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Abstract

For a sequence of pairwise negative quadrant dependent

random variables {Xn, n ≥ 1}, conditions are given under which

normed and centered partial sums converge to 0 almost certainly.

As special cases, new results are obtained for weighted sums

{
∑n

j=1
ajXj , n ≥ 1} where {an, n ≥ 1} is a sequence of positive

constants and the {Xn, n ≥ 1} are also identically distributed.

A result of Matu la [19] is obtained by taking an ≡ 1. Moreover,

it is shown that a pairwise negative quadrant dependent sequence

(which is not a sequence of independent random variables) can

be constructed having any specified continuous marginal distribu-

tions. Illustrative examples are provided, two of which show that

the pairwise negative quadrant dependence assumption cannot be

dispensed with.

1. Introduction

A sequence of random variables {Xn, n ≥ 1} defined on a probabil-

ity space (Ω,F , P ) is said to obey the general strong law of large numbers

(SLLN) with centering constants {cn, n ≥ 1} and positive norming constants
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{Bn, n ≥ 1} if

∑n
j=1(Xj − cj)

Bn
−→ 0 almost certainly (a.c.). (1.1)

In the current work, the main result (Theorem 3.1) establishes a SLLN for

a sequence of pairwise negative quadrant dependent random variables. This

concept of dependence was introduced by Lehmann [13] and will be defined

below.

In many stochastic models, an independence assumption among the ran-

dom variables in the model is not a reasonable assumption since they may

be “repelling” in the sense that increases in any of the random variables

often correspond to decreases in the others. Thus the assumption of pair-

wise negative quadrant dependence is often more suitable than the classical

assumption of independence.

Definition 1.1. A sequence of random variables {Xn, n ≥ 1} is said

to be pairwise negative quadrant dependent (PNQD) if for all i, j ≥ 1 (i 6= j)

and all x, y ∈ R,

P {Xi ≤ x, Xj ≤ y} ≤ P {Xi ≤ x}P {Xj ≤ y} .

It is well known and easy to prove that {Xn, n ≥ 1} is PNQD if and

only if for all i, j ≥ 1 (i 6= j) and all x, y ∈ R,

P {Xi > x, Xj > y} ≤ P {Xi > x}P {Xj > y} .

It is of course immediate that if {Xn, n ≥ 1} is a sequence of pairwise

independent (a fortiori, independent) random variables, then {Xn, n ≥ 1}

is PNQD.

The concept of a finite set of random variables being PNQD can be

defined in a manner completely analogous to the definition provided by Def-

inition 1.1.

Matu la [19] proved for a sequence of PNQD identically distributed (i.d.)

random variables {Xn, n ≥ 1} with E|X1| < ∞ that

∑n
j=1 (Xj − EXj)

n
−→ 0 a.c. (1.2)
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This result extends of course both the classical Kolmogorov SLLN (for se-

quences of independent i.d. (i.i.d.) random variables) and the more recent

Etemadi [6] SLLN (for sequences of pairwise i.i.d. random variables) to se-

quences of PNQD i.d. random variables. Matu la’s [19] SLLN will follow

immediately from Theorem 4.1(ii) below.

As will be made transparent by Remark 3.1(i), the SLLN (3.3) provided

by Theorem 3.1(i) is a PNQD version of a result of Heyde [9] which dealt

with independent summands. Heyde’s [9] theorem asserts for independent

{Xn, n ≥ 1} and constants 0 < Bn ↑ ∞ that the condition

∞
∑

n=1

E

(

X2
n

X2
n + B2

n

)

< ∞ (1.3)

is sufficient for the SLLN (1.1) with centering constants cn = E(XnI(|Xn| ≤

Bn)), n ≥ 1. Heyde’s work is related to previous work of Szynal [24]. See

also Lévy [14]. As was noted by Heyde [9], it is possible to avoid the pres-

ence of centering constants involving truncated expectations only by impos-

ing additional conditions. While the proof of Heyde’s [9] theorem is based

on the “Khintchine-Kolmogorov convergence theorem, Kronecker lemma ap-

proach”, the proof of Theorem 3.1 is based on the “method of subsequences”

and, more specifically, on the general approach developed by Etemadi [6],

[7], and [8].

Besides the work of Matu la [19] discussed above, there is an interesting

literature of investigation on the SLLN problem for partial sums of PNQD

sequences or row sums of PNQD rows of an array; see Bozorgnia, Patterson,

and Taylor [5], Matu la [20], Patterson and Taylor [21], Amini, Azarnoosh,

and Bozorgnia [3], Kim and Baek [11], Liang and Su [16], Liu, Gan, and

Chen [17], Amini and Bozorgnia [4], Liang [15], Kim and Kim [12], and

Taylor, Patterson, and Bozorgnia [25]. In fact, most of the above papers

assumed that the underlying random variables obey a dependence structure

stronger than PNQD. More specifically, Matu la [20], Liang and Su [16], Liu,

Gan, and Chen [17], and Liang [15] considered negatively associated random

variables and Bozorgnia, Patterson, and Taylor [5], Patterson and Taylor

[21], Amini, Azarnoosh, and Bozorgnia [3], Amini and Bozorgnia [4], and

Taylor, Patterson, and Bozorgnia [25] considered negatively dependent ran-

dom variables. These two stronger dependence notions will not be discussed

in this paper. Moreover, Bozorgnia, Patterson, and Taylor [5], Patterson
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and Taylor [21], Liang and Su [16], Amini and Bozorgnia [4], Liang [15],

and Taylor, Patterson, and Bozorgnia [25] obtained complete convergence

results for normed and centered sums and these results immediately yield

the corresponding SLLNs.

A major survey article concerning a general “theory of negative depen-

dence” was prepared by Pemantle [22]. That article discussed the relation-

ship between various definitions of “negative dependence”, outlines some

possible directions that the theory can take, and provides some interesting

conjectures.

The plan of this paper is as follows. Some needed technical results

will be presented in Section 2 including a result showing that a PNQD se-

quence (which is not a sequence of independent random variables) can be

constructed having any specified continuous marginal distributions. Theo-

rem 3.1 and its two corollaries will be established in Section 3. The special

case of weighted sums of PNQD i.d. random variables will be considered in

Section 4 and four illustrative examples will be presented in Section 5; the

last two will show that in each part of Theorem 3.1 the PNQD hypothesis

cannot be dispensed with.

2. Preliminaries

Some technical results concerning PNQD sequences will be presented in

this section. The ensuing lemma follows from Lemma 1 of Lehmann [13]; a

more direct proof of it was provided by Matu la [19].

Lemma 2.1. (Lehmann [13], Matu la [19]). Let {Xn, n ≥ 1} be a

sequence of PNQD random variables and for each n ≥ 1, let fn : R −→ R.

If the sequence {fn, n ≥ 1} consists of only nondecreasing functions or

only nonincreasing functions, then {fn(Xn), n ≥ 1} is a sequence of PNQD

random variables.

The next lemma is well known (see, e.g., Patterson and Taylor [21]) but

we are not able to track down its origin. In any event, its proof is immediate

from Lemmas 1 and 3 of Lehmann [13].
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Lemma 2.2. Let {Xn, n ≥ 1} be a sequence of PNQD integrable

random variables. Then

Var





n
∑

j=1

Xj



 ≤

n
∑

j=1

VarXj, n ≥ 1.

The last lemma is a special case of Lemma 2 of Adler and Rosalsky [1].

Lemma 2.3. (Adler and Rosalsky [1]). Let X be a random variable

and let {cn, n ≥ 1} be a sequence of positive constants such that

(

max
1≤j≤n

c2j

) ∞
∑

j=n

c−2
j = O(n) and

∞
∑

n=1

P {|X| > cn} < ∞.

Then
∞
∑

n=1

c−2
n E

(

X2I(|X| ≤ cn)
)

< ∞.

A collection of n PNQD random variables arrises by sampling without

replacement from a set of n real numbers (see, e.g., Bozorgnia, Patterson,

and Taylor [5]). The following proposition shows that a sequence of PNQD

random variables can be constructed having any specified marginal distri-

butions.

Proposition 2.1. Let {Fn, n ≥ 1} be a sequence of (right-continuous)

distribution functions. Then there exists a PNQD sequence of random vari-

ables {Xn, n ≥ 1} such that the distribution function of Xn is Fn, n ≥ 1.

Moreover, if the {Fn, n ≥ 1} are all continuous, then the PNQD sequence

{Xn, n ≥ 1} can be chosen so that for all k ≥ 1, {Xn, n ≥ k} is not a

sequence of independent random variables.

Proof. Let {Zn, n ≥ 1} be a sequence of i.i.d. N(0, 1) random variables,

and consider the sequence {Zn − Zn+1, n ≥ 1} of identically distributed

N(0, 2) random variables. Let H be the N(0, 2) distribution function. For



286 DELI LI, ANDREW ROSALSKY AND ANDREI I. VOLODIN [June

n ≥ 1, let

F−1
n (t) = inf{x ∈ [−∞,∞] : Fn(x) ≥ t}, 0 ≤ t ≤ 1.

Observe that for all n ≥ 1, t ∈ [0, 1], and x ∈ [−∞,∞],

t ≤ Fn(x) if and only if F−1
n (t) ≤ x. (2.1)

Set

Xn = F−1
n (H(Zn − Zn+1)) , n ≥ 1.

Since

Cov (Zn − Zn+1, Zn+1 − Zn+2) = −1, n ≥ 1, (2.2)

{Zn − Zn+1, n ≥ 1} is a sequence of PNQD random variables as was

shown by Joag-Dev and Prochan [10], and so it follows from Lemma 2.1

that {Xn, n ≥ 1} is also a sequence of PNQD random variables since the

sequence of composite functions {F−1
n ◦ H, n ≥ 1} is a sequence of non-

decreasing functions. Now for all n ≥ 1, the distribution function of Xn

is

P {Xn ≤ x} = P
{

F−1
n (H(Zn − Zn+1)) ≤ x

}

= P {H(Zn − Zn+1) ≤ Fn(x)} (by (2.1))

= P
{

Zn − Zn+1 ≤ H−1(Fn(x))
}

= H
(

H−1(Fn(x))
)

= Fn(x), −∞ ≤ x ≤ ∞

proving that the distribution function of Xn is Fn, n ≥ 1.

Next, suppose that the {Fn, n ≥ 1} are all continuous. Then for all

n ≥ 1,

Fn

(

F−1
n (t)

)

= t, t ∈ [0, 1]. (2.3)

Now if Xn and Xn+1 are independent for some n ≥ 1, then

H−1 (Fn(Xn)) and H−1 (Fn+1(Xn+1))
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are also independent. Note that

H−1 (Fn(Xn)) = H−1
(

Fn(F−1
n (H(Zn − Zn+1)))

)

= H−1 (H(Zn − Zn+1)) (by (2.3))

= Zn − Zn+1

and, similarly,

H−1 (Fn+1(Xn+1)) = Zn+1 − Zn+2.

Thus in view of (2.2), Xn and Xn+1 cannot be independent. Consequently,

for all k ≥ 1, {Xn, n ≥ k} is not a sequence of independent random vari-

ables. �

Finally, the symbol C denotes a generic constant (0 < C < ∞) which is

not necessarily the same one in each appearance.

3. Mainstream

With the preliminaries accounted for, the main result may be estab-

lished.

Theorem 3.1. Let {Xn, n ≥ 1} be a sequence of PNQD random

variables and let {Bn, n ≥ 1} be a sequence of positive constants. Suppose

that
∞
∑

n=1

B−2
n

∫ Bn

0
xP {|Xn| > x} dx < ∞. (3.1)

(i) If

Bn

n
↑, Bn+1 ∼ Bn, and

n

Bn
E (|Xn|I(|Xn| ≤ Bn)) = O(1), (3.2)

then the SLLN
∑n

j=1 (Xj − E(XjI(|Xj | ≤ Bj)))

Bn
−→ 0 a.c. (3.3)

obtains.
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(ii) If

Bn ↑ ∞, Bn+1 = O(Bn), and

∑n
j=1E (|Xj |I(|Xj | ≤ Bj))

Bn
−→ 0, (3.4)

then the SLLN
∑n

j=1Xj

Bn
−→ 0 a.c. (3.5)

obtains.

Proof. Note at the outset that for any random variable X and constant

B > 0, integration by parts yields

2

∫ B

0
xP{|X| > x}dx = E

(

X2I(|X| ≤ B)
)

+ B2P{|X| > B}

whence (3.1) is equivalent to the pair of conditions

∞
∑

n=1

E
(

X2
nI(|Xn| ≤ Bn)

)

B2
n

< ∞ (3.6)

and
∞
∑

n=1

P {|Xn| > Bn} < ∞. (3.7)

Set for n ≥ 1,

Yn = XnI(|Xn| ≤ Bn) + BnI(Xn > Bn) −BnI(Xn < −Bn),

Y (+)
n = X+

n I(Xn ≤ Bn) + BnI(Xn > Bn),

Y (−)
n = X−

n I(Xn ≥ −Bn) + BnI(Xn < −Bn).

Then Yn = Y
(+)
n − Y

(−)
n , n ≥ 1. Define

Sn =
n
∑

j=1

Yj, S(+)
n =

n
∑

j=1

Y
(+)
j , S(−)

n =
n
∑

j=1

Y
(−)
j , n ≥ 1.

It follows from Lemma 2.1 that {Y
(+)
n , n ≥ 1} and {Y

(−)
n , n ≥ 1} are

sequences of PNQD random variables.
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Let b > 1 be arbitrary. For each k ≥ 1, let N(k) be the smallest integer

n ≥ 1 for which Bn ≥ bk and for each n ≥ 1, let K(n) be the smallest integer

k ≥ 1 for which N(k) ≥ n. Now under (3.2), for all k such that N(k) ≥ 2,

1 ≤
BN(k)

bk
<

BN(k)

BN(k)−1
−→ 1 (3.8)

and hence under (3.2)

N(k + 1)

N(k)
≤

BN(k+1)

BN(k)
= (1 + o(1))

bk+1

bk
= (1 + o(1)) b. (3.9)

On the other hand, under (3.4), for all k such that N(k) ≥ 2,

1 ≤
BN(k)

bk
<

BN(k)

BN(k)−1
= O(1) (3.10)

implying

BN(k+1)

BN(k)
≤

Cbk+1

bk
= Cb. (3.11)

In view of (3.8), (3.10), (3.9), and (3.11), both

1 ≤
BN(k)

bk
≤ C, k ≥ 1 (3.12)

and
BN(k+1)

BN(k)
≤ C, k ≥ 1 (3.13)

prevail under either (3.2) or (3.4).

Now for arbitrary ε > 0, using Chebyshev’s inequality, the PNQD prop-

erty of the sequence {Y
(+)
n , n ≥ 1}, Lemma 2.2, and (3.12)

∞
∑

k=1

P
{∣

∣

∣

S
(+)
N(k) − ES

(+)
N(k)

BN(k)

∣

∣

∣
> ε
}

≤ C

∞
∑

k=1

VarS
(+)
N(k)

B2
N(k)
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≤ C

∞
∑

k=1

1

B2
N(k)

N(k)
∑

n=1

VarY (+)
n

≤ C
∞
∑

k=1

1

B2
N(k)

N(k)
∑

n=1

E(Y (+)
n )2

= C

∞
∑

k=1

1

B2
N(k)

N(k)
∑

n=1

(

E
(

X+
n I(Xn ≤ Bn)

)2
+ B2

nP{Xn > Bn}
)

= C

∞
∑

n=1

(

E
(

X+
n I(Xn ≤ Bn)

)2
+ B2

nP{Xn > Bn}
)

∞
∑

k=K(n)

1

B2
N(k)

≤ C
∞
∑

n=1

(

E
(

X+
n I(Xn ≤ Bn)

)2
+ B2

nP{Xn > Bn}
)

∞
∑

k=K(n)

1

b2k

≤ C
∞
∑

n=1

E (X+
n I(Xn ≤ Bn))

2
+ B2

nP{Xn > Bn}

b2K(n)

≤ C

∞
∑

n=1

E (X+
n I(Xn ≤ Bn))

2
+ B2

nP{Xn > Bn}

B2
N(K(n))

≤ C

∞
∑

n=1

E (X+
n I(Xn ≤ Bn))

2
+ B2

nP{Xn > Bn}

B2
n

< ∞ (by (3.6) and (3.7)).

Hence by the Borel-Cantelli lemma and the arbitrariness of ε,

S
(+)
N(k)

− ES
(+)
N(k)

BN(k)
−→ 0 a.c. (3.14)

Next, if n is such that K(n) ≥ 2, then N(K(n) − 1) < n ≤ N(K(n))

and noting that S
(+)
n is a sum of nonegative random variables and recalling

(3.13),

S
(+)
n −ES

(+)
n

Bn
≤

S
(+)
N(K(n)) − ES

(+)
N(K(n))

Bn
+

ES
(+)
N(K(n))−ES

(+)
N(K(n)−1)

Bn

≤
BN(K(n))

∣

∣

∣S
(+)
N(K(n))−ES

(+)
N(K(n))

∣

∣

∣

BN(K(n)−1)BN(K(n))
+

∑N(K(n))
j=N(K(n)−1)+1 EY

(+)
j

BN(K(n)−1)
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≤
C
∣

∣

∣
S
(+)
N(K(n)) − ES

(+)
N(K(n))

∣

∣

∣

BN(K(n))
+

∑N(K(n))
j=N(K(n)−1)+1 EY

(+)
j

BN(K(n)−1)
(3.15)

and, similarly,

S
(+)
n − ES

(+)
n

Bn

≥ −

∣

∣

∣
S
(+)
N(K(n)−1) − ES

(+)
N(K(n)−1)

∣

∣

∣

BN(K(n)−1)
−

∑N(K(n))
j=N(K(n)−1)+1 EY

(+)
j

BN(K(n)−1)
. (3.16)

Note that

∑N(K(n))
j=N(K(n)−1)+1 BjP {Xj > Bj}

BN(K(n)−1)

≤
BN(K(n))

BN(K(n)−1)

N(K(n))
∑

j=N(K(n)−1)+1

P {Xj > Bj}

≤ C

∞
∑

j=N(K(n)−1)+1

P {Xj > Bj} (by (3.13))

= o(1) (by (3.7)). (3.17)

Now (3.2) ensures that

n

Bn
max
1≤j≤n

E
(

X+
j I(Xj ≤ Bj)

)

≤ max
1≤j≤n

j

Bj
E
(

X+
j I(Xj ≤ Bj)

)

= O(1). (3.18)

Thus under (3.2),

∑N(K(n))
j=N(K(n)−1)+1 EY

(+)
j

BN(K(n)−1)

≤

N(K(n)−1)
(

max
1≤j≤N(K(n))

E(X+
j I(Xj≤Bj))

)

(N(K(n))−N(K(n)−1))

BN(K(n)−1)N(K(n)−1)

+

∑N(K(n))
j=N(K(n)−1)+1 BjP {Xj>Bj}

BN(K(n)−1)
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≤

CN(K(n))
(

max
1≤j≤N(K(n))

E(X+
j I(Xj ≤ Bj))

)

(N(K(n))−N(K(n)−1))

BN(K(n))N(K(n)−1)

+o(1) (by (3.13) and (3.17))

≤C

(

N(K(n))

N(K(n) − 1)
− 1

)

+ o(1) (by (3.18))

≤C ((1 + o(1))b − 1) + o(1) (by (3.9)). (3.19)

Thus under (3.2), it follows from (3.15), (3.16), (3.14), and (3.19) that

−C(b− 1) ≤ lim inf
n→∞

S
(+)
n − ES

(+)
n

Bn
≤ lim sup

n→∞

S
(+)
n − ES

(+)
n

Bn
≤ C(b− 1) a.c.

Then since b > 1 is arbitrary,

lim
n→∞

S
(+)
n − ES

(+)
n

Bn
= 0 a.c. (3.20)

On the other hand, under (3.4)

∑N(K(n))
j=N(K(n)−1)+1 EY

(+)
j

BN(K(n)−1)
≤

BN(K(n))

∑N(K(n))
j=1 E

(

X+
j I(Xj ≤ Bj)

)

BN(K(n)−1)BN(K(n))

+

∑N(K(n))
j=N(K(n)−1)+1 BjP {Xj > Bj}

BN(K(n)−1)

≤Co(1) + o(1) (by (3.13), (3.4), and (3.17))

= o(1). (3.21)

Thus under (3.4), it follows from (3.15), (3.16), (3.14), and (3.21) that

0 ≤ lim inf
n→∞

S
(+)
n − ES

(+)
n

Bn
≤ lim sup

n→∞

S
(+)
n − ES

(+)
n

Bn
≤ 0 a.c.;

that is, (3.20) again prevails.

Similarly,

lim
n→∞

S
(−)
n − ES

(−)
n

Bn
= 0 a.c.
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and so

Sn − ESn

Bn
=

S
(+)
n − ES

(+)
n

Bn
−

S
(−)
n − ES

(−)
n

Bn
−→ 0 a.c. (3.22)

Now by (3.7) and the Borel-Cantelli lemma,

P
{

lim inf
n→∞

[Xn = Yn]
}

= 1. (3.23)

Note that for n ≥ 1,

ESn

Bn
−

∑n
j=1E (XjI(|Xj | ≤ Bj))

Bn

=

∑n
j=1BjP {Xj > Bj}

Bn
−

∑n
j=1BjP {Xj < −Bj}

Bn

−→ 0 (3.24)

by (3.7) and the Kronecker lemma. It thus follows from (3.22), (3.23), and

(3.24) that (3.3) holds thereby completing the proof of (i). Now the last

condition in (3.4) ensures that

∑n
j=1E (XjI (|Xj | ≤ Bj))

Bn
−→ 0

which when combined with (3.3) yields (3.5) and completes the proof of

(ii). �

Remarks 3.1. (i) The condition (3.1) is equivalent to the key condition

(1.3) in Heyde’s [9] SLLN discussed in Section 1. This equivalence follows

from Heyde’s [9] observation that (1.3) and the pair of conditions (3.6) and

(3.7) are equivalent. As was noted in the proof of Theorem 3.1, (3.1) and

this pair of conditions are equivalent. Consequently, Theorem 3.1(i) is a

PNQD version of Heyde’s [9] theorem.

(ii) A sufficient condition for (3.1) is that

∞
∑

n=1

E|Xn|
rn

Brn
n

< ∞ (3.25)

for some sequence of constants {rn, n ≥ 1} ⊆ (0, 2]. To see this, note that
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for n ≥ 1

B−2
n

∫ Bn

0
xP {|Xn| > x} dx = B−2

n

∫ Bn

0
x2−rnxrn−1P {|Xn| > x} dx

≤B−2
n B2−rn

n

∫ Bn

0
xrn−1P {|Xn| > x} dx

≤B−rn
n E|Xn|

rn .

Thus (3.1) follows from (3.25).

(iii) It may be recalled that (3.25) with rn ≡ 2 is the classical Kol-

mogorov condition for a sequence of independent mean 0 random variables

{Xn, n ≥ 1} to obey the SLLN (1.1) with cn ≡ 0 when Bn ↑ ∞. But (3.1)

can hold for a sequence of independent mean 0 random variables {Xn, n ≥ 1}

when (3.25) with rn ≡ 2 fails. To see this, simply let {Xn, n ≥ 1} be

a sequence of i.i.d. mean 0 random variables with EX2
1 = ∞ and let

Bn = n(log(n + 1))λ, n ≥ 1 where λ > 1. Then (3.25) with rn ≡ 2 fails but

(3.25) with rn ≡ 1 holds. Thus (3.1) holds by Remark 3.1(ii).

Corollary 3.1. Let {Xn, n ≥ 1} be a sequence of PNQD random

variables and let {Bn, n ≥ 1} be a sequence of positive constants. Suppose

that (3.1) holds.

(i) If (3.2) holds and

E (XnI(|Xn| ≤ Bn)) = o(1), (3.26)

then the SLLN
∑n

j=1Xj

Bn
−→ 0 a.c. (3.27)

obtains.

(ii) If

Bn

n
↑ ∞, Bn+1 = O (Bn) , and

n

Bn
E (|Xn|I(|Xn| ≤ Bn)) = o(1),

(3.28)

then the SLLN (3.27) obtains.
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(iii) If

Bn ↑, n=O(Bn), Bn+1 =O(Bn), and E(|Xn|I(|Xn|≤Bn))=o(1),

(3.29)

then the SLLN (3.27) obtains.

Proof. (i) By Theorem 3.1(i), (3.3) holds. Now by (3.26) and the

Cesàro mean summability theorem

∑n
j=1E (XjI(|Xj | ≤ Bj))

n
−→ 0. (3.30)

Since n = O (Bn) by the first condition of (3.2), it follows from (3.30) that

∑n
j=1E (XjI(|Xj | ≤ Bj))

Bn
−→ 0. (3.31)

Combining (3.3) and (3.31) yields (3.27).

(ii) It follows from the first and the third condition of (3.28) that for

n > m ≥ 1

∑n
j=1E (|Xj |I(|Xj | ≤ Bj))

Bn

≤

n max
1≤j≤n

E (|Xj |I(|Xj | ≤ Bj))

Bn

≤

n max
1≤j≤m

E (|Xj |I(|Xj | ≤ Bj))

Bn
+

nmaxm+1≤j≤nE (|Xj |I(|Xj | ≤ Bj))

Bn

≤
nmax1≤j≤mE (|Xj |I(|Xj | ≤ Bj))

Bn
+ max

m+1≤j≤n

jE (|Xj |I(|Xj | ≤ Bj))

Bj

n→∞
−→ 0 + sup

j≥m+1

jE (|Xj |I(|Xj | ≤ Bj))

Bj

m→∞
−→ 0.

Thus (3.4) holds and (3.27) follows from Theorem 3.1(ii).

(iii) By the second and fourth condition of (3.29) and arguing as in

part (i),
∑n

j=1E (|Xj |I(|Xj | ≤ Bj))

Bn
−→ 0.
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Thus (3.4) holds and (3.27) follows from Theorem 3.1(ii). �

The following corollary reduces to Theorem 2 of Etemadi [7] in the spe-

cial case where the {Xn, n ≥ 1} are nonnegative and pairwise independent,

supn≥1EXn < ∞, and Bn ≡ n.

Corollary 3.2. Let {Xn, n ≥ 1} be a sequence of PNQD integrable

random variables. Suppose that (3.2), (3.6), (3.7), and

∑n
j=1E (XjI(|Xj | > Bj))

Bn
−→ 0 (3.32)

hold. Then the SLLN
∑n

j=1 (Xj − EXj)

Bn
−→ 0 a.c. (3.33)

obtains.

Proof. Since (3.1) and the pair of conditions (3.6) and (3.7) are equiv-

alent, Theorem 3.1(i) ensures (3.3) which when combined with (3.32) yields

the conclusion (3.33). �

4. Weighted Sums of PNQD i.d. Random Variables

As a consequence of Theorem 3.1, we will obtain in this section new

SLLN results for partial sums of the form
∑n

j=1 ajXj, n ≥ 1 where {Xn, n ≥

1} is a sequence of PNQD i.d. random variables and {an, n ≥ 1} is a

sequence of positive constants. The constants an, n ≥ 1 and the partial sums
∑n

j=1 ajXj , n ≥ 1 are referred to, respectively, as weights and weighted sums.

By Lemma 2.1, {anXn, n ≥ 1} is a sequence of PNQD random variables.

Kim and Kim [12] obtained a SLLN for weighted sums of PNQD i.d.

random variables but their norming sequence {Bn, n ≥ 1} is very rapidly

growing in that it satisfies the condition
∑∞

j=nB
−2
j = O

(

B−2
n

)

and hence

their assertion that their theorem extends Theorem 6 of Adler, Rosalsky,

and Taylor [2] (from the independence case to the PNQD case ) is incorrect.
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Theorem 4.1. Let {Xn, n ≥ 1} be a sequence of PNQD i.d. random

variables and let {an, n ≥ 1} and {Bn, n ≥ 1} be sequences of positive

constants.

(i) Suppose

Bn

n
↑, Bn+1 ∼ Bn, (4.1)

Bn

an
↑,

Bn

nan
→ ∞,

Bn

nan
= O

(

inf
j≥n

Bj

jaj

)

, (4.2)

n
∑

j=1

|aj | = O (nan) , (4.3)

∞
∑

n=1

P {|anX1| > Bn} < ∞, (4.4)

and

nan
Bn

E

(

|X1|I

(

|X1| ≤
Bn

an

))

= O(1). (4.5)

Then the SLLN
∑n

j=1 ajXj

Bn
−→ 0 a.c. (4.6)

obtains.

(ii) Suppose (4.1),

(

max
1≤j≤n

(

Bj

aj

)2
)

∞
∑

j=n

(

aj
Bj

)2

= O(n), (4.7)

and

nan
Bn

= O(1),

n
∑

j=1

aj = O (Bn) , EX1 = 0. (4.8)

Then the SLLN (4.6) obtains.

(iii) Suppose (4.4), (4.7),

Bn ↑ ∞, Bn+1 = O (Bn) , (4.9)
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and
∑n

j=1E (|ajXj |I (|Xj | ≤ Bj/aj))

Bn
−→ 0. (4.10)

Then the SLLN (4.6) obtains.

(iv) Suppose (4.4), (4.7),

Bn ↑, Bn+1 = O (Bn) , (4.11)

and
n
∑

j=1

aj = o (Bn) , E|X1| < ∞. (4.12)

Then the SLLN (4.6) obtains.

Proof. (i) It follows from (4.2) that Bn/an ↑ ∞ and (4.7) holds (see

the proof of Theorem 6 of Adler, Rosalsky, and Taylor [2]). Then by (4.7),

(4.4), and Lemma 2.3,

∞
∑

n=1

(

an
Bn

)2

E

(

X2
1I

(

|X1| ≤
Bn

an

))

< ∞. (4.13)

Thus, in view of the equivalence between (3.1) and the pair of conditions

(3.6) and (3.7), we have from (4.4) and (4.13) that

∞
∑

n=1

B−2
n

∫ Bn

0
xP {|anXn| > x} dx < ∞. (4.14)

Then by (4.14), (4.1), (4.5), and Theorem 3.1(i),

∑n
j=1 (ajXj − E (ajXjI (|ajXj | ≤ Bj)))

Bn
−→ 0 a.c. (4.15)

But
∑n

j=1E (ajXjI (|ajXj | ≤ Bj))

Bn
−→ 0 (4.16)

using (4.2), (4.3), and (4.4) and arguing exactly as in the proof of Theorem 6

of Adler, Rosalsky, and Taylor [2]. The conclusion (4.6) follows immediately

from (4.15) and (4.16).
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(ii) Note that (4.5) is automatic by (4.8). Now it also follows from (4.8)

that Bn/an ≥ δn for some δ > 0 and all n ≥ 1 and since E|X1| < ∞,

∞
∑

n=1

P {|anX1| > Bn} ≤
∞
∑

n=1

P {|X1| > δn} < ∞.

Then, arguing as in the proof of part (i), (4.15) holds and it remains to verify

(4.16). To this end, note that since Bn/an → ∞ and E|X1| < ∞,

E (|X1|I (|X1| > Bn/an)) −→ 0

and hence for arbitrary ε > 0, there exists an integer N ≥ 2 such that

E (|X1|I (|X1| > Bn/an)) ≤ ε for all n ≥ N.

Then for all n ≥ N ,

∣

∣

∣

∑n
j=1 ajE (XjI (|Xj | ≤ Bj/aj))

∣

∣

∣

Bn

≤

∑n
j=1 aj |E (X1I (|X1| ≤ Bj/aj))|

Bn

=

∑n
j=1 aj |−E (X1I (|X1| > Bj/aj))|

Bn
(since EX1 = 0 )

≤

∑n
j=1 ajE (|X1|I (|X1| > Bj/aj))

Bn

≤

∑N−1
j=1 ajE (|X1|I (|X1| > Bj/aj))

Bn
+

∑n
j=N ajε

Bn

≤ o(1) + Cε

(by the first condition of (4.1) and the second condition of (4.8)).

Since ε > 0 is arbitrary, (4.16) holds.

(iii) Arguing as in the proof of part (i), (4.14) holds and (4.6) then follows

immediately from Theorem 3.1(ii) in view of (4.9) and (4.10).

(iv) In view of part (iii), it only needs to be verified that Bn ↑ ∞ and (4.10)

holds. Now Bn ↑ ∞ follows immediately from the first condition of (4.11)
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and the first condition of (4.12). To verify (4.10), it follows from (4.12) that

∑n
j=1E (|ajXj |I (|Xj | ≤ Bj/aj))

Bn
≤

C
∑n

j=1 aj

Bn
= o(1). �

Remark 4.1. If an ≡ 1 and Bn ≡ n, then (4.1), (4.7), and the first two

conditions of (4.8) are automatic. Thus for a sequence of PNQD i.d. random

variables {Xn, n ≥ 1} with E|X1| < ∞, noting that {Xn − EXn, n ≥

1} is PNQD by Lemma 2.1, Matu la’s [19] extension (1.2) of the classical

Kolmogorov SLLN follows from Theorem 4.1(ii).

5. Some Interesting Examples

To conclude, we present four examples. The first two examples illustrate

Theorem 3.1. According to Proposition 2.1, for each example there exists a

sequence of PNQD random variables which are not independent and which

has the specified marginal distributions.

Example 5.1. Let λ ≥ 1 and let {αn, n ≥ 1} and {βn, n ≥ 1}

be sequences of positive constants such that αnβn = O
(

nλ−1
)

and βn =

O
(

nλ/(log n)1+ε
)

for some ε > 0. Let {Xn, n ≥ 1} be a sequence of PNQD

random variables where Xn has probability density function

fn(x) =
|x|αn−1e−|x|/βn

2βαn
n Γ (αn)

, −∞ < x < ∞, n ≥ 1

where Γ(α) =
∫∞
0 tα−1e−tdt, α > 0. Let Bn = nλ, n ≥ 1. Note that

E|Xn| = αnβn, EX2
n = α2

nβ
2
n + αnβ

2
n, n ≥ 1.

Thus the series of (1.3) is majorized by

∞
∑

n=1

EX2
n

B2
n

≤
∞
∑

n=1

Cn2λ−2 + Cnλ−1βn
n2λ

≤ C +

∞
∑

n=2

(

C

n2
+

C

n(log n)1+ε

)

< ∞
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and so (3.1) holds by either Remark 3.1(i) or Remark 3.1(ii). Now (3.2) also

holds whence
∑n

j=1Xj

nλ
−→ 0 a.c.

follows from Theorem 3.1(i) noting that E
(

XnI(|Xn| ≤ nλ)
)

= 0, n ≥ 1.

The random variables {Xn, n ≥ 1} in the next example are in Lp for

all 0 < p < 1 but are not in L1.

Example 5.2. Let {Xn, n ≥ 1} be a sequence of PNQD i.d. random

variables where X1 has probability density function f(x) = x−2I[1,∞)(x),

−∞ < x < ∞. Let Bn = n(log n)1+ε, n ≥ 2 where ε > 0 and let B1 = B2/2.

Now P{|X1| > x} = x−1, x ≥ 1 and so

∞
∑

n=3

B−2
n

∫ Bn

0
xP {|Xn| > x} dx =

∞
∑

n=3

B−2
n

(
∫ 1

0
xdx +

∫ Bn

1
1dx

)

≤

∞
∑

n=3

B−1
n < ∞.

Thus (3.1) holds. Now

E (|Xn|I(|Xn| ≤ Bn)) = E (X1I(X1 ≤ Bn)) ∼ log n

and so (3.28) holds. Thus by Corollary 3.1(ii),

∑n
j=1Xj

n(log n)1+ε
−→ 0 a.c. (5.1)

Remark 5.1. In Theorem 2 of Martikainen and Petrov [18], a SLLN

was proved for i.d. random variables irrespective of their joint distributions.

But the conclusion (5.1) cannot be obtained from it since their condition

Bn

∞
∑

j=n

B−1
j = O(n)

fails for the norming constants {Bn, n ≥ 1} in Example 5.2. However,

Theorem 2 of Martikainen and Petrov [18] will establish for the random
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variables {Xn, n ≥ 1} of Example 5.2 that for all ε > 0

∑n
j=1Xj

n1+ε
−→ 0 a.c.

and this is weaker than (5.1).

The last two examples show, respectively, that parts (i) and (ii) of The-

orem 3.1 can fail without the PNQD assumption.

Example 5.3. Let X be a symmetric random variable with 0 < E|X| <

∞ and let Bn = n, n ≥ 1. Set Xn = X, n ≥ 1. Then {Xn, n ≥ 1} is not

PNQD. Now the choice of {Bn, n ≥ 1} and E|X| < ∞ ensure, respectively,

that

(

max
1≤j≤n

B2
j

) ∞
∑

j=n

B−2
j = O(n) and

∞
∑

n=1

P {|Xn| > Bn} < ∞

and so by Lemma 2.3

∞
∑

n=1

B−2
n E

(

X2
nI (|Xn| ≤ Bn)

)

< ∞.

Thus (3.1) holds via the equivalence between (3.6) and (3.7). Moreover,

(3.2) clearly holds. But for n ≥ 1,

∑n
j=1 (Xj − E (XjI(|Xj | ≤ Bj)))

Bn
=

nX

n
= X

and so (3.3) fails.

The next example is taken from Counterexample 2 of Rosalsky [23] which

had served an entirely different purpose from that of Example 5.4.

Example 5.4. Let {Yn, n ≥ 1} be a sequence of i.i.d. random variables

with

P {Y1 > y} =
e

y log y
, y ≥ e.

Let n0 = 0, nk = 2k, k ≥ 1 and define

Xj = Yk, nk−1 + 1 ≤ j ≤ nk, k ≥ 1.
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Then {Xn, n ≥ 1} is not PNQD. Let B1 = 1 and Bn = n log n, n ≥ 2. We

first verify (3.1). Note that

∞
∑

n=1

B−2
n

∫ Bn

0
xP {|Xn| > x} dx

= C +

∞
∑

n=5

B−2
n

(

C +

∫ Bn

e2
xP {|X1| > x} dx

)

= C +

∞
∑

n=5

B−2
n

∫ Bn

e2

e

log x
dx

≤C +
∞
∑

n=5

2eB−2
n

∫ Bn

e2

log x− 1

(log x)2
dx

= C +

∞
∑

n=5

2eB−2
n

x

log x

∣

∣

∣

∣

Bn

e2

≤C + C
∞
∑

n=5

1

Bn logBn
≤ C + C

∞
∑

n=5

1

n(log n)2
< ∞

establishing (3.1).

Next, we verify (3.4). Note that for n ≥ 3

E (|Xn|I (|Xn| ≤ Bn)) =

∫ ∞

0
P {|X1|I(|X1| ≤ Bn) > x} dx

=

∫ Bn

0
P {|X1|I(|X1| ≤ Bn) > x} dx

≤

∫ Bn

0
P {|X1| > x} dx = C +

∫ Bn

e

e

x log x
dx

≤ C log logBn ≤ C log log n

and so for n ≥ 3

∑n
j=1E (|Xj |I(|Xj | ≤ Bj))

Bn
≤ o(1) +

C
∑n

j=3 log log j

Bn

≤ o(1) +
Cn log log n

Bn

= o(1) +
C log log n

log n
= o(1)

verifing (3.4).
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Finally, it was shown by Rosalsky [23] that

lim sup
n→∞

∑n
j=1Xj

Bn
= ∞ a.c.

whence (3.5) fails.
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