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Abstract

We give a proof of, for the case of contact structures defined

by global contact 1-forms, a theorem stated by Eliashberg that

for any overtwisted contact structure on a closed 3-manifold, its

contact homology is 0. A different proof is also outlined in the

appendix by Yakov Eliashberg.

1. Introduction

A contact structure ξ on an odd dimensional manifold is a nowhere

integrable hyperplane distribution. If ξ is coorientable then it is defined by

a global 1-form α, i.e., ξ := kerα. α is called a defining contact 1-form

of ξ. In this article all contact structures which we consider are defined

by global contact 1-forms, and all manifolds are closed and orientable. A

contact manifold (M, ξ) consists of a (2n− 1)-dimensional manifold M and

a contact structure ξ on M . Write ξ := kerα where α is a contact 1-form

defining ξ, then (M, ξ) has a natural orientation defined by the volume form

α ∧ (dα)n−1.

A contact structure ξ on a 3-manifold M is overtwisted if there exists

an embedded disc D ⊂ M such that T (∂D) ⊂ ξ|∂D, TzD 6⊂ ξz for all

z ∈ ∂D, and ξ ∩ TD defines a singular foliation with exactly one singular
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point (which has to be elliptic). It is proved by Eliashberg [3] that every

homotopy class of plane distributions of a 3-manifold has a unique (up to

a contact isotopy) overtwisted contact representative. On the other hand,

many 3-manifolds possess non-overtwisted contact structures, making the

classification of contact manifolds a very subtle question.

Based on the introduction of pseudoholomorphic curves in symplectic

manifolds by Gromov [10], Eliashberg and Hofer in the mid 90’s introduced

Contact Homology Theory ([4, 6], see also [1] for the Morse-Bott version)

to provide Floer-type invariants HΘ(ξ), the contact homology, for contact

manifolds. Here let us describe very briefly the construction of contact ho-

mology, which is in fact an algebra. Readers are suggested to consult [1],

[4] and [6] for more detail. First of all, each contact 1-form α associates a

unique vector field R = Rα transversal to ξ := kerα, R is called the Reeb

vector field associated to α and is defined by

dα(R, ·) = 0, α(R) = 1.

The symplectization (R×M,d(etα)) (t ∈ R) is equipped with an α-admissible

(see Section 4.2) almost complex complex structure. The contact homology

is a homology whose complex is generated by good (see Section 4) periodic

Reeb trajectories, and whose boundary operator ∂ is defined by counting

in R ×M one-dimensional moduli of pseudoholomorphic curves of genus 0

with finite dα-energy which converge asymptotically to a single Reeb orbit

as t→ ∞ and an arbitrary number of Reeb orbits as t → −∞. The resulting

homology depends only on the isotopy class of contact structures ([4, 6]).

The main purpose of this paper is to give a proof to the following the-

orem stated by Y. Eliashberg [4] in the case where the overtwisted contact

structure is defined by a global contact 1-form.

Theorem 1.1. (Eliashberg [4]) If ξ is an overtwisted contact structure

on a 3-manifold M , then HΘ(ξ) = 0.

Note that in Hofer’s proof of Weinstein Conjecture [11] for overtwisted

contact 3-manifolds he showed there exists a contractible Reeb orbit in every

overtwisted contact 3-manifold, and such a Reeb orbit must be the asymp-

totic boundary of a pseudoholomorphic plane with finite energy. If this pseu-

doholomorphic plane is the only pseudoholomorphic curve that converges to
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the said Reeb orbit as t→ ∞, then the contact homology of the overtwisted

contact structure is 0.

In this paper our proof of Theorem 1.1 is based on the classification of

overtwisted contact structures by Eliashberg [3], open book representations

of contact manifolds (see Theorem 2.1) by Thurston and Winkelnkemper

[15] and Giroux [8], a construction of an overtwisted contact structure from

a trivial Dehn surgery inspired by Geiges [7], as well as some techniques

and conclusions of some S1-invariant moduli of pseudoholomorphic curves

from [16] and finally, the fact that contact homology is independent of the

choices of a contact 1-form and an admissible almost complex structure in

the construction of HΘ(ξ).

Here is an outline of the paper: Section 2 consists of some background

on open books. In Section 3 we first construct a contact 1-form α from an

open book then ”twist” it along a contractible Reeb orbit by a trivial Dehn

surgery to get a new contact 1-form α′. It is then proved that ξ′ := kerα′ is

overtwisted and yet is homotopic to ξ as plane distributions. In particular

we get a special contractible Reeb orbit tx which will be proved in Section

5 to satisfy the equation ∂tx = ±1. Section 4 consists of brief definitions

of contact complex and contact homology, as well as some discussion on

cylindrical contact homology. In Section 5 we first show that energy and

homotopy constraints severely limit the types of pseudoholomorphic curves

asymptote tx at positive infinity. Such holomorphic curves must be finite

energy planes. Then by using methods similar to [16] we prove that, modulo

free R-actions, the algebraic number of such holomorphic planes is equal to

the algebraic number of certain gradient trajectories of a Morse function,

hence is ±1. Thus ∂tx = ±1 and the contact homology of ξ′ is 0.
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2. Open Books and Contact Structures

For any surface S and any ψ ∈ Diff(S) we denote by Sψ the mapping

torus

S × [0, 1]/ ∼,

(ψ(x), 0) ∼ (x, 1).

An open book decomposition of a connected closed orientable 3-manifold

M consists of a 1-dimensional submanifold B (a link in M), called the bind-

ing, and a fibration π :M \B → S1 with fibers connected embedded surfaces

with boundary B. The fibers are called pages. In this paper we assume that

there is a tubular neighborhood B×D2 of B so that π restricts to the normal

angular coordinate of B = B × {0} in B ×D2. Then

M = Σφ ∪id (B ×D2),

where Σ is an orientable surface with boundary ∂Σ ∼= B and φ ∈ Diff+(Σ, ∂Σ)

an orientation-preserving diffeomorphism with φ = id near ∂Σ. Note that φ

is unique up to isotopy. The pages of π : M \B → S1 are diffeomorphic to

Σ.

We will need the following important result by Thurston and Winkelnk-

emper [15] and Giroux [9] concerning contact structures on 3-manifolds.

Theorem 2.1. Each open book associates a unique up to isotopy contact

structure and conversely, each contact structure is supported by an open book

unique up to positive stabilizations.

We will not go into the detail here but point out that by applying positive

stabilizations several times if necessary we may assume that ∂Σ ∼= B is

connected.

With Theorem 2.1 in hand we can start with any open book (Σ, φ) and

alter the corresponding contact structure ξ by a trivial Dehn surgery to get
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a new contact structure ξ′ homotopic to ξ as plane distribution, as we will

do in the next section.

3. Overtwisted Contact Form from Trivial Dehn Surgery

In this section we will construct an overtwisted contact structure ξ′ :=

kerα′ that is homotopic to a given contact structure ξ := kerα as plane

distributions. We sketch the idea of the construction of α′ here before going

into the detail.

Start with a contact 1-form α (following [15]) associated to a given open

book (Σ, φ) such that α has a pair of contractible Reeb orbits tx and ty

associated to a pair of birth-death type of critical points x, y of a smooth

functionK on Σ, such that x is a saddle point and y is a local minimum point.

Following the construction in [7] of contact 1-forms under Dehn surgeries,

we apply a trivial Dehn surgery to ty. In particular, we cut out a tubular

neighborhood of ty and glue it back, identifying the two boundaries by using

the gluing matrix

[

−1 0

0 −1

]

. The resulting 3-manifold is the same (up to

an orientation-preserving diffeomorphism) while the contact 1-form α, after

being modified near the boundaries, glued back to a new contact 1-form α′.

The new contact structure ξ′ is then shown to be overtwisted and yet is

homotopic to ξ as plane distributions. Now start the construction.

Given an open book (Σ, φ) with ∂Σ ∼= B connected, we can define an

associated contact 1-form α on M = Σφ ∪id B ×D2 as follows.

Let F ⊂ Σ be a collar of ∂Σ such that φ|F = id. Let (q, p) be coordinates

of F = [q−, q+]×S
1
p so that ∂Σ is identified with {q+}×S

1
p . We may assume

that 0 ≪ q− ≪ q+. Let (ρ, t) be the polar coordinates of the D2-factor of

B × D2 ∼= S1 × D2 so that D2 = {ρ ≤ 1}. Let p be the coordinate of S1.

Note that ρ can be viewed as a smooth function of the coordinate q of F ,

and dρ
dq
< 0. Also, S1

t acts on Fφ ∪ (B ×D2) via rotations in the t-direction.

It fixes B and acts freely on the complement of B in Fφ ∪ B ×D2. Let V

denote the orbit space and let

πt : Fφ ∪ (B ×D2) → V (1)

denote the corresponding projection.
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Let K ≥ 0 be a smooth function on M such that

1. K|(Σ\F )φ ≫ 1 is a constant;

2. K is S1
t -invariant on Fφ ∪ (B ×D2); K̄ := (πt)∗K is a Morse function

on int(V ) the interior of V with |dK| ∼ 0 on F , K = 1 on ∂Σ;

3. K̄ has precisely two critical points on int(V ): one saddle point x and

one local minimum point y; x and y are of birth-death type, i.e., there

is only one gradient trajectory of K̄ that connects x and y;

4. K̄(x) > K̄(y) > 1 and K̄(x) ∼ K̄(y) ∼ 1;

5. in the interior of F choose a small disc neighborhood

Dy = {(r, θ) | r ≤ δ}, δ > 0 a constant,

with center y, here (r, θ) are the polar coordinates of Dy, then K̄|Dy

depends only on r;

6. K|B×D2 depends only on ρ, dK
dρ

> 0 on 0 < ρ ≤ 1, K(ρ) = h(ρ)ρ2 for

some smooth function h depending only on ρ.

Let β be a 1-form on Σ such that dβ is a symplectic 2-form on Σ with

β = qdp near ∂Σ, β = r2dθ on Dy.

On B ×D2 we also consider a smooth function Q > 0 depending only

on ρ such that

Q = q near ρ = 1,
dQ

dρ
(0) = 0,

dQ

dρ
> 0 and Q

dK

dρ
−K

dQ

dρ
> 0 for ρ > 0.

Then

α :=

{

(1− t)β + tφ∗β +Kdt on Σφ

Q(ρ)dp +K(ρ)dt on B ×D2
(2)

is a contact 1-form on M provided that K|Σ\F is a large enough constant.

Denote ξ := kerα.
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We have two contractible simple Reeb orbits of α:

tx := {x} × S1
t , ty := {y} × S1

t .

Both tx and ty are oriented by the vector field ∂t.

Now define a contact 1-form α′ on M :

α′ =

{

α on M \ (Dy)φ,

h1(r)dt+ h2(r)dθ on (Dy)φ.
(3)

where h1, h2 are smooth functions of r satisfying

1. h1(r) = −1 and h2(r) = −r2 for r < ǫ;

2. h1(r) = K(r) and h2(r) = r2 for δ − ǫ ≤ r ≤ δ;

3. h′1(r)h2(r)− h′2(r)h1(r) > 0 for 0 < r ≤ δ;

where 0 < ǫ ≪ δ
2 is a constant. The third condition above is to ensure that

α′ is a contact form on (Dy)φ. Note that α′ has two special Reeb orbits

tx = {x} × S1
t , t̄y = {y} × S1

t

The notation t̄y represents the curve ty but with the reversed orientation,

i.e., the orientation given by −∂t. Let ξ
′ := kerα′.

Lemma 3.1. ξ′ is an overtwisted contact structure.

Proof. Let ℓ be the gradient trajectory of −K̄ that goes from x to y.

Then ℓ× S1
t is a homotopy between tx and ty. We have

∫

ty

α′ < 0 <

∫

tx

α′

so there exists a point z ∈ ℓ such that
∫

tz
α′ = 0. Since α′ is S1

t -invariant on

ℓ× S1
t we conclude that

tz is a Legendrian curve of ξ′.

Since tz is homotopic to tx, tz is contractible. Moreover, tz is contained in

a tubular neighborhood of the binding B and its winding number with B is
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±1, so tz is spanned by an embedded disc in a tubular neighborhood of B.

We can find an overtwisted disc spanning tz as follows.

Note that h1 vanishes at z, and that ∂t ⋔ ξ′ on Fφ ∪ (B × D2) except

where h1 = 0. Recall that V is the projection of Fφ ∪ (B ×D2) via πt. Let

γ ⊂ V \ {h1(r) < 0} be an embedded smooth path such that

1. z is an endpoint of γ,

2. γ|Dy is transversal to ∂r, and

3. γ̇ ‖ ∂ρ near B.

Define Dz := π−1
t γ. Then Dz is an embedded smooth spanning disc of tz.

Moreover, since ξ′|tz = Span(∂t, ∂r), Dz ⋔ ξ′ along tz by the second condition

above, ∂t is tangent to Dz \ {ρ = 0} hence ξ′ ∩ TDz has only one singular

point and the singular point is elliptic. So Dz is an overtwisted disc. �

Lemma 3.2. ξ′ and ξ are homotopic as plane distributions.

Proof. It is enough to show that α and α′ are homotopic as nowhere

vanishing 1-forms. Since α = α′ on M \ (Dy)φ it is enough to consider a

homotopy supported in (Dy)φ.

For s ∈ [0, 1] define

αs := s(1− s)χ(r)dr + (1− s)α+ sα′ on (Dy)φ

where χ(r) ≥ 0 is a smooth function on r such that χ(0) = 0 = χ(δ) and

χ > 0 away from r = 0, δ. We have

αs = s(1− s)χ(r)dr +
(

(1− s)K(r) + sh1(r)
)

dt+
(

(1− s)r2 + sh2(r)
)

dθ.

It is clear that αs is nowhere vanishing when s is close to 0 or 1. Also for

every s, αs is nonvanishing on the region where χ is positive and the region

where r is close to 1. For s 6= 0, 1 we have

(1− s)K(r) + sh1(r) = 0 ⇔ h1(r) =
(s− 1)K(r)

s

(1− s)r2 + sh2(r) = 0 ⇔ h2(r) =
(s− 1)r2

s
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The function g(s) := s−1
s
, s ∈ (0, 1), is an increasing function of s such that

g(s) → −∞ as s→ 0+, and g(s) → 0− as s→ 1−.

Recall that near r = 0,

h1(r)

K(r)
=

−1

K(r)
,

h2(r)

r2
=

−1

1

Since K(r) 6= 1 for r near 0, for r small enough (1 − s)K(r) + sh1(r) and

(1−s)r2+sh2(r) will not vanish simultaneously for any s ∈ [0, 1]. Therefore

αs is nowhere vanishing for s ∈ [0, 1]. Since α0 = α and α1 = α′, α and α′ are

homotopic as nowhere vanishing 1-forms on M . So ξ and ξ′ are homotopic

as plane distributions. �

4. An Outline of Contact Homology

In this section we give a brief account on definitions of contact complex,

contact homology and cylindrical contact homology. Readers are referred to

[1, 4, 6] for more detail.

4.1. Contact complex algebra

Let (M, ξ) be a (2n − 1)-dimensional closed contact manifold with ξ

defined by a global contact 1-form α. For a generic choice of α, there are

only countably many periodic trajectories (including all positive multiple

ones) of the Reeb vector field Rα; and these Reeb orbits are nondegenerate,

meaning that 1 is not an eigenvalue of their Poincar’e return map. We call

such contact 1-forms regular.

Definition 4.1. A Reeb orbit is said to be bad (see Section 1.2 of [6]) if

it is an even multiple of another Reeb orbit whose Poincaré return map has

the property that the total multiplicity of its eigenvalues from the interval

(−1, 0) is odd. A Reeb orbit is good if it is not bad.

We denote by Pα the set of all good Reeb orbits of α. Note that Pα

includes all positive multiple ones as individual elements.
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Definition 4.2. Let α be a regular contact 1-form defining the con-

tact structure ξ. The contact complex Θ(α) is then defined to be the free

commutative algebra over Q (or R, C) generated by all elements of Pα.

Remark 4.1. In [6] Θ(α) is defined with coefficients in the algebra

C[H2(M)][[t]]. Here we use Q-coefficients for the sake of simplicity.

4.2. Contact homology

An almost complex structure J on the symplectization (R×M,d(etα))

of (M, ξ = kerα) is said to be α-admissible if J(∂t) = Rα and J |ξ : ξ → ξ on ξ

is dα-compatible, i.e., dα(v, Jv) > 0 for all nonzero v ∈ ξ and dα(Jv1, Jv2) =

dα(v1, v2) for v1, v2 ∈ ξ. Note that compatibility property does not depend

on the choice of the defining contact 1-form for ξ.

Let γ be a good Reeb orbit. We use the following notations:

1. Υ:= a finite collection of (not necessarily distinct) good Reeb orbits of

α. Υ can be empty.

2. |Υ|:= the cardinality of Υ.

3. M̃(Υ, γ):= the moduli space of finite dα-energy pseudoholomorphic

maps from a (1+ |Υ|)-punctured sphere into R×M with one puncture

goes to γ at t = ∞ and other punctures go to Υ at t = −∞ (see [6]).

4. M(Υ, γ):= the union of 1-dimensional components of M̃(Υ, γ).

Note that Υ was treated in [6] as an ordered set, yet here we consider Υ an

unordered set.

Secondly, an admissible almost complex structure J on R × M is R-

invariant, hence there is a free R-action on M̃(Υ, γ). For generic α-ad-

missible J , M(Υ, γ)/R consists of finitely many points. Note that because

of energy constraint (7) there are only finitely many choices for Υ such that

M̃(Υ, γ) 6= ∅. Let κγ denote the multiplicity of γ. For C ∈ M(Υ, γ)/R we

also denote by κC the multiplicity of C.
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The boundary operator ∂ of the contact complex (Θ(α), ∂), when applied

to γ, is defined by (see [2 , 4, 6] but for a different coefficient ring)

∂γ :=
∞
∑

i=0

∂iγ, where (4)

∂iγ := κγ
∑

|Υ|=i

(

∑

C∈M(Υ,γ)/R
dimM(Υ,γ)=1

±1

κC

)

Υ. (5)

Here Υ denotes the monomial γ1γ2 · · · γ|Υ|, and the ± sign in (5) depends

on the orientation of C ∈ M(Υ, γ)/R.

Note that because the action A(σ) :=
∫

σ
α of any Reeb orbit σ of α is

bounded from below by a positive number independent of σ, ∂iγ = 0 for all i

sufficiently large, and the right hand side of (5) consists of only finitely many

nonvanishing terms. Then extend ∂ over Θ(α) according to the Leibnitz rule

[6]. (Θ(α), ∂) is now a differential algebra.

Theorem 4.1.([6]) ∂2 = 0 for regular contact 1-form α and a generic

α-admissible almost complex structure J .

Definition 4.3. The contact homology algebra HΘ(α, J) of the pair

(α, J) with J α-admissible is defined to be the quasi-isomorphism class of

the differential algebra (Θ(α), ∂), i.e., HΘ(α, J) := ker ∂
im∂ .

HΘ(M, ξ) := HΘ(α, J) is independent of the choices of (α, J) hence is

an invariant of the contact manifold (M, ξ).

4.3. Cylindrical contact homology

Recall the boundary operator ∂ =
∑∞

i=0 ∂i. Since ∂
2 = 0 we have

∂21 + ∂0∂2 + ∂2∂0 = 0

If ∂21 = 0 then one can forget the algebraic structure of Θ(α), simply thinking

it as a free module over Q generated by all good Reeb orbits, and then use

∂1 : Θ → Θ as the boundary operator to define the cylindrical contact

homology HC(ξ) := ker ∂1
im∂1

of (M, ξ) as a vector space. A sufficient (but not

necessary) condition for ∂21 = 0 to be true is ∂0 = 0. Note that since ∂0
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is defined via counting finite dα-energy pseudoholomorphic planes bounding

contractible Reeb orbits at t = ∞, ∂0 = 0 holds trivially when there exist

no contractible Reeb orbits.

5. Contact Homology of Overtwisted ξ′

Back to the overtwisted contact 3-manifold (M, ξ′) and the contact 1-

form α′ that we constructed in Section 3. From Definition 4.1 it is clear that

tx is good hence is a generator of the contact algebra Θ(α′) for the contact

homology of ξ′.

From now on Υ denotes a finite collection of (not necessarily distinct)

good Reeb orbits of α′. Note that Υ can be empty. The notations M̃(Υ, tx)

and M(Υ, tx) are as defined in Section 4 (with respect to the overtwisted

contact 1-form α′). Here we point out a few things about M̃(Υ, tx) which

we will need later.

Given ũ ∈ M̃(Υ, tx) we write ũ = (a, u) according to the splitting R×M

and let C ⊂M denote the image of u. Assume that Υ 6= tx, then

dα′ > 0 on C except at finitely many points of C. (6)

Moreover the dα′-energy of ũ is

∫

C

dα′ =

∫

tx

α′ −

∫

Υ
α′ > 0, (7)

unless when Υ = tx. In the exceptional case, M̃(tx, tx) = pt, the corre-

sponding pseudoholomorphic curve is the trivial cylinder R × tx. Since we

are only interested in holomorphic curves with positive finite dα′-energy, we

may assume that Υ does not contain tx and its positive iterates.

In the following we will study M̃(Υ, tx) and M(Υ, tx). First a few more

notations.

Recall that F ⊂ Σ is a collar of ∂Σ such that φ|F = id. Denote N :=

Fφ ∪ (B × D2), then V = πtN (see (1)). Let Ls := {K = s} ⊂ N denote

the s-level set of K. In particular, L0 = B. Let is : Ls →֒ N denote the

inclusion. Ls is S1
t -invariant for any s. Note that α′|N is independent of t,

hence we have the following simple
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Fact 5.1. i∗sα
′ is a t-independent closed 1-form on Ls for any regular

value s > 0 of K|N .

Let Nx := {K ≤ K|tx} ⊂ N . Let C ⊂ M be the image of some

ũ ∈ M̃(Υ, tx).

Lemma 5.1. C ⊂ Nx.

Proof. Denote Cs := C ∩ Ls for Ls ⊂ N . Suppose that C 6⊂ Nx. Then

there exists a level set Lso ⊂ N \ Nx for some so such that C ⋔ Lso . So

Cso ⊂ C is a union of finitely many embedded circles which are pairwise

disjoint. Note that [Cso] = [S1
t ] ∈ H1(Ls,Z). Let A ⊂ C denote the domain

bounded by Cso and tx then we have

∫

A

dα′ =

∫

tx

Kdt−

∫

Cso

sdt = K(tx)− so < 0,

which contradicts with (6). So we conclude that C ⊂ Nx. �

The above lemma implies that, if Υ 6= ∅ then Υ consists of Reeb orbits of

α′ in Nx\tx. Note that Nx\tx consists of two disjoint connected components.

We write

Nx \ tx = Ny ∪NB ,

whereNy is the connected component containing t̄y, and NB is the connected

component containing B.

Note that C intersects with tx at finitely many points. If C ∩ tx 6= ∅

then C \ tx = (C ∩ Ny) ∪ (C ∩ NB) is a union of two disjoint set, which is

impossible, so C does not intersect with tx geometrically. Therefore we must

have either C ⊂ Ny or C ⊂ NB .

Lemma 5.2. C ⊂ NB .

Proof. Suppose not. Then C ⊂ Ny and Υ consists of Reeb orbits in Ny.

Note that for K(ty) < s < K(tx),

Ls ∩Ny
∼= S1

θ × S1
t .
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Also recall that

α′ =

{

h1(r)dt+ h2(r)dθ on (Dy)φ
Kdt+ β on Ny \ (Dy)φ.

Then the Reeb vector field R′ of α′ is

R′ =

{

(

h′2(r)∂t − h′1(r)∂θ
)

/(h1(r)h
′
2(r)− h2(r)h

′
1(r)) on (Dy)φ,

(

∂t + Y
)

/(K + β(Y )) on Ny \ (Dy)φ,

where Y is the vector field in πt(Ny) such that dβ(Y, ·) = dK. Parametrize

the family of level sets Ls∩Ny by s. We have dβ = gds∧dθ for some positive

function g. Hence Y = −Ks
g
∂θ where Ks :=

dK
ds

> 0. Therefore if γ ⊂ Ny is

a Reeb orbit of R′ then exactly one of the following two cases must be held:

1. γ is a positive iterate of t̄y, hence γ is homotopic to a curve in Ny \ ty
that represents the class −n[S1

t ] ∈ H1(S
1
θ × S1

t ) for some n ∈ N;

2. γ is not a positive iterate of t̄y, [γ] = −n[S1
θ ] +m[S1

t ] ∈ H1(S
1
θ × S1

t )

for some n ∈ N , m ∈ Z.

On the other hand [tx] = −[t̄y] = −[S1
t ] ∈ H1(Ny,Z). So Υ 6= ∅ as tx

is not contractible in Ny. Also Υ does not consists of positive iterates of t̄y.

Now that tx is not homologous in Ny \ ty to any nonempty finite collection

of orbits of R′, C has to intersect with the Reeb orbit t̄y nontrivially and

positively at every point of intersection. Let U ⊂ Ny be a tiny tubular

neighborhood of t̄y such that C ⋔ ∂U . Let σ := C ⋔ ∂U , then [σ] = −n[S1
θ ] ∈

H1(Ny \ U) for some n ∈ N. Write C ′ := C \ U and ∂C ′ = ∂+C
′ ∪ ∂−C

′,

where ∂+C
′ = tx, ∂−C

′ = Υ ∪ σ. But [Υ] = −n′[S1
θ ] ∈ H1(Ny \ U,Z) for

some n′ ∈ N hence tx is not homologous in Ny \ U to Υ ∪ σ, which implies

that C does not exist if C ⊂ Ny. So C ⊂ NB . �

Lemma 5.3. M̃(Υ, tx) = ∅ unless Υ = ∅.

Proof. By now we have known that C ⊂ NB. If Υ 6= ∅ then Υ consists

of Reeb orbits of α′ in NB . It is easy to check that B is a generator of

H1(NB ,Z) ∼= Z and every Reeb orbit in NB is homotopic to a positive

multiple of B, while tx is contractible in NB . So Υ = ∅. �

Lemma 5.4. M̃(tx) = M(tx).
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Proof. Let Dx ⊂ NB be an embedded, S1
t -invariant spanning disc of tx

such that Dx ∩ B is a point. One can show that the Conley-Zehnder index

CZ(tx,Dx) of tx relative to Dx is 2 (see [13] and Section 1.2 of [6]). Note

that tx is not homologically trivial in M \ B. Otherwise there would exist

another surface S ⊂M \B with boundary ∂S = tx. Then the closed surface

S ∪Dx intersects with B at exactly one point, which is impossible given the

fact that B is homologically trivial. Moreover, H2(NB ,Z) = 0 so the Conley-

Zehnder index CZ(tx) := CZ(tx,Dx) = 2 is independent of the choice of a

spanning surface of tx. By Lemma 5.2, the fact that H2(NB ,Z) = 0 and the

formula for the formal dimensions (see [6] Proposition 1.7.1 for the general

formula) of components of M̃(tx) we get that M̃(tx) is of pure dimension

with

dimM̃(tx) = CZ(tx)− 1 = 2− 1 = 1

provided that M̃(tx) 6= ∅. Hence M̃(tx) = M(tx). �

Lemma 5.5. The algebraic number of M(tx)/R is ±1.

Proof. By Lemma 5.2, suppose that M(tx) 6= ∅ then the image C in

M of any element ũ ⊂ M(tx) is contained in NB . Moreover, C ⋔ B is a

single point, C intersects with B positively at their point of intersection.

Recall that S1
t acts on NB via rotations, fixing B pointwise and acting freely

on NB \ B. Note that α′ is S1
t -invariant. To study M(tx) we consider an

α′-admissible almost complex structure J which is also S1
t -invariant. Let

Ms(tx) ⊂ M(tx) denote the subset consisting of S1
t -invariant elements of

M(tx).

Let i denote the standard complex structure on C. Let z = s + it be

the complex coordinate of C. Denote ũs :=
dũ
ds
, ũt :=

dũ
dt
. A map ũ = (a, u) :

C → R×M is a element of M(tx) if ũ satisfies the d-bar equation

∂̄J ũ := ũs + J(ũ)ũt = 0, (8)

u({|z| = r}) → tx as r → ∞, a(z) → ∞ as z → ∞, and
∫

u(C) dα
′ > 0 is

finite. By applying a reparametrization if necessary we may assume that

u(0) ∈ B.

Most of the proof essentially follows the arguments and methods used

in Section 7 of [16]. Here we only outline the idea.
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Claim 1. Ms(tx)/R consists of a single element.

Like in [16], this is done by showing that there is a 1-1 correspondence

between Ms(tx)/R and the trajectories from x to B of some gradient-like

vector field with respect to −K̄. And there is one and only one such trajec-

tory.

Claim 2. For generic S1
t -invariant J , the linearized d-bar operator is

surjective at any element of Ms(tx).

In particular, this implies that an S1
t -invariant solution to the d-bar

equation (8) is an isolated solution.

Note that

TR×B(R×M) = (R⊕R′)⊕ C, ξ′|R×B = C (9)

where R, R′ denote the trivial real line bundles generated by ∂t and R
′ the

Reeb vector field of α′ respectively, and C is the trivial complex line bundle

which equals ξ′ when restricted to R×B.

Now that the α′-admissible almost complex structure J is also S1
t in-

variant, then

J |R×B =

[

i 0

0 i

]

, i =

[

0 −1

1 0

]

,

according to the decomposition in (9). Let Dũ denote the linearized d-bar

operator ∂̄ at ũ. Then for η ∈W 1,2(C, ũ∗T (R×M)),

Dũη = ηs + Jηt +∇ηJ. (10)

In particular, near z = 0 (10) is just the perturbation of the standard

Cauchy-Riemann equation by a bounded zero order term, hence is surjective

on |z| ≤ ǫ for some ǫ > 0.

Now away from z = 0 we have u : C \ {0} ∼= R× S1 → NB \B. NB \B

has the structure of a trivial S1 bundle over an annulus. Then following

Lemma 7.5 of [16], for generic S1
t -invariant J , Dũ is surjective when |z| ≥ ǫ.

We then conclude that for generic S1
t -invariant J , Dũ is surjective at every

S1
t -invariant solution ũ.
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Finally we will show that Ms(tx) = M(tx) essentially. This is done by

considering branched covers over NB .

For each n ∈ N let Zn ⊂ S1 denote the cyclic subgroup of order n

generated by the 2π
n
-rotation on S1

t . The action of Zn induces an n : 1

branched covering map

Φn : NB → NB with B the branch set.

Each S1
t -invariant J induces an infinite sequence of S1

t -invariant almost com-

plex structures

Jn := (Φn)∗J(Φ
−1
n )∗

Let α′
n := (Φn)∗α

′. Jn is α′
n-admissible. Note that α′

n is homotopic to α′ as

contact 1-forms, hence ξ′n := kerα′
n is isotopic to ξ′ as contact structures on

NB. Also tx is a Reeb orbit of α′
n.

Claim 3. For n large enough, Ms
Jn
(tx) = MJn(tx).

If not, then there is an infinite sequence subsequence ni, ni → ∞ as

i→ ∞ such that MJni
(tx)\M

s
Jni

(tx) 6= ∅. Given ṽi ∈ MJni
(tx)\M

s
Jni

(tx),

ṽi lifts via Φni to an Zni-invariant element ũi ∈ MJ(tx) \ Ms
J(tx), ũi is

unique up to R-translation. By applying R-translations if necessary we get

that a subsequence of ũi, also denoted by ũi by the abuse of language, will

converge to an S1
t -invariant solution ũ ∈ Ms

J(tx) as i→ ∞, this contradicts

with Claim 2, hence is impossible.

By trading J for Jn for any n large enough we have Ms(tx) = M(tx).

This complete the proof. �

Following the definition of the boundary operator of the contact homol-

ogy we have the following

Lemma 5.6. ∂tx = ±1. Hence HΘ(M, ξ′) = 0.

Thus finished the proof of Theorem 1.1.
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Appendix (by Yakov Eliashberg). Sketch of an Alternative Proof

The following paragraph is a brief description of the argument by Eliash-

berg of why one can get in the overtwisted case a contact form with an exactly

1 holomorphic plane bounded by one of the orbits.

Consider a model of an overtwisted contact structure which contains a

solid torus with a Lutz 2πn-twist. The contact form in this solid torus can

be chosen as

α = cos rdz + sin(nr)dϕ

where 0 ≤ ρ ≤ 1, z ∈ R/Z. This is not exactly good formula because it

is not smooth for r = 0 but can be smoothed without any problems. The

torus ρ = π/2n foliated by horizontal Reeb orbits which bound holomorphic

planes. By making n large we can make the action of these orbits arbitrarily

small. Now it is easy to see explicitly that there is no other holomorphic

planes bounded by these orbits inside the the considered solid torus. Also

there are no other holomorphic curves different from the planes for which

these orbits can be at the positive end because their action is less than

anybody else’s action. On the other hand, if there is a plane bounded by

these orbits which goes outside than the integral of dα along the piece of

this curve inside the solid torus can be made bigger than the action of the

orbit. This is, of course, Morse-Bott type form, but by a small perturbation

we get 2 orbits out of the whole torus, and one of them has the required

properties.
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