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A PINCHING THEOREM FOR CONFORMAL
CLASSES OF WILLMORE SURFACES
IN THE UNIT n-SPHERE
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YU-CHUNG CHANG AND YI-JUNG HSU

Abstract

Let x : M — S™ be a compact immersed Willmore surface
in the n-dimensional unit sphere. In this paper, we consider the
case of n > 4. We prove that if inf,ec maxgoz(ar)(Pg — %Hg —
,/% + %Hg + 9—16H§ ) < % where G is the conformal group of the
ambient space S™, &, and H, are the square of the length of the
trace free part of the second fundamental form and the length of
the mean curvature vector of the immersion gox respectively, then
x(M) is either a totally umbilical sphere or a conformal Veronese

surface.

1. Introduction

Let z : M — S™ be a compact immersed surface in the n-dimensional
unit sphere S". We denote as usual by (h;) the second fundamental form of
M, by H* = Y h$ the a—component of the mean curvature vector H, by
H the length of the mean curvature vector, and by o5 = h% — % d0;; the
trace free part of the second fundamental form. Let & = > ( 203)2 Then the

Willmore functional is defined by

W(zx) = /M D,
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where the integration is with respect to the area measure of M. This func-
tional is preserved if we move M via conformal transformations of S™. The
critical points of W are called Willmore surfaces. They satisfy the Euler-

Lagrange equation
ATH +3 " ool HY =0,

where A+ is the Laplacian in the normal bundle NM (see [15]). Thus any
minimal surface in S™ is a Willmore surface. The set of Willmore surfaces

turns out to be larger than that of minimal surfaces.

For M being a minimal submanifold in the n-dimensional unit sphere S,
there are vast estimates for the square of the length of the second fundamen-
tal form. Significant works in this direction have been obtained by Simons
(see [14]), Chern, do Carmo and Kobayashi (see [3]), Peng and Terng (see
[12]) and the references cited therein. One expects that similar results are
also valid for Willmore surfaces (see [9]). Based on this idea, Li proved that
if M is a compact Willmore surface in the n-dimensional unit sphere S” sat-
isfying 0 < ® <2whenn=3,0< o < % when n > 4, then M is the totally
umbilical sphere or the Clifford torus or the Veronese surface (see [8] and

[9]). This result is analogous to that of Chern, do Carmo and Kobayashi in

2n—4
2n—5"

then M is the equatorial sphere or the Clifford torus or the Veronese surface
(see [3]).

the case of minimal surfaces, they proved that if H =0 and 0 < & <

For M being a hypersurface with constant mean curvature in the n-
dimensional unit sphere S™, Alencar and do Carmo obtained a pinching
constant which depends on the mean curvature (see [1]). For submanifolds
with parallel mean curvature vector in spheres, the above theorem was ex-

tended to higher codimension by Santos and Fontenele (see [13] and [6]).

Because in general a Willmore surface is not minimal, it is interesting
to find an upper estimate for ® including the mean curvature. Our starting
point is to improve an upper estimate for & which was given previously by
the authors (see [5]). It is surprised that this improvement is not so formal.

The proof involves some new tricks.
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Theorem 1.1. Let M be a compact immersed Willmore surface in the

n-dimensional unit sphere S™, n > 4. If

2 1 4 1 1
0<P<=4+-H? \/— —H?2 4+ —H4
- _3+8 + 9+6 +96 ’

then either ® = 0 and M is totally umbilical or ® = % + %HQ + (% + %HQ
+91—6H4)1/2. In the latter case, n =4 and M is the Veronese surface.

It is remarkable that the Veronese surface is the minimal surface in the
4-dimensional unit sphere S* satisfying ® = % (see [3]). Just as the result
of Li, Theorem 1.1 does not characterize any non-minimal Willmore surface
except the totally umbilical spheres. However, the estimate is sharp in the
sense that for every given positive €, there is a compact Willmore surface M
in S* satisfying 0 < ® < % + %H2+ \/% + %H2 + %H‘l—l—e but which is not

the Veronese surface.

For characterizing non-minimal Willmore surfaces, for each immersion z
of M into the unit n-sphere S”, we consider the infimum of maximum values
of

1 4 1 1
d——H? - \/— —H?+ —H*4
8 56" "6

obtained by composition of x with g, where g ranges over all conformal
mappings of S™. This conformal invariant depends on the immersion x. We
show that this conformal invariant characterizes the totally umbilical sphere
and the conformal class of the Veronese surface. Since the conformal group
G of the ambient space S™ is not compact, we need to handle the estimates
more carefully, and carry limit procedure out at a right time. The following

is the main result of the paper.

Theorem 1.2. Let M be a compact immersed Willmore surface in the

n-dimensional unit sphere S™, n > 4. If

1 4 1 1 2
inf <1>——H2—\/— “H24+ —HY)< =
inf, max (g —gHy —\gtgHitogfls ) =3
where G is the conformal group of the ambient space S™, ®, and H, are the

square of the length of the trace free part of the second fundamental form
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and the mean curvature of the immersion g o x respectively, then x(M) is
either a totally umbilical sphere or a conformal Veronese surface.

As an immediate consequence of Theorem 1.2, the pinching condition
can be simplified as follows.

Corollary 1.3. Let M be a compact immersed Willmore surface in the
n-dimensional unit sphere S™, n > 4. If

. -
- — <
;Ielg QE;?ZXM)(Q)Q 6Hg ) B

QLI W~

then (M) is either a totally umbilical sphere or a conformal Veronese sur-
face.

For codimension one, there is an analogue result. If z : M — S3 is a com-
pact immersed Willmore surface satisfying inf e maxgop(ar) (P4 — %H 3) <2,
then (M) is either a totally umbilical sphere or a conformal Clifford torus.

The paper is organized as follows. In Section 2 we recall some basic
facts and inequalities about Willmore surfaces. In Section 3 we characterize
the totally umbilical spheres and the Veronese surface by use of an integral
inequality in terms of ® and H (see Theorem 1.1). Finally, the conformal
estimate is dealt in Section 4. The main idea in the proof of Theorem 1.2
is to consider a minimizing sequence g,, in G. If this minimizing sequence
is convergent in G, the assertion follows from Theorem 1.1. Otherwise, we
will show that M must be totally umbilical. The proof requires additional
techniques in progress.

2. Preliminaries

Let x : M — S™ be an immersed surface in the n-dimensional unit
sphere S™. We choose a local orthonormal frame field {eq,...,e,} in S™,
so that when restricted to x(M) the vectors ej,es are tangent to xz(M),
and {es,...,e,} is a local frame field in the normal bundle NM of M. Let
{wi1,...,wy} denote the dual coframe field in S™. We shall use the following
ranges of indices

1§Z7]7k7§2a 3§Oé,ﬂ,’7,"'§n.
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Then the structure equations are given by

dr = g w;i€i,
o
de; = E wijej + E hz-jwjea—wix,

dea = — Z h%—wjei + Zwageﬁ,

where w;; and w,p are the connection forms and (hf;), hf; = hf;, is the

second fundamental form of M. From the structure equations of M, the

Gauss equations are then given by

Rijii = (0ixdji — 0udjr) + Z(h?k 51— hahy), (2.1)

Ry = 6+ Y HhG — > hh%, (2.2)

2K = 2+ H* -8, (2.3)

Ragij = > _(hShi, — hSyhil), (2.4)

were K is the Gaussian curvature of M, S = 2:(11103)2 is the square of the
length of the second fundamental form, H = )" H%, = ) h{e, is the mean

curvature vector, and H = /) (h$)? is the length of the mean curvature
vector of M.

The covariant derivative Vh% of the second fundamental form h% of M

with components A, is defined by

Z hiwr, = dhg; + Z hiejwri + Z hijwr; + Z h?jw/ga,

(&7

and the covariant derivative Vzh% of Vh% with components th i 18 defined

by

Then the Codazzi equation and the Ricci formula are given by

= h = > h% Rkt + > hoy Rt + Y B Rgar. (2.6)
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Let ¢f; denote the tensor hy; — 25y, and @ = S %)2 the square of the
length of the trace free tensor qﬁw. These relations now imply the Simons’

identity, Lemmas 2.2 and 2.3. See also [5] for a simple derivation.
Lemma 2.1. JA® = Y7( %k) +Z¢O‘HO‘+®(2+ )—ZRimz.

Lemma 2.2. 3 ¢¢ H¥=1 3" |VHY2, where 3 [VEH 2= (H®)2.

1jj

Lemma 2.3. ) ( Z]k) > L3V HY2. The equality holds if and only

. H& H
if P11 = P20 = Tl and ¢%1 = P59 = —+, for all .
By use of the Willmore surface equation and Stokes’ theorem, we have

Lemma 2.4. Let M be a compact Willmore surface in the unit sphere
S™. Then

v = [ ST e

In the proofs of Theorems 1.1 and 1.2, we need the following estimate.

Lemma 2.5. If > (%) *+y*)?=2, > (2*)? = 2? and ¢ is a nonnegative
constant, then (3. 2%2%) 2+ y*2*)2+16¢ > (%)% 3 (y*)2—16c(> 2%yY)? <
f(®,2), where f(®,2) = (P + g—i)z, if ¢ is positive and ® > g—z; f(®,2) =
5®2%, otherwise. e equality of the first case holds if and only if one of the
1022, otherwise. Th lity of the fi holds if and only if f th

following three cases holds

2 2 2

7o = 4B

o+2

2 2 2 2
zo‘:4A””a2,

ot

50) AP = B2 = de(® 4 5)(E —n), AB = 4c(® + ),

C
22 o _ g Az*+By® _ a o
(®— %) and 2 —4@7,10}%7’6%1—2%2

)
=2 (@*)? n=3(y*)? and ¢ = X ay”

Proof. We first observe that the result follows by direct estimate for the
cases of c=0, z =0, ® = 0 and &n — ¢2 = 0. Without loss of generality, we
may assume that ¢, z, ® and &y — (2 are positive. By using the Lagrange
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multiplier technique, we get that

Az% 4+ 16enx® — 16eCy” + px® = 0,
Bz + 16¢€y® — 16eCx™ + py® = 0,
Ax® + By +vz® = 0,

for all . Multiplying the these equations by z7, y? and 27, respectively, we
find that

A? 4+ 16¢(8n — (%) + pé =

B? +16¢(én — () + pn =

AB + ¢ =

Az +16¢An — 16¢B¢ + pA =
Bz? 4 16¢B¢ — 16cAC + uB =
AE+BC+vA =

AC+ Bn+vB =

A2+ B? + vt =

S o o o o o o o

and thus
_ 2

=73

[A2 + B2+ 32¢(en — 42)] :

and
A? + B?
2

After making the substitutions of u and v, the Lagrange conditions can be

rewritten as

A7 16e(en — ) = 2o (44 B 4 32e(en — ().

B% +16¢(¢n — ¢2) = %n(Az + B* 4 32c(én — (%)),
AB = %(4 1 B + 32(en ~ 7))

Az? +16cAn — 16cB¢ = %(Az + B? + 32¢(én — ¢?)),

o



238 YU-CHUNG CHANG AND YI-JUNG HSU [June

Bz? + 16¢B¢ — 16cA( = %(ﬁ + B? + 32¢(én — ¢?)),

22(AE + BC) = A(A% + B?),
2%(AC + Bn) = B(A%+ B?).

Case 1. A=B=0. The only points that can give rise to a local maximum
value c®? are E = =2 and ¢ = 0. We note that ¢®? < 1<I>z2 if & < g—z.

Case 2. A = 0 but B # 0. In this case the third equation gives ( = 0. If
& # 0, then the side condition £ +7n = 2 , the first and fifth equations imply
¢=12- f—gc) and n=1(2 + f6c) ThlS case occurs only when & > £. It
follows from the last equation that B? = (<I> + £ ) and therefore that the
function takes on the value ¢(® + £ )2 If £E=0, then the assertion follows

from the simple case of &n — (2 = 0.
Case 3. A # 0 but B = 0. The argument is similar to Case 2.

Case 4. A # 0 and B # 0. It follows from the sixth and seventh equations
that
1 B
= —(A’4+BYH-——
é‘ 22 ( + ) A CJ

n = A +B%) - 5C

The side condition & + 17 = % then gives

¢ 2 ®

AB 22 2(A2+ B?)
On the other hand, we know from the third, fourth and sixth equations that

AB _ 2 isen - 02 4 B2,
Z

Comparing these two equations, we find that A? + B? satisfies a quadratic
equation, and by solving it, we obtain A% + B? = %(1)22 or %(Cb + g—i) To
find the value of én — (2, the third equation gives

(A% 4+ B +32¢(én — ¢?)) = 2% + 8¢ — —(A2 + B?).

K| o
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If A2+ B? = %@zz, then ¢(én — ¢?) = 0. There are nothing to prove. Thus
we may assume A% 4 B? = %(CD + g—z) In this case, we have c(én — ¢2) =
15(®+ g—Z)(CI) — g—i) This case occurs only when ¢ > g—z. Combining with the
first and second equations, we then obtain A% — B? = 4¢(® + g)(g —mn). The
third equation implies AB = 4¢(® + g—Z)C . Equalities cases are then clear
from the above argument.

Let Dyy1 = {z € R"™! : |z| < 1} be the open unit ball in R**! and G
the conformal group of S™. For each g € D, 11, we introduce the mapping,
also denote by g, g : S™ — S” given by

Crt+Atpu<z,9>)9

9(x) A1+ < z,9>)

9

VliW and p = )\)‘—Jfl We know that each conformal transforma-

tion of S™ can be expressed by T og, where T' is an orthogonal transformation
of S™ and g € Dy4+1 (see [10] and [11]).

where A =

Let x : M — S™ be a compact Willmore surface. It follows that for each
g € Dpy1, T = gox is also a compact Willmore surface. The new induced
first fundamental form of Z may be written in terms of the original induced
first fundamental form as
1 2

ds® = ds>.
3 M1+ < x,g>)? °

Furthermore, the second fundamental forms of  and x are related by

hS: = A(1+ < 2,9 >)h&+ < eq,g > 6.

We recite some relationships of corresponding quantities between & and
x as follows O

Lemma 2.6. The new H, ® and its derivatives can be expressed in
terms of that of original as follows

(1) H* = N(14 < z,9 >)H* + 2 < €q,9 >|.
(2) HY = X1+ < 2,9 >)[(1+ < 2,9 >)H} =257 < ej g >].

(3) &% = A1+ <z, 9 >)og.
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(4) & = \2(1+ < 2,9 >)?®.

(5) ¢ = N(1+ < 2,9 >)[(I+ < 2,9 >)ofy + of < er,g > +6f,
<ei,g>+op <ej,g>—df <eg >0k — ¢ < e,g > i

For any given constant vector g € R"™! let F%(x) = (1+ < z,9 >
YH* 4+ 2 < 4,9 >. Then F¢ satisfies the following equation
1 B —
Lemma 2.7. ALF* + 3 686 FF = 0.
Proof. It follows from the structure equations that

<z,9>; = <e¢;,g >,

«

<x,g>i = %<ea,g>+5ij7<ea,g>—5ij<m,g>,
< €, > = —¢%<ej,g>—7a<ei,g>,
At <eq,g> = —ZH?<€i7g>—Z¢%¢?j<eﬁag>
_ZHQQHB<65,Q>+HO‘<x,g>.

We then have
Ff=(1+<ux,9 >)HZ-0‘—2Z¢% <ej,g>,
and

ALFY = HQA<:L°,g>—|—ZZ<ei,g>H{1+(1—|—<a:,g >)AtH®
+2AL<ea,g>
= > H*HP <ep,9>—2H" <3,9>+42)  <e,g>HY
—(1+<$,g>)z¢%¢fjHﬁ—22Hﬁ<ei,g>
—2Z¢%gbfj<eg,g>—ZHO‘HB<65,9>+2HQ<:E,9>
= —Z [(1+<:1:,g>)H6+2<e/3,g>} %qzbf]
= =D dhouF”
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Finally, for any given constant vector g € R"*!, let

U = (U< 2,9 >)08+05 < er,g >+0% < eig >+ < ej,g >
_qula]{ <el7g>5ki_z¢ﬁ <e,g >5jk7

for all a1, j, k. We will use the following properties. O
Lemma 2.8. 7}, satisfies the following equations:
(1) ¥y = ¥5iy, for all a1, j, k.
(2) Zpfy; =0, for all o, i.

(3) Ty, = or all a,i.

3. Proof of Theorem 1.1

In this section we present the proof of Theorem 1.1. For simplicity,
from now on in this section, let r(H) = \/% + ¢H? + &-H*. First, we wish

to show that @ is equal to either 0 or % + HTQ +r(H).

Integrating both sides of the Lemma 2.1 over M, we have

0 = /M [ D@5 + Y o Hg + (2 + g — > R
_ /M (0507~ S o, HE + @@t T - @)~ 3 B,
It follows from Lemmas 2.2 and 2.3 that
H2
0> /M [— %Z|viﬂ*0‘|2+c1>(2+7 — @) —ZR@BH].

Since

S (Rapi2)? = 4 (65161, — ¢1,0%)°
=38 Z(Qﬁll)z Z(Q%)z - S(Z ¢(111¢?2)2,
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by Lemmas 2.4 and 2.5 with ¢ = 1, we get

0> [ [= 1300 a8 200 S eh)? + 83 éhihs)

2

B2+ H7 — @)}

= [ {5+ (Cenm? +16 3 05)* Y (o)?
2

—16 Z¢11¢12 }+(I>(2+H7—(I>)}
> / u(®, H),
M

where u is the continuous function given by u(®, H) = —% [<I>2 —(

) ite > 12 ((I),H):CI>(2+HTQ—¢>),if(I>§H—2.

+ 23 4

Ol

Notice that u is nonnegative. In fact, if 2 + . r(H)>® > %2, then

3 2  H? 2
> (24 -z >
u(@ H) > —S[0 - (5 + +r(H))][ S+ r(H)| >0,
and1f<I>< , then
2
w(®, H) > d(2+ %) > 0.

The preceding integral inequality then implies that if 0 < ® < 2 + 5 =
r(H), then either ® = 0 and M is totally umbilical, or ® = 2 + &= + r(H).

In the latter case we show below that M is minimal.

Now we shall simply assume that ® = 3 v r(H). In this case, all
the integral inequalities of previous argument become equalities. The proof

of M is minimal is broken up into four steps.

Step 1. We establish the following two equations for later use:

IVOP? = o5 ®, HY
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and

S |VEHP r(H) |V‘I>|2 o po
/M 49 _/MT(H) 2 / 4<I>ZZ¢ )

H?
+2+ &

Because @ = % + %2 + r(H), by Lemma 2.3, ¢111 B9y = %19 =

Ha
—¢591 = 4 and @3y = PGy = @y = —9Ty = 4, it follows from a

straight computation that

IVOIP=) 000, HY =D oM HF+>  ¢HHS) +(O o HI+Y | ¢5,HS)?

We obtain the first equation.

Since ® = 2 + %2 + r(H), we have
1 l_|_H_2
O =(;+ 2> HOH,
' (4+ r(H))
and hence

H)|V®|?
> HOH[®; = r(?{() )|1V |H2’
T tsT®

Multiplying by H¢, dividing by ® and integrating over M, the equation
AHY+ Y qﬁ%(bfjHﬁ = 0 implies that

_ / (SHOAH Z¢;§-¢>@HQH‘9)
o P P

: H
- /M._Z(cb S @ZZ o5 P
i V+iHY?  &;H*HY o po
— [ -2 2D LSS e
V4iHe? r(H V|2 I
:/M Z’ \Jrr(H)() \@2’ @ZZ‘bH }

+i4 2

This gives the second equation.

Step 2. We shall show that H? and ® are constants. Dividing the
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equation of Lemma 1 by ® and integrating over M, we get

AD >(¢ z]k) E@aHa H? zRaglz
Mﬁ_/M[ P ® +(2+7_¢) o I

By applying Stokes’ theorem, we obtain

v VLHOR 90 = 08 2
| | _ / [Z| | _Z JJ(I)2 J JHa + (24— —)
M

202 1P 2
_ZR3512}
P
B / |:Z|VJ_HOC|2 B Z|VJ_H01|2 N Z¢aq) Ha
Ju 40 2P P2
H? ERiBH
+(2+7—¢)—T],

where we have used ) ( Z]k) = 1> |VLH|? and P =
Consequently, we obtain from the equations of step 1 that

OZ/M [_|Z§f—z‘Z;HQIZZQSZ?H?HQ H;_(I)) E};im]
2 2
R e e O M) R L
2 R2
(2+2H7—<I>) 2 (I)aﬁm] |
:/M [|Z§2| (1— (H?iH)_i_H; Z quaHa 2_|_H7_<I>)

(65 D (65)? +—<Z¢%¢>&5>2}

_ |Vd|? 2r(H) H? o)
_/M{ v (1 T Ifff) 6[<1>(2+——<1> Z%H

‘1‘(2 ¢ H*)? + 16 Z(¢11 Z (6%2)* — 16 Z ¢16%)? }

- |Vd|? 2r(H) 1 H? 1 H?
_/M{ sar (= 5 2o TP g Y 50 ) 21,

Since the last term of the integrand vanishes,

PR+ — —®)— —(®+—)2=-2

H? 1 H? 3 [ 4 H? H* }
2 2 8
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we have

Vo2 2r(H
/ | <I>2| (1-— (2) H2):0'
M 2 T(H)—i-g"i‘ﬁ

We note that the integrand is non-positive. In fact, let

1 l_|_£
@) =5+ ==
4 1 1
§+6$+%JL’2
Then
1
"(z) = — yE— - 2§<0
108(5 + EIL’—F%IL‘ )2

for all z > 0, f is decreasing for all z > 0, and f(x) < f(0) =1 for all x > 0.

We then have |[V®| =0 or H = 0, thus ® is constant on each connected
component of the set where H # 0. Since H? satisfies the quadratic equation
P2 — (% + HT2)<I> + % =0, H? is also constant on each connected component
of the set where H # 0. We conclude that, whether H is zero or not, H?

and ® are constants.

Step 3. Assume that H? is a positive constant. We establish the follow-
ing five equations:
2

1 H
ATH® + 5(®+ 2 )H* =0,

1 H?
SV = 5(@+ ?)H{

S ONHY =D ¢HHT =Y N HS =) ¢HhHS =0,

2
SOCHT)? — (HS)? = 2(® + T) S gy e
and

H2
ZH?HS =(®+ ?)ZWEHQ'
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Since the equality in Lemma 2.5 with ¢ = 1 holds, applying

e — O H 6%+ o1, H6%)

H2
o+ 1L

twice, we have
o 8
SO = o G (@)Y e i+ ohels Y 6l H)

- Zaﬁ@%ZaﬁHﬁ + (002> oy H) 0|

H2
= arml o+ 10 S o o+ 2o 2 S o,

Thus

1 H?
AtH® + 5@+ ?)H“ =0,
as desired. We obtain the first equation.

Since H? is a constant, the first equation gives
1
0 = -AH?
2
— Z ‘VJ_HO:|2 + ZHOCAJ_HO:
H2
= > |VIH)? - (c1>+ —)H .
This is the second equation.

Now we show the third equation. Because the equality in Lemma 2.5

with ¢ = 1 holds, we have

H? H?
b+ —
4(+8)

2
4B = 4@+ [ S - X)),

H2
AB = 4(®+ ?)ZQS?W?%

A*+B? =

where A =) ¢4 H* and B =) ¢{H.
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Since A? + B? and H? are constants,

0= 2A(Z P H + Z P11 HT) + 23(2 P H™ + Z P12 HY)
= 2A) 6N HY +2B)  ¢HHT,

we have
AZQS%H?‘FBZ(Z%H? =0,

we make use here of the facts that ¢f;; = % and @121 = %. Similarly, we

also have
AZ¢?1H2B + B Z ¢?2H§ = 0.

Since A%+ B? is a positive constant, Y ¢$4 HY = —tB, Y. ¢S, HY = tA,
Yo HS = —sB and Y ¢, HS = sA, for some functions ¢ and s.
Taking differentiation of equations A% — B2 = 4(® + %2) [Z( 42—

S( ‘112)2] and AB = 4(®+ %2) > 951695, and then substituting ) ¢ HY =
—tB, Y oo HY' = 1A, 3 91 HY = —sB and 3 ¢fo Hy = sA, we get

H2
2tAB = (® + ?)(sAthB),

2sAB = (¢ + H?z)(tA — sB),
t(A? — B = (@ + H;)(tA — sB),

H?
s(A2—B?% = (& + ?)(—SA —tB).

In particular, t(A? — B?) = 2sAB, s(A%? — B?) = —2tAB, and s?AB =

—t?AB. Since at least one of A and B is nonzero, there are three cases. If

A =0, then —tB? = 0, —sB? = 0, so that t = s = 0. Likewise, if B = 0,

then t = s = 0. If A and B are nonzero, then s> = —t2, and hence t = s = 0.

In each case, t = s = 0. Therefore we have the third equation.

Taking differentiation of the third equation, and substituting ¢¢; =

He HY
oo = 9912 = — P91 = - and @51y = Phyy = Py = — P19 = —F, we find
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that

LM - () + Y s atEY = o,

g ST HPHS + Y ot (H, — HS) = 0,
1ZH{YH;+Z<¢>‘112ALHQ =0,

—Z [(H)? = (HS)* ]+ ) ¢%(HY — HS)) = 0.

The equations four and five then follow from ALH® +1 (¢ + 2= )H =0

and

HYy — Hy = ZH’BRgam = QZH’B(WW% — $100y).

Step 4. The hard part is to show that M is minimal. Suppose, to get a
contradiction, that H? is a positive constant. The following computation is
straightforward,

> HPH§ Ry = Y [VEHYPRigis = (1 LA Z IVEH?

Applying the third equation of step 3, we obtain

> HPH] Rpaiy = =2 (H{HY — HSHY ) (651675 — ¢52941) =0

Q
Because ¢111 ¢{f‘22 = @%12 = ¢221 = Tl and ¢211 ¢§Yz2 = ¢{f‘21 =

¢112 -

ZH?HBRBMJ‘J:%Z[( }Z‘ﬁ VHO+Y HUHS Y o H.

Applying the fourth and fifth equations of step 3, we obtain

H2
> HPHP Rgaij; = —(<I> + ) 2H?.

Because H? and ® are constants, > |[V-H®|? is also a constant, com-
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bining the above equations, we have

- s Sy S
- Z + ZHQ jgi T Hi Rijij + 2H Rgaij + H” Rgaij.;)
= Z( 82+ > HNATH®) + Y HEHY R +2 . HEH Rpaij
+> HPHPRpaij
DU/ ) it RN ) i
+> HQHBRBQij j

—Z > HG)? = <1>+— > IVEE P+ (1+HT2—§)Z\VLHQ\2
ZH-O‘H R,Bm-jj
1 H? 10

= 3@+ (3

v

+ H? —r(H)) > 0.

We then have a contradiction. This contradiction shows that H = 0.
Then we conclude that M is a minimal surface with ® = =, so that M is the

Veronese surface (see [7]). This completes the proof of the Theorem 1.1.

4. Proof of Theorem 1.2

The idea of the proof is to consider a minimizing sequence g,, of the
conformal group G, such that the sequence g,, converges to an element g
of the closure of G. If g9 € G, then the result follows immediately from
Theorem 1.1. Otherwise we shall show that M is totally umbilical.

By the hypothesis of Theorem 1.2, there is a sequence g,, € G such that
®,,—tH2 —r(Hp) < 2+2 on M, for all m, where r(H) = \/%+%H2+%H4,
®,,, and H,,, are the square of the length of the trace free part of the second

fundamental form and the mean curvature of the immersion g,, o x, respec-
tively. Without loss of generality, we may assume that g, € D, 11. Since the
closure of D,, ;1 in R"*! is compact, there is a subsequence, still denoted by
9m, which converges to go, for some gq in the closed unit disk. If gy € Dy41,
then ®,, tends to ®g, and H2, tends to H02 as m tends to infinity. In this
case, we obtain that ®g— —H 2—r(Hp) < 3 on M, and the desired conclusion
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follows from Theorem 1.1. Thus from now on, we may assume that gg is a
unit vector. In this case we shall show below that M is totally umbilical.

There are four steps we want to do at this point.

Step 1. We want to show that ® = 0 or (1+ < z,gp >)?>® = QQL/EFQ.
The proof is an adaptation of the proof of Theorem 1.1. To avoid ambiguity,
for each fixed m, let T = g,, o , and we shall now use the notations da and
da for the area measures of x and Z, respectively. We have to modify our
integral inequality in the proof of Theorem 1.1 as follows

Z S0P+ G HS +( 2+——c1> ZRQW}
S-S i =0T

_ - Z LA+ b2+ ) ZRQW}
1 L B 72
> ——f(<1>,H)+q>(2+——<1>)]da
2 2
> [ &u(®, H)da,

\Y

where v is the continuous function defined on M, v(®, H) = —% [<I> — (% +

B (i) lfq>> 2 L2 (H); 0(@, H) = =38 [0 — (3 + 22+ (),
i << 2y 2 +r(H); o(®,H) = Y8 4 I 4 or(H) — @, if & < 1L,

Dividing the mtegral inequality by A2, = 1_|17|2 and letting m — oo,
Lemma 2.6 gives

0> / OL(®, F)da,
M

where F = >~ F%¢,, F = |F|, was defined at Lemma 2.7 and L is the con-
tinuous function given by L(®,F) = —3 [(1+ < 2,90 >)P — 34521/6}72}7 i
(14 < z,90 >)?® > 32—)1/6}72; L(®,F) = _ﬁ [(1+ < z,g0 >)%® — 3+\/6F2}

it £7 < (14 < 2,90 >0 < SR L@, F) = I — (14 < 2,90 >)2@, if
(14 < 2,90 >)?® < .
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1
m on

On the other hand, since ®,,, — %Hﬁb - \/% + %Hﬁb + %Hﬁl < % +

M, taking limits m — oo, we see that

(1-1— <x,90 >)2q) —

and thus the integrand ®L is nonnegative. We conclude that & = 0 or
L =0, and hence ® = 0 or (14+ < z,g9 >)?® = %F? We note that all

inequalities become equalities in the procedure for limits, and, in particular,

o _ EF .
i~ 4

Step 2. We want to show that either M is totally umbilical or (1+ <
x,go >)2® and F? are positive constants. Multiplying both sides of the equa-
tion for ® in Lemma 2.1 by ®, integrating over M and applying pointwise

estimates of Step 1, we obtain
| R [
0 = /M [§|V¢>|Q+§¢>A¢>] da
_ / 1|W>|2+<I>{Z G2+ G HE+B( 2+——<1> ZRam]
> / |V<I>|2——cI>Z\VLHa\2 > o H D,

where in the last step we have used the identity

/M¢Z|VLHQ|2da=/ [ SO HH!+ 2> (> ¢fH®) } a.

In fact, this identity comes from multiplying the equation A+H a—l—Z(f;% (;EZBJF_I p

=0 by ®H® and then integrating over M.
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By using Lemma 2.5 again, we have

1oy loms -0 .
0> /M [§|v<1>| + D HOH =Y G H }
o1 H2 _ 7
+ @[—-f(@,ﬂ)+<1>(2+——c1>)} da
" 2 2
le-n Inms -on o = o1
> /M [§|v<1>| —I—ZZ@H“H,-“—ZQSO‘HO‘(I) + &%(®, H)| da,
where v was given at Step 1. Substituting the relationships of Lemma 2.6

into this last integral, we get

0> [ AL+ <20 ) E (oo
=205, (14 < 2, gm )Y i > G5 FY
1 (0% (0% (6% (6%
+§)‘§n(1+ < gm > o Y FOF

AL (14 < 2, gm >)2@20(N2, (14 < 2, gm >)2®, A F)
1

X da.
A2 (14 <z, gm >)? @

Dividing the integral inequality by A% and letting m — oo, we find that

0> [ [0+ <o > Sk
=21+ < 2,90 >)2 > i > oG FS
b5 < w00 >) Y oty S FOF] da
this we can do because ® = 0 or L = 0. We assert that the integrand is
nonnegative. Let  be a connected component of the set of points where
® > 0, and let U = ¢(14+ < z,90 >)\/5 defined on €2, where C% = %.

Then
U, = Vo < €i,go > +QCZ ¢11 (1+ <z, 90 >)971;

+2cZ % (14 < z, 90 >) 5,
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for all i. Substituting (1+ < z, go >)¢%k in terms of ¢

ik Lemma 2.8 gives

i 2\/—Z¢m j :%quglw?lm

for all 7, here we have used the fact that ¥$. = Iif for all «,1,j. Since

©jj

= U?, we find that the integrand is equal to (1+ < z,g9 >)?®(3 —

Z)|VU|? on Q. When ® = 0 the integrand vanishes, when ® > 0, because
2 _ 3-6
12

c2

N[ = (\

> 0, the integrand is also nonnegative, as desired.

Since every immersion is locally an embedding, 14+ < x, gy > vanishes
only at most finite points on M, thus |[VU|? = 0, if ® > 0. Therefore U is
constant on each connected component of the set where ® # 0. A conse-
quence of this is that either M is totally umbilical or (1+ < x, gg >)?>® and

F? are constants.

Step 3. Assume that (14 < z, g9 >)?® and F? are positive constants.
It is important now to derive the following four equations which will require

in Step 4:

4
P = 72 (Z o F et + Z $1a P 65),

®+ §ir<ngs)

ZQS?lFla:Z¢?2nyzz¢?1F2a:Z¢{f2F2a:0,

(Lt <m0 > I — () =214 < w00 >0+ 5] 3 g0

and
(1 < 2,90 >)° Y FPFg = [(1+ < z,g0>)> } 3 o5 Fe.

The way of proof is proceeding as the procedure of Step 1, but reverses

the order of taking limits and applying Lemma 2.5. Since g,,ox is a Willmore
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immersion, Lemma 2.6 gives

OZ/M Z ) +Z¢%Ha+q) +__<I> ZRO‘BH]
:/M > (65)? Z¢%JHQ+®2+__(I) ZRQBH}

> /M —- = Z |VEH? + 3(2 L2 P) ZRam}
- /M [ ammy+(E é?szaﬁ 163 (61)* > _(91)°
72
S16(30 6657 + B+ o~ #)} da
SRR
F16(14 < 2,9m >)* Y _(651)* D (¢5)°
—16(14 < z,gm >)*(O_ ¢y ?2)2]
+0(2 + >\22 — Ao (14 < @, g >) <I>)}da,
where A\, = m, and F2 = Y (F2)? was defined at Lemma 2.7 with

g = gm. Dividing the integral inequality by A2, and letting m — oo, we get

_/ [ S0t (o 416004 < .00 > 23 650)2 3 6%)°
2
16014 < 7,0 >)(Y 608 + @(% (Lt <20 >)%0) } da,

where I’ denote the function related to gg.

Now, we apply Lemma 2.5 with ¢ = (14+ < z, gy >)? to the first term of

the integrand. Since (1+ < x,go >)2® is a positive constant, 1+ < x,gg >

never vanishes and (1+ < z,gg >)?® = %Fz, Lemma 2.5 gives

0 > / { 1(1+< >)2[<I>+ r ]2
=~ Ju 2 0 8(1+ < z, g0 >)?

[% — (14 < 2,90 >)2<I>} } da
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3 PF? F*

= —Z (14 <z, go >)%P?% — d

/M 2[(+ z,90 >) 1 PR <2952 ™
= 0.

It follows that all the inequalities in the preceding process become equal-
ities. In particular, the equality in Lemma 2.5 with ¢ = (14+ < 2,99 >)?

holds, and hence the first equation follows immediately.

Applying the first equation twice, we have

> HoF”
8 (o3
= o (SO Yo+ Yo Y oo
t ST <905
+(O_ ol Y oL FT + D (017 Y 61 P76
8 1 F? 8
= —(® + FP ¢
1 ’ B B«
1 F?
= - |® £
2 8(1+ < , o >)2] ’

for all . Thus F'* satifies the following equation

Atpet [cb n i Fo = 0.
2 8(1+ < =, go >)?

The scheme of showing others are similar to that of Step 3 in the proof
of Theorem 1.1. We made a brief sketch here for clarity and completeness.
Let ¢ = (1+ < x,90 >) o for all a1, 7. Because Y = %, for all a1, 7,
Lemma 2.8 gives

F

111 = - T 2 < e2,90 > P19,
FOC

Ple = —72 —2 < ey, 90 > ¢,
s _

Pl = T 2 < ez, g0 > ¢y
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and

(e% _E 2 (6%
P122 = 4 +2<e1, 90 > ¢4

Because the equality in Lemma 2.5 with ¢ = (1+ < z, g >)? holds, we have

1
~CF?
2 )

A= B = 8C| Y (60)7 = (657,
AB = 8C > ¢%1¢%,

A*+B? =

where A =Y ¢} FY, B =3 ¢%HF* and C = 1((14+ < z, g0 >)?® + %2)
Since A% + B? and F? are constants, differentiating A% + B? and sub-
stituting go% i in terms of F* and ¢

o .
ij» We obtain

A WP+ BY oL =0,

AZ el Es + BZ Pla ks = 0.

Since A% + B? is a positive constant, YO EFY = —tB, Y oL FY = tA,
YN FY = —sB and Y| ¢ F = sA, for some functions ¢ and s.

Next, we differentiate the equations involved A?— B? and AB, obtaining

tAB = C(sA+tB),

sAB = C(tA—sB),
t(A? — B?) = 2C(tA — sB),
s(A* — B%) = 20(—sA —tB).

As before, this implies s = ¢t = 0, and we get the second equation.

Differentiating the second equation, the proof of remaining part uses
exactly the same argument as Theorem 1.1, one just replaces H* by F“

throughout.

Step 4. Finally, we assert that M is totally umbilical. Suppose that, to
get a contradiction, M is not totally umbilical. It will then follow from Step
2 that both (1+ < z,gp >)?® and F? are positive constants.



2006] WILLMORE SURFACES 257

Setting C = % [(14— <x,g90>)?0+ %2)], since F? is a constant function,

we have

1
0= 5(1+ < x,g0 >)?AF?
= (I4+ <m,90 > |V F*P + (1+ < z,90 >)* Y F*A+F®
= (14+ <m,g0>)° ) |V F*]> - CF?,

and hence
(14 < 2,90 >)* Y |VIF)? = CF”.
This means that (1+ < z,g0 >)2>. |V F®? is also a constant function.

Both first derivatives being equal to zeros, we get

(1+ <, g0 >)2ZFJQF’]O; < e€i, g0 >
= —(1+ <x,q0 >)Z |VJ'FOC|2 < €5, 90 >2 .

Once again we use the fact that (1+ < x,g9 >)2> |[V1F?|? is a con-

stant, we have
1
“(I+ <z,90 >)2A{(1+ < x,g0 >)* Z \VLFO‘|2}
2
1
5(14— <x,g0>)? Z IVEFOPA(L+ <, g0 >)?

1 4 1 a2
+5(1+ <2,90 >) AN VR

+(1+ < 2,90 >)°V(1+ < x,90 >)* -V Y _|[VIFP
= CFQ{—ESZ < €3, 90 2

Hi+< 2,90 >) (D H* < ea, g0 >-2 < 2,40 >)]

1 4 1 a2
+5 (14 <2,90 >) AN VPP,

here we have used the fact that A < z, g9 >=> H* < en, g0 >—2 < x,gp >.
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We need to adjust the last term,
1 4 1L a2
5 (14 <290 >) AN IVER
— (14 < 2,90 >) [Z(Fg)? + ZFﬁng]
= (14 < 2,90 >)* [Z(Fﬁf + Y Fr(ALFY),

+ Z FFF Rigjr + 2 Z F’iaFfRﬁaij + Z FOFPRgaij

[June

Now we take care of these terms containing curvature. First, it is

straightforward that

[e% nle’ o H2 o .
ZFi F; Rikjk:R12122|VJ‘F |2:(1+__§)Z|VLF 2.

4

Next, applying the second equation of Step 3, we obtain
> FPF] Roaij = —2(F{'F) — F§F)) (05161, — ¢f10y) = 0.

Finally, substituting Piig in terms of I and ¢

&,
ij)

3 gives

(1+ < z,g0 >)? Z FPF’Rgaij
1
= SO ENFN Y () = (B + D e Ft Y FYE.

Then applying the third and fourth equations of Step 3, we have

F? F? 2
N FFPR -»-:—[@ } .
e = T S < >

Together these equations imply that

1
5(1—# <z,90 >)'A E |VEEFe?
H2

P
= (14 <m0 >)*) (FY)? + CF2(1+ < 2,90 >)*(1+ — — =

4

2

the second equation of Step

).
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Substituting this into the original equation, it follows that

0 = (1+ <a,go>)" S (F)* + CF2[— 35" < e g0 >

+(1+ < 2,90 >)(Z H* <eq,90 >—2<m,90 >)

H? ©®
(1 < g0 > (L4 = — 5)].

To estimate the first term, let

FS = (H<w,g0 >)F 4+ (14 < 2,90 >)(F < ej, 90 >+ < €;,90 >
=Y F{ < er.go > 0ij),

for all «,4,j. Then

Z = (14 < z,90 >) Z Y = —CF“,

and

> ()
=2(1+ < 3,90 >)* ) _FLF" < ej g0 >+ > FOFY <eiygo >
— Y FRFY < ex, g0 >)
+(1+ < 2,90 >)4Z(F§)2 +2(1+< 7, go >)? Z IVEFP? < e, go >2
=2(1+ < m,90 >)*2 ) _FIFY < ej g0 >+ » (F — FFY < ei g0 >)
H(A+ <90 >)) (FD)? +2(1+ <, 90 >) CZFaFk < ex,g0 >
+2(1+ < z, 90 >)QZ VPP < e, g0 >2
=2(1+ < z,90 >)*2) FIFY < ej, 90 >+Y _ F Rpoi; P < i, g0 >)
+(H+< z, 90 >)4Z(Fioj)2+2(1—|— < z,g0 >)> Z |VEFY? < e, go >3
= —2(1+ <z,90 >)* > _IVIF? <eiygo >2 H14 < w90 >)* D (F).

Thus the first term can estimate from below by

(14 <90 >)" Y () =D (F5)* +2CF? Y <eingo >*
> N (FF)?+20F?) " < ey go >
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1 -
23 DO E?+20F) ) <eigo >
1
= 502F2 —|—20F2Z < €i,90 >2 .
Because 1 =< 2,99 >2 + 3. < e;,90 >2 + . < ea, go >2, we conclude that

(1+ <z, go >)2H2

-

0> CF21-)" <eigo>? = <00 > +

1 1
+(1+ < z,g90 >)H < €4, 90 > 4—§F2 — Z(H_ < x,90 >)2<I>
9 1 24 — /6
- 0F2[—F2— el 29| = 2 VPRt .
3 4(+<:1:,go>) oG >

This contradiction shows that M is totally umbilical. This completes the
proof of Theorem 1.2.
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