n)))2(r+1) ≤ Cn−2r−1 ≤ Cn−k,

since cos(π/(2n)) ≥ cos(π/4), for all n ≥ 2.

Collecting all the estimates for I1, I2 and I3, we get that I1 − I2 + I3 ≤
Cn−k, which proves the lemma. �
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As a consequence, we obtain the following:

Corollary 2.2. Let f ∈ A(D). The convolution polynomials defined by

Pn(f)(z) =
1

π

∫ π

−π
f(reit)Bm,r(x− t)dt =

1

π

∫ π

−π
f(zeiu)Bm,r(u)du,

z = reix ∈ D, m = [n/r] + 1, satisfy degree Pn(f)(z) ≤ n, and for all r ≥ 3

we have

|f(z)− Pn(f)(z)| ≤ Cω2

(

f ;
1

n

)

∂D

,

for all z ∈ D and all n ∈ N, n ≥ 2.

Here

ωp(f ; δ)∂D = sup{|∆p
uf(e

ix)|; |x| ≤ π, |u| ≤ δ},

with ∆p
ug(x) =

∑p
k=0(−1)p−k

(p
k

)

g(x+ ku).

Proof. Let r ≥ 3 and n ≥ 2 be fixed. Since Bm,r(t) is even, reasoning as

in the proof of Theorem 2 in [8, p.56] (see also [4, p.422]) we easily obtain

f(z)− Pn(f)(z) =

∫ π

0
[2f(z)− f(zeit)− f(ze−it)]Bm,r(t)dt.

By the maximum modulus principle we can get on |z| = 1, and by passing

to absolute value, (as in [8, p.56])

|f(z)− Pn(f)(z)| ≤ ω2

(

f ;
1

n

)

∂D

∫ π

0
(nt+ 1)2Bm,r(t)dt ≤ Cω2

(

f ;
1

n

)

∂D

,

where we also applied Lemma 2.1.

Indeed, for |z| = 1 by the above identity we get

|f(z)− Pn(f)(z)| =

∣

∣

∣

∣

∫ π

0
[2f(z)− f(zeit)− f(ze−it)]Bm,r(t)dt

∣

∣

∣

∣

≤
∫ π

0
|2f(z) − f(zeit)− f(ze−it)|Bm,r(t)dt.
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But

|2f(z)− f(zeit)− f(ze−it)| ≤ ω2 (f ; t)∂D = ω2

(

f ;
nt

n

)

∂D

≤ C(nt+ 1)2ω2

(

f ;
1

n

)

∂D

,

which together with Lemma 2.1 proves the corollary. �

Now, if we define, as in [5], the iterative Beatson kernels by recurrence

as Bn,r,1(t) := Bn,r(t),

Bn,r,2(t) =
n

2π

∫ t+π/n

t−π/n
Bn,r,1(s)ds, . . . , Bn,r,p(t)

=
n

2π

∫ t+π/n

t−π/n
Bn,r,p−1(s)ds,

p = 2, 3, . . . , then the following generalization of Lemma 2.2 holds.

Lemma 2.3. For all n, r, p ∈ N with r ≥ 2, n ≥ p + 1 and k ∈

{0, 1, . . . , 2r + 2p − 4}, we have

∫ π

0
tkBn,r+p,p(t)dt ≤ Cn−k.

Proof. For p = 1 we get Lemma 2.1. In what follows, for simplicity we

prove the case p = 2. We have

Bn,r,2(t) =
n

2π

∫ t+π/n

t−π/n
Bn,r(s)ds =

n2

(2π)2cn,r

∫ t+π/n

t−π/n

∫ x+π/n

x−π/n
Kn,r(s)dsdx.

If k = 0 then obviously

∫ π

0
tkBn,r+2,2(t)dt ≤

∫ 2π

0
tkBn,r+2,2(t)dt ≤ π.
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Let k = 1, 2, . . . , 2r. Integrating twice by parts, by simple calculation we get

∫ π

0
tkBn,r+2,2(t)dt

=Bn,r+2,2(π)
πk+1

k + 1
−B′

n,r+2,2(π)
πk+2

(k + 1)(k + 2)

+
1

(k + 1)(k + 2)

∫ π

0
tk+2B′′

n,r+2,2(t)dt

=
n2πk+1

(2π)2(k + 1)cn,r+2

∫ π+π/n

π−π/n

∫ x+π/n

x−π/n
Kn,r+2(s)dsdx

− n2πk+2

(2π)2(k + 1)(k + 2)cn,r+2

[

∫ π+2π/n

π
Kn,r+2(s)ds−

∫ π

π−2π/n
Kn,r+2(s)ds

]

+
n2

(2π)2(k + 1)(k + 2)cn,r+2

∫ π

0
tk+2[Kn,r+2(t+ 2π/n)− 2Kn,r+2(t)

+Kn,r+2(t− 2π/n)dt] := I1 − I2 + I3.

Taking into account that

cn,r ≈ n2r−1,

∫ π

0
tkKn,r(t)dt ≈ n2r−1−k,

we immediately obtain

n2

cn,r+2
≈ 1/n2r+1,

∫ π

0
tk+2Kn,r+2(t)dt ≈ n2r+1−k.

Reasoning exactly as in the proof of Lemma 2.1 (as for I2 and I3 there),

from the above relations we immediately get I3 ≤ Cn−k.

Again, reasoning as in the proof of Lemma 2.1 (as for I1 there), we

obtain I2 ≤ Cn−k.

It remains to estimate the integral

J =

∫ π+π/n

π−π/n

∫ x+π/n

x−π/n
Kn,r+2(s)dsdx.
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By the mean value theorem, there exists ξ ∈ [π − π/n, π + π/n], such that

J =
2π

n

∫ ξ+π/n

ξ−π/n
Kn,r+2(s)ds

=
2π

n

∫ ξ

ξ−π/n
Kn,r+2(s)ds+

2π

n

∫ ξ+π/n

ξ
Kn,r+2(s)ds

=
2π

n2

∫ nξ/2

nξ/2−π/2
[sin(t)/ sin(t/n)]2(r+2)dt

+
2π

n2

∫ nξ/2+π/2

nξ/2
[sin(t)/ sin(t/n)]2(r+2)dt

:= J1 + J2.

We get

J1 =
2π

n

∫ ξ/2

ξ/2−π/(2n)
[sin(nv)/ sin(v)]2(r+2)dv

and

J2 =
2π

n

∫ ξ/2+π/(2n)

ξ/2
[sin(nv)/ sin(v)]2(r+2)dv.

But | sin(nv)| ≤ 1 and for all π − π/n ≤ ξ ≤ π + π/n, it follows 0 ≤
π/2 − π/n ≤ ξ/2 − π/(2n) ≤ ξ/2 ≤ π/2 + π/(2n) < π, 0 < π/2 − π/n ≤
ξ/2 ≤ ξ/2 + π/(2n) ≤ π/2 + π/n < π.

Therefore, for n ≥ 3, |1/ sin(v)| is bounded for both integrals J1 and J2,

which immediately implies J1 ≤ Cn−2, J2 ≤ Cn−2.

But

I1 =
n2

(2π)2
πk+1

(k + 1)cn,r+2
J

≤ Cn−2n−2r−1 = Cn−2r−3 ≤ Cn−k,

because k ≤ 2r ≤ 2r + 3.

As a conclusion we get the statement of Lemma 2.3 for the p = 2 case.

For general p, the proof is similar, reasoning by recurrence and integrating

p-times by parts the integral
∫ π
0 tkBn,r+p,p(t)dt. �

As an immediate consequence, we obtain the following.
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Corollary 2.4. Let f ∈ A(D) and p ∈ N be fixed. The convolution

polynomials defined by

Pn,r,p(f)(z) =
1

π

∫ π

−π
f(zeiu)Bm,r,p(u)du,

z ∈ D, m = [n/r] + 1, satisfy degree Pn,r,p(f)(z) ≤ n, and moreover, for all

m, r ≥ p+ 2, z ∈ D, we have

|f(z)− Pn,r,p(f)(z)| ≤ Cω2

(

f ;
1

n

)

∂D

.

Proof. It is similar to the proof of Corollary 2.2, taking into account

Lemma 2.3 and the fact that Bm,r,p(u) are even. �

3. Approximation Preserving Geometric Properties

In this section, we consider approximations that preserve geometric

properties of analytic functions, like the coefficients’ bounds, real part posi-

tivity, bounded turn, close-to-convexity, starlikeness, convexity, α-convexity,

spiralikeness and some sufficient conditions of starlikeness and univalence.

The rates of approximation are of Jackson-type or of best approximation

kind.

Concerning the coefficients of convolutions, we have the following

Theorem 3.1. (i) If f(x) =
∑

∞

k=0 akz
k is analytic on D and On(t) =

1
2 +

∑mn

k=1 ρk,n cos(kt), then for Pn(f)(z) =
1
π

∫ π
−π f(ze

it)On(t)dt, we have

Pn(f)(z) = a0 +
mn
∑

k=1

akρk,nz
k

If f(z) = z +
∑

∞

k=0
ak
zk
, 0 < |z| < 1 is meromorphic, then

Pn(f)(z) = ρ1,nz + a0 +
mn
∑

p=1

apρp,n
zp

.

(ii) If On(f) =
1
2 +

∑mn

k=1 ρk,n cos(kt) ≥ 0, ∀t ∈ [0, π] and 1
π

∫ π
−π On(t)dt
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= 1, then

|ρk,n| ≤ 1, for all k ∈ {1, . . . ,mn.}

(iii) Let Fn(t) =
1
2n

(

sin nt

2

sin t

2

)2

be the Fejér kernel, Vn(t) = 2F2n(t)−Fn(t)

the de la Vallée-Poussin kernel,

Jn(t) =
3

2n(2n2 + 1)

(

sin nt
2

sin t
2

)4

the Jackson kernel, and

Bn,2,1(t) := Bn,2(t) =
n

2π

∫ t+π/n

t−π/n
Jn(t)dt,

Bn,2,p(t) =
n

2π

∫ t+π/n

t−π/n
Bn,2,p−1(t)dt, p = 2, 3, . . . ,

the Beatson kernels. We have:

Fn(t) =
1

2
+

n−1
∑

k=1

n− k

n
cos(kt),

Vn(t) =
1

2
+

n
∑

k=1

cos(kt) +

2n
∑

k=n+1

2n− k

n
cos(kt),

Jn(t) =
1

2
+

2n−2
∑

k=1

λk,n cos(kt), where

λk,n =
4n3 − 6k2n+ 3k3 − 3k + 2n

2n(2n2 + 1)
, if 1 ≤ k ≤ n,

λk,n =
(k − 2n)− (k − 2n)3

2n(2n2 + 1)
, if n ≤ k ≤ 2n− 2,

and for p = 1, 2, . . . ,

Bn,2,p(t) =
1

2
+

2n−2
∑

k=1

[ n

kπ
sin(kπ/n)

]p
· λk,n cos(kt),

where λk,n are the coefficients in Jn(t).
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Proof. (i) Reasoning exactly as in the proof of Theorem 1, (ii) in [4],

the analytic case is immediate.

For the meromorphic case, we have

f(zeit)On(t) =
[

zeit +

∞
∑

k=0

ak
zk

· e−ikt
][1

2
+

mn
∑

p=1

ρp,n cos(pt)
]

=
[

zeit +

∞
∑

k=0

ak
zk

e−ikt
]{1

2
+

mn
∑

p=1

ρp,n · 1
2
[eipt + e−ipt]

}

=
[

zeit +
∞
∑

k=0

ak
zk

e−ikt
]{1

2
+

1

2

mn
∑

p=1

ρp,ne
ipt +

1

2

mn
∑

p=1

ρp,ne
−ipt

}

=
z

2
eit +

z

2

mn
∑

p=1

ρp,ne
it(p+1) +

z

2

mn
∑

p=1

ρp,ne
it(1−p) +

1

2

∞
∑

k=0

ak
zk

e−ikt

+
1

2

∞
∑

k=0

mn
∑

p=1

akρp,n
zk

eit(p−k) +
1

2

∞
∑

k=0

mn
∑

p=1

akρp,n
zk

e−it(k+p).

Integrating from −π to π and reasoning as in [4, Theorem 1, (ii)], we

immediately get

1

π

∫ π

−π
f(zeit)On(t)dt = ρ1,nz +

[

a0 +

mn
∑

p=1

apρp,n
zp

]

.

(ii) We have

1

π

∫ π

−π
cos(jt)On(t)dt = ρj,n, for all j ∈ {1, . . . ,mn},

which implies

|ρj,n|=
1

π
|
∫ π

−π
cos(jt)On(t)dt|≤

1

π

∫ π

−π
| cos jt|On(t)dt≤

1

π

∫ π

−π
On(t)dt = 1.

(iii) The representation for Fn(t) is well-known (see e.g. [3, p.339]).
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Then,

Vn(t) = 2F2n(t)− Fn(t)

= 2
[1

2
+

2n
∑

k=1

2n− k

2n
cos(kt)

]

−
[1

2
+

n
∑

k=1

n− k

n
cos(kt)

]

=
1

2
+

n
∑

k=1

[2n − k

n
− n− k

n

]

cos(kt) +

2n
∑

k=n+1

2n− k

n
cos(kt)

=
1

2
+

n
∑

k=1

cos(kt) +

2n
∑

k=n+1

2n − k

n
cos(kt).

Concerning the Jackson kernel Jn(t), by [9, Lemma 7, p.25-26], we have

(3!)24−4−1

(

sin nt
2

sin t
2

)4

=
1

2
r0,n +

2n−2
∑

k=1

rk,n cos(kt),

where

rk,n =

2
∑

ν=1

(−1)ν+1

(

4

2− ν

)

(k − νn+ 1)(k − νn)(k − νn− 1),

if 0 ≤ k ≤ n, and

rk,n = −(k − 2n+ 1)(k − 2n)(k − 2n − 1), if n ≤ k ≤ 2n− 2.

By (k− νn+1)(k− νn)(k− νn− 1) = (k− νn)3− (k− νn) and a simple

calculation we have

(

sin nt
2

sin t
n

)4

=
r0,n
6

+

2n−2
∑

k=1

rk,n
3

cos(kt),

where r0,n = 2n(2n2 + 1), rk,n = 4(k − n)3 − (k − 2n)3 − 3k + 2n = 4n3 −

6k2n + 3k3 − 3k + 2n, if 1 ≤ k ≤ n, and rk,n = (k − 2n) − (k − 2n)3 if

n ≤ k ≤ 2n− 2.
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Finally, by [6, relation (3.2) and Lemma 3.3,(i)] it follows

Bn,2,1(t) =
1

2
+

2n−2
∑

k=1

[ n

2π
sin(

2π

n
)
]

λk,n cos(kt),

and by iteration,

Bn,2,p(t) =
1

2
+

2n−2
∑

k=1

[ n

2π
sin

2π

n

]p
λk,n cos(kt),

which proves the theorem. �

Remark. Note that while the kernels Fn(t), Jn(t) and Bn,2,p(t) are ≥ 0,

the kernel Vn(t) is not nonnegative on [0, π], but satisfying 1
π

∫ π
−π Vn(k)dt =

1. However, by Theorem 3.1, (iii), it easily follows from the expression of

Vn(t) =
1
2 +

∑2n
k=1 µk,n cos(kt), that we have 0 ≤ µk,n ≤ 1.

Also, if

Bn,r,1(t) := Bn,r(t) =
n

2π

∫ t+π

n

t−π

n

cn,r

(

sin nt
2

sin t
2

)2r

dt,

Bn,r,p(t) =
n

2π

∫ t+π

n

t−π

n

Bn,r,p−1(t)dt, where
1

π

∫ π

−π
cn

(

sin nt
2

sin t
2

)2r

dt = 1,

then Bn,r,p(t) =
1
2 +

∑nr−n
k=1 λ

(p)
k,n cos(kt) ≥ 0 and 1

π

∫ π
−π Bn,r,p(t)dt = 1, i.e. by

Theorem 3.1, (ii), |λ(p)
k,n| ≤ 1, for all k ∈ {0, . . . , nr − n}, p ≥ 1.

Concerning the preservation of coefficients’ bounds, we present

Theorem 3.2. Let f(z) =
∑

∞

k=0 ak(f)z
k be analytic in D.

(i) If On(t) =
1
2 +

∑mn

k=1 ρk,n cos(kt) ≥ 0 and 1
π

∫ π
−π On(t)dt = 1, then for

Pn(f)(z) =
1

π

∫ π

−π
f(zeit)On(t)dt =

mn
∑

k=0

ak(Pn(f))z
k,

we have |ak(Pn(f))| ≤ |ak(f)|, for all n ∈ N, k ∈ {0, . . . ,mn}.
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(ii) Denoting

Vn(f)(z) =
1

π

∫ π

−π
f(zeit)Vn(t)dt =

2n
∑

k=0

ak(Vn(f))z
k,

where Vn(t) is the kernel in the statement of Theorem 3.1, (iii), we have

|ak(Vn(f))| ≤ |ak(f)|, for all n ∈ N, k ∈ {0, . . . , 2n}.

Proof. It is immediate from Theorem 3.1,(i),(ii) and the Remark after

the proof of Theorem 3.1. �

Remark. We recall that according to [4], for f ∈ A(D) we get

||f − Vn(f)||D ≤ 4En(f), n = 1, 2, . . . ,

while for On(t) = Jn(t), n ∈ N, or On(t) = Bn,r,p(t), n, r ≥ p+ 2, p ∈ N, (see

Lemma 2.3) denoting Pn(f)(z) =
1
π

∫ π
−π f(ze

it)On(t)dt, we have

‖f − Pn(f)‖D ≤ Cω2(f ;
1

n
)∂D ,

where C > 0 is independent of f and n.

Now, let us denote by S1 = {f : D → C; f(z) = z + a2z
2 + . . . , analytic

in D, satisfying
∑

∞

k=2 k|ak| ≤ 1},

S2 = {f : D → C; f(z) = a1z + a2z
2 + . . . , analytic in D, satisfying

|a1| ≥
∑

∞

k=2 |ak|}.

According to e.g. [10, p.97, Exercise 4.9.1], if f ∈ S1 then |zf ′(z)
f(z) − 1| <

1, z ∈ D and therefore f is starlike (univalent) on D.

Also, according to [1, p.22], if f ∈ S2 then f is starlike (and univalent)in

D. Therefore S1, S2 ⊂ S∗(D) -the class of univalent starlike functions on D.

The next theorem shows that some approximation convolution polyno-

mials preserve the classes S1 and S2.

Theorem 3.3. (i) Let On(t) be Jn(t), n ∈ N, in Theorem 3.1,(iii) or

Bn,r,p(t), n, r ≥ p + 2, p ∈ N, (see Remark after the proof of Theorem 3.1)
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and denote Pn(f)(z) =
∫ z
0 Qn(t)dt, Qn(z) = 1

π

∫ π
−π f

′(zeit)On(t)dt. Then

f ∈ S1 implies Pn(f) ∈ S1, and if, in addition, f ′ is continuous on D, then

‖f − Pn(f)‖
D

≤ Cω2(f
′;
1

n
)∂D ,

where C > 0 is independent of f and n.

(ii) If Vn(f)(z) =
1
π

∫ π
−π f(ze

it)Vn(t)dt, where Vn(t) is the kernel in the

statement of Theorem 3.1, (iii), then f ∈ S1 implies Vn(f) ∈ S1, for all n ∈ N

and if, in addition, f is continuous on D, then

‖f − Vn(f)‖D ≤ 4En(f), n = 1, 2, . . . , .

(iii) For Vn(f)(z) defined above, f ∈ S2 implies Vn(f) ∈ S2, for all

n ∈ N.

(iv) If the meromorphic function f(z) = z +
∑

∞

k=0
ak(f)
zk

is univalent on

{|z| > 1}, then for

Pn(f)(z) =
1

π

∫ π

−π
f(zeit)On(t)dt = ρ1,nz + a0 +

mn
∑

p=1

ap(f)ρp,n
zp

,

where

On(t) =
1

2
+

mn
∑

p=1

ρp,n cos(pt)

is any from Jn(t), Vn(t), n ∈ N or Bn,r,p(t), n, r ≥ p+ 2, p ∈ N we have,

∞
∑

k=1

k · |ak(Pk(f))|2 ≤ 1, with ak(Pn(f)) = ak(f) · ρk,n.

Proof. (i) Firstly, obviously Pn(f)(0) = P ′

n(f)(0)− 1 = 0 and by [4] we

get (see also Lemma 2.3, for Bn,r,p(t))

|f(z)− Pn(f)(z)| = |
∫ z

0
f ′(t)dt−

∫ z

0
Qn(t)dt|

≤ |z| · ‖f ′ −Qn‖D ≤ ‖f ′ −Qn‖D ≤ Cω2(f
′;
1

n
)∂D .
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Let On(t) = 1
2 +

∑mn

k=1 ρk,n cos(kt) and f(z) = z + a2z
2 + · · ·+, i.e.

f ′(z) = 1 + 2a2z + 3a3z
2 + · · · + . By Theorem 3.1 we have Qn(f)(z) =

1 + 2a2ρ1,nz + 3a3ρ2,nz
2 + · · ·+, which implies Pn(f)(z) =

∫ z
0 Qn(t)dt =

z+a2ρ1,nz
2+a3ρ2,nz

3+ · · ·+, therefore ak(Pn(f)) = ak(f)ρk−1,n. Therefore,

mn
∑

k=2

k|ak(Pn(f))| =
mn
∑

k=2

k · |ak(f)| · |ρk−1,n| ≤
∞
∑

k=2

k|ak(f)| ≤ 1

(because |ρk−1,n| ≤ 1), which implies that Pn(f) ∈ S1.

(ii) Firstly and obviously Vn(f)(0) = 0. Let f ∈ S1, f(z) = z+a2z
2+. . . .

By Theorem 3.1, (i) and (iii), we get Vn(f)(z) = z + A2z
2 + · · ·+, (here

A2 = a2 if n ≥ 2) i.e. V ′

n(f)(0) = 1.

By the Remark after the proof of Theorem 3.1, we get

2n
∑

k=2

k|ak(Vn(f)| ≤
∞
∑

k=2

k|ak(f)| ≤ 1,

i.e. Vn(f) ∈ S1.

By [4], for f continuous on D we have

‖f − Vn(f)‖D ≤ 4En(f).

(iii) Let f ∈ S2, f(z) =
∑

∞

k=1 ak(f)z
k, where |a1(f)| ≥

∑

∞

k=2 |ak(f)|.
By Theorem 3.1 we have

Vn(f)(z) = a1(f)z +

2n
∑

k=2

ρk,nan(f) · zk, 0 ≤ ρk,n ≤ 1,

therefore

mn
∑

k=2

|ak(Vn(f))| =
mn
∑

k=2

|ak(f)| · |ρk,n| ≤
∞
∑

k=2

|ak(f)| ≤ |a1(f)| = a1(Vn(f)),

which proves Vn(f) ∈ S2.

(iv) By the Area theorem (see e.g. [7]) we have for f,
∑

∞

k=1k|ak(f)|2≤1.
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Then,

mn
∑

k=1

k · |ak(Pn(f))|2 =
mn
∑

k=1

k · |ak(f)|2 · |ρk,n|2 ≤
∞
∑

k=1

k · |ak(f)|2 ≤ 1,

which proves the theorem. �

Let us denote by P = {f : D → C; f is analytic on D, f(0) = 1,

Re[f(z)] > 0, z ∈ D}, S3 = {f : D → C; f is analytic on D, f(0) =

f ′(0) − 1 = 0, |f ′′(z)| ≤ 1, z ∈ D} and by R = {f : D → C; f is analytic on

D, f(0) = f ′(0)− 1 = 0, Ref ′(z) > 0, z ∈ D}.

It is well-known that P is the class of analytic functions with positive

real part and R is called the class of functions with bounded turn (because

f ∈ R is equivalent to |arg f ′(z)| < π
2 , z ∈ D). It is also known that f ∈ R

implies the univalency of f on D.

Also, by [11] it follows that f ∈ S3 implies that f is starlike, univalent

on D.

Regarding the preservation of the classes P,R and S3 through convolu-

tion polynomials, we present

Theorem 3.4. Let On(t) be Jn(t), n ∈ N or Bn,r,p(t), n, r ≥ p + 2,

p ∈ N.

(i) Denote

Pn(f)(z) =

∫ z

0
On(t)dt,Qn(z) =

1

π

∫ π

−π
f ′(zeit)On(t)dt.

We have Pn(R) ⊂ R, Pn(S3) ⊂ S3 and if, in addition, f ′ is continuous

on D, then

‖f − Pn(f)‖D ≤ Cω2(f
′;
1

n
)∂D ,

where C > 0 is independent of f and n.

(ii) Denoting

Pn(f)(z) =
1

π

∫ π

−π
f(zeit)On(t)dt,
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we have Pn(P) ⊂ P and if, in addition, f is continuous on D, then

‖f − Pn(f)‖D ≤ Cω2(f ;
1

n
)∂D ,

where C > 0 is independent of f and n.

Proof. (i) The error estimate follows as in the proof of Theorem 3.3,

(i). Also, we immediately get Pn(f)(0) = P ′

n(f)(0) − 1 = 0. Let f(z) =

U(r cos t, r sin t) + iV (r cos t, r sin t), z = reit ∈ D.

By f ′(z) = ∂U
∂x (r cos t, r sin t)+i∂V∂x (r cos t, r sin t), the hypothesis implies

∂U
∂x (r cos t, r sin t) > 0, for all z = reit ∈ D.

But

P ′

n(f)(z) = Qn(f)(z) =
1

π

∫ π

−π
f ′(zeiu)On(u)du

=
1

π

∫ π

−π

∂U

∂x
(r cos(t+ u), r sin(t+ u))On(u)du

+i
1

π

∫ π

−π

∂V

∂x
(r cos(t+ u), r sin(t+ u))On(u)du,

which implies

Re[P ′

n(f)(z)] =
1

π

∫ π

−π

∂U

∂x
(r cos(t+ u), r sin(t+ u)) · On(u)du > 0,

because On(u) > 0 for all u ∈ [−π, π] excepting a finite number of points.

Also, |P ′′

n (f)(z)| = 1
π |

∫ π
−π e

itf ′′(zeit)On(t)dt| ≤ 1
π

∫ π
−π |f ′′(zeit)|On(t)dt

≤ 1, z ∈ D, for f ∈ S3.

(ii) For f = U + iV, we easily get

Re[Pn(f)(z)] =
1

π

∫ π

−π
U(r cos(t+ u), r sin(t+ u))On(u)du, z = reit ∈ D,

which by the hypothesis U(r cos u, r sinu) > 0, for all z = reiu ∈ D, implies

Re[Pn(f)(z)] > 0, z ∈ D,

The error estimate is immediate by [4] for the Jn(t) case and by Lemma

2.3 for Bn,r,p(t). �
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Remarks. 1) Theorem 3.4,(i) can be restated as follows : if |arg f ′(z)| <
π
2 , z ∈ D, then

|argP ′

n(f)(z)| <
π

2
, z ∈ D

(and Pn(f)(z) is univalent on D).

2) The convolution polynomials Vn(f)(z) based on the kernel Vn(t) do

not satisfy Theorem 3.4, because Vn(t) is not nonnegative on [0, π].

Now, let M > 1 and denote SM = {f : D → C; f is analytic on D,

f(0) = f ′(0)− 1 = 0, |f ′(z)| < M , z ∈ D}.

According to e.g. [10, p.111, Exercise 5.4.1], f ∈ SM implies that f is

univalent on D 1

M

= {z ∈ C; |z| < 1
M }.

Concerning the preservation of the class SM , we present

Theorem 3.5. Let On(t) be Jn(t), n ∈ N, or Bn,r,p(t), n, r≥p+2, p∈N.

Denote

Pn(f)(z) =

∫ z

0
Qn(t)dt, Qn(z) =

1

π

∫ π

−π
f ′(zeit)On(t)dt.

We have Pn(SM ) ⊂ SM and if, in addition, f ′ is continuous on D, then

‖f − Pn(f)‖
D

≤ Cω2(f
′;
1

n
)∂D .

Proof. We have Pn(f)(0) = P ′

n(f)(0)− 1 = 0,

|P ′

n(f)(z)| =
1

π
|
∫ π

−π
f ′(zeit)On(t)dt| ≤

1

π

∫ π

−π
|f ′(zeit)|On(t)dt < M,

z ∈ D, if |f ′(z)| < M, z ∈ D. �

The next result concerning the convergence of the derivatives of convo-

lution polynomials is useful.

Theorem 3.6. Let

On(t) =
1

2
+

mn
∑

k=1

ρk,n cos(kt) ≥ 0, t ∈ [0, π],
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1
π

∫ π
−π On(t)dt = 1 and let us denote Pn(f)(z) = 1

π

∫ π
−π f(ze

it)On(t)dt. If f

is analytic on D with f ′ and f ′′ continuous on D, respectively, then

‖f ′ − P ′

n(f)‖D ≤ Cω1(f
′; (1− ρ1,n)

1/2)
D
+ ‖f ′‖

D
· |1− ρ1,n|, n ∈ N

and

‖f ′′ − P ′′

n (f)‖D ≤ Cω1(f
′′; (1− ρ1,n)

1/2)
D
+ ‖f ′′‖

D
· |1− ρ2,n|, n ∈ N,

where C > 0 is a constant independent of f and n.

Proof. We have

P ′

n(f)(z) =
1

π

∫ π

−π
f ′(zeit) · eitOn(t)dt,

where

1

π

∫ π

−π
eitOn(t)dt =

1

π

∫ π

−π
cos tOn(t)dt = ρ1,n

(see the proof of Theorem 3.1, (ii)).

Reasoning as in the proof of Theorem 1, (i) in [5], we get

|P ′

n(f)(z)− f ′(z)| = |P ′

n(f)(z)− ρ1,nf
′(z) + ρ1,nf

′(z)− f ′(z)|

= | 1
π

∫ π

−π
eitOn(t)[f

′(zeit)− f ′(z)]dt+ f ′(z)[ρ1,n − 1]|

≤ 1

π

∫ π

−π
On(t)|f ′(zeit)− f ′(z)|dt + ‖f ′‖

D
· |1− ρ1,n|

≤ Cω1(f
′; (1− ρ1,n)

1/2)
D
+ ‖f ′‖

D
· |1− ρ1,n|, z ∈ D.

Also, by

P ′′

n (f)(z) =
1

π

∫ π

−π
e2itOn(t) · f ′′(zeit)dt

and

1

π

∫ π

−π
e2itOn(t)dt =

1

π

∫ π

−π
cos(2t)On(t)dt = ρ2,n,

we get

P ′′

n (f)(z)− f ′′(z) = P ′′

n (f)(z)− ρ2,nf
′′(z) + ρ2,nf

′′(z)− f ′′(z),
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and reasoning as abowe, we arrive at

‖P ′′

n (f)− f ′′‖
D

≤ Cω1(f
′′; (1 − ρ1,n)

1/2)
D
+ ‖f ′′‖

D
· |1− ρ2,n|. �

Remarks. 1) Let On(t) be the Jackson kernel Jn(t), for example.

Then, by Theorem 3.1, (iii), we get

ρ1,n =
4n3 − 4n

2n(2n2 + 1)
=

2n2 − 2

2n2 + 1
, 1− ρ1,n =

3

2n2 + 1

and

ρ2,n =
4n3 − 22n+ 18

2n(2n2 + 1
, 1− ρ2,n =

24n− 18

4n3 + 2n
=

12n − 9

2n3 + n
,

i.e. the order of convergence to zero of |1− ρ1,n| and |1− ρ2,n| is 1
n2 .

Similar estimates of |1− ρ1,n| and |1− ρ2,n| hold for the Beatson kernels

Bn,r,p(t), n, r ≥ p+ 2 (see [6, Lemma 3.3]).

2) It is easy to show that Pn(f)(0) = 0, while P ′

n(f)(0) = ρ1,n. Supposing

ρ1,n 6= 0, the new polynomials,

Rn(f)(z) =
1

ρ1,n
· Pn(f)(z) =

1

ρ1,n
· 1
π

∫ π

−π
f(zeit)On(t)dt

have obviously the properties Rn(f)(0) = R′

n(f)(0)− 1 = 0. Also, for z ∈ D

and f ∈ A(D) we have

|Rn(f)(z)− f(z)| = | 1

ρ1,n
Pn(f)−

1

ρ1,n
f(z)+

1

ρ1,n
f(z)−f(z)|

≤ 1

|ρ1,n|
· ‖Pn(f)− f‖

D
+ ‖f‖

D
· | 1

ρ1,n
− 1|.

In the case when On(t) is Jn(t), we obtain

‖Rn(f)− f‖
D

≤ 2n2 + 1

2n2 − 2
· ‖f − Pn(f)‖D + ‖f‖

D
|2n

2 + 1

2n2 − 2
− 1|

≤ 9

6
· Cω2(f ;

1

n
)∂D + ‖f‖

D
· 3

2n2 − 2

≤ C[ω2(f ;
1

n
)∂D + ‖f‖

D
· 1

n2
], n ≥ 2,
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i.e ‖Rn(f)− f‖
D

≤ C[ω2(f ;
1
n)∂D + ‖f‖

D
· 1
n2 ], where C > 0 is independent

of f and n.

Similar estimate holds when On(t) is

Bn,r,p(t), n, r ≥ p+ 2, p ∈ N.

3) Note that for On(t) = Vn(t), Theorem 3.6 does not hold because Vn(t)

is not nonnegative.

Now, let us recall some classical definitions in geometric function theory.

Let

S∗(D)={f : D → C; f is analytic on D, f(0) = f ′(0)− 1 = 0,

Re[
zf ′(z)

f(z)
] > 0,∀z ∈ D},

K(D)={f : D → C; f is analytic on D, f(0) = f ′(0)− 1 = 0,

Re[
zf ′′(z)

f ′(z)
] + 1 > 0,∀z ∈ D},

C(D)={f : D → C; f is analytic on D, f(0) = f ′(0)− 1 = 0,

and there exists h ∈ S∗(D) such that Re[
zf ′(z)

h(z)
] > 0,∀z ∈ D},

Mα(D)={f : D → C : f is analytic on D, f(0)=f ′(0)−1=0,
f(z)f ′(z)

z
6=0,

∀z ∈ D and Re[(1− α)
zf ′(z)

f(z)
+ α(z

f ′′(z)

f ′(z)
+ 1)] > 0,∀z ∈ D},

where α ∈ R, and

Sγ(D)={f : D → C; f is analytic on D, f(0) = f ′(0)− 1 = 0, f(z) 6= 0,

∀z ∈ D and Re[eiγ
zf ′(z)

f(z)
] > 0,∀z ∈ D}, where γ ∈ (

−π

2
,
π

2
).

It is well-known that S∗(D),K(D), C(D),Mα(D) and Sγ(D) are called

the classes of starlike, convex, close-to-convex, α-convex and γ-spirallike

functions, respectively. Note that all are subclasses of univalent functions.

In what follows we consider preservation by convolution polynomials, of

the corresponding subclasses

S∗(D), K(D), C(D), Mα(D) and Sγ(D).
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We present:

Theorem 3.7. Let On(t) =
1
2 +

∑mn

k=1 ρk,n cos(kt) be Jn(t), n ∈ N or

Bn,r,p(t), n, r ≥ p+ 2, p ∈ N.

(i) For f ∈ C(D), let us define

Pn(f)(z) =
1

π

∫ π

−π
f(zeit)On(t)dt,Rn(f)(z) =

1

ρ1,n
Pn(f)(z).

Then

‖Rn(f)− f‖
D

≤ C[ω2(f ;
1

n
)∂D + ‖f‖

D
· 1

n2
],

where C > 0 is independent of f and n and there exists n0 = n0(f), such

that Rn(f) ∈ C(D) for all n ≥ n0.

(ii) For f(z) = zg(z), let us define

Pn(f)(z) = z · 1
π

∫ π

−π
g(zeit)On(t)dt.

Then,

‖Pn(f)− f‖
D

≤ Cω1(f ;
1

n
)
D
+ ‖f‖

D
· 1
n

and there exists n0 = n0(f) such that for all n ≥ n0 we have

Pn[S
∗(D)] ⊂ S∗(D), Pn[Mα(D)] ⊂ Mα(D) and Pn[Sγ(D)] ⊂ Sγ(D).

Proof. (i) Let f ∈ C(D). By Remark 2 of Theorem 3.6, we get Rn(f)(0) =

R′

n(f)(0)− 1 = 0 and the error estimate of ‖f −Rn(f)‖D.

There exists h ∈ S∗(D), i.e. univalent on D, such that

Re[
zf ′(z)

h(z)
] > 0, ∀z ∈ D.

Denote g(z) = z
h(z) . Because h(0) = 0 and h is univalent, it follows h(z) 6=

0,∀z ∈ D, z 6= 0 and g(z) is analytic on D (with g(z) 6= 0,∀z ∈ D).
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Therefore, g(z) is continuous on D, which implies that there existsM > 0

with |g(z)| ≤ M,∀z ∈ D.

But by Theorem 3.6 and by ρ1;n → 1, it follows that R′

n(f) → f ′,

uniformly on D, i.e. g(z)·R′

n(f)(z) → g(z)f ′(z) uniformly on D. This implies

that

Re[g(z)R′

n(f)(z)] → Re[g(z)f ′(z)] > 0,

uniformly on D, i.e. there exists n0 = n0(f), such that

Re[g(z)R′

n(f)(z)] > 0,

for all n ≥ n0, i.e.

Rn(f)(z) ∈ C(D),

for all n ≥ n0.

(ii) Let f ∈ S∗(D). Because f(0) = 0 and f is univalent on D, it follows

f(z) 6= 0, for all z ∈ D, z 6= 0, i.e. f(z) = z · g(z), z ∈ D, where g is analytic

in D and g(z) 6= 0, for all z ∈ D.

Denote Qn(g)(z) =
1
π

∫ π
−π g(ze

it)On(t)dt and Pn(f)(z) = zQn(g)(z).

By [5, Theorem 1] and by [13] we get

|Pn(f)(z)− f(z)| = |zQn(g)(z) − zg(z)| ≤ |Qn(g)(z) − g(z)|

≤Cω1(g; (1 − ρ1,n)
1/2)

D
≤ Cω1(g;

1

n
)∂D

=C sup{|f(z1)
z1

− f(z2)

z2
|; |z1 − z2| ≤

1

n
, |z1| = |z2| = 1}

=C sup{|z2f(z1)− z1f(z2)|; |z1 − z2| ≤
1

n
, |z1| = |z2| = 1}

≤C sup{|z2| · |f(z1)−f(z2)|+|z1−z2| · |f(z2)|; |z1−z2|≤
1

n
, |z1|= |z2|=1}

≤Cω1(f ;
1

n
)∂D + ‖f‖

D
· 1
n
≤ Cω1(f ;

1

n
)
D
+ ‖f‖

D
· 1
n
.

Also, by Theorem 3.6 we get Q′

n(g) → g′ uniformly on D. Now, because

|g(z)| > 0,∀z ∈ D and Qn(g) → g uniformly on D, there exists n1 = n1(g)

and m > 0, such that for all n ≥ n1 we have

|Qn(g)(z)| > m,∀z ∈ D and therefore Qn(g)(z) 6= 0,∀n ≥ n1,∀z ∈ D.
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Then, obviously P ′

n(f)(z) = zQ′

n(g)(z) + Qn(g)(z) → zg′(z) + g(z) =

f ′(z), uniformly on D, which implies

zP ′

n(f)(z)

Pn(f)(z)
=

z[zQ′

n(g)(z) +Qn(g)(z)]

zQn(g)(z)

=
zQ′

n(g)(z) +Qn(g)(z)

Qn(g)(z)
→ zg′(z) + g(z)

g(z)

=
f ′(z)

g(z)
=

zf ′(z)

f(z)
, uniformly on D.

Therefore

Re
[zP ′

n(f)(z)

Pn(f)(z)

]

→ Re
[zf ′(z)

f(z)

]

> 0

uniformly on D, i.e. there is n0 = n0(f) > n1 such that for all n ≥ n0 we

have

Re
[zP ′

n(f)(z)

Pn(f)(z)

]

> 0, for all z ∈ D,

i.e. Pn(f) ∈ S∗(D), since Pn(f)(0) = P ′

n(f)(0)− 1 = 0.

If f ∈ Sγ(D) then the reasonings are similar, so Pn(f) ∈ Sγ(D).

Now, let f ∈ K(D) and denote again f(z) = z·g(z), where the univalence
of f on D, implies g(z) 6= 0, for all z ∈ D, with g analytic on D.

Because f ∈ K(D) if and only if zf ′(z) ∈ S∗(D), it follows f ′(z) 6= 0, for

all z ∈ D, i.e. |f ′(z)| > 0, for all z ∈ D.

By Theorem 3.6, we immediately get P ′

n(f) → f ′ and P ′′

n (f) → f ′′,

uniformly on D. By reasoning as above, we get

Re
[ zP ′′

n (f)

P ′

n(f)(z)

]

+ 1 → Re
[zf ′′(z)

f ′(z)

]

+ 1,

uniformly on D. It follows that there is n0 = n0(f), such that for all n ≥ n0

we have

Re
[ zP ′′

n (f)

P ′

n(f)(z)

]

+ 1 > 0, ∀z ∈ D,

i.e. Pn(f) ∈ K(D).

The proof of the inclusion Pn[Mα(D)] ⊂ Mα(D) can be achieved in a

similar way, which also proves the theorem completely. �
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Remarks. (1) It is an open question if the inclusions in Theorem 3.7

remain true if we consider the open unit disk D, instead of D.

(2) A shortcoming of Theorem 3.7 is that the preservations of the classes

hold begining with an index n0 = n0(f). It is an open question if, in the case

of Beatson kernels , due to their bell-shaped property , will these preserva-

tions hold true for all n ∈ N ?

(3) Another interesting question would be how will the convolution poly-

nomials Pn(f)(z) considered in Section 3 preserve the subordination and the

distorsion of f(z) ?
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