
Bulletin of the Institute of Mathematics
Academia Sinica (New Series)
Vol. 1 (2006), No. 1, pp. 79-209

ON GEODESICS IN SUBRIEMANNIAN GEOMETRY

BY

BERNARD GAVEAU AND PETER GREINER

Abstract

We study a subRiemannian geometry induced by 2 specific

vector fields in R
3, and obtain the canonical curve whose tangents

provide the missing direction.

1. Introduction

Let

X =
∂

∂x
+ y2

∂

∂t
, Y =

∂

∂y
(1.1)

denote two vector fields in R
3. In this and in a subsequent article we shall

consider the following question:

“How many geodesics induced by X and Y join two given points (x0, y0,

t0) and (x, y, t)?”

By a geodesic we mean the projection of a bicharacteristic on the base.

Bicharacteristic curves

(

x(s), y(s), t(s), ξ(s), η(s), τ(s)
)

(1.2)
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are solutions of Hamilton’s differential equations. Hamilton’s function is

H =
1

2
(ξ + y2τ)2 +

1

2
η2, (1.3)

and the Hamiltonian system of differential equations for the bicharacteristic

curves are

ẋ(s) = Hξ = ξ + y2τ, (1.4)

ẏ(s) = Hη = η, (1.5)

ṫ(s) = Hτ = ẋy2, (1.6)

ξ̇(s) = −Hx = 0 ⇒ ξ(s) = ξ = constant, (1.7)

η̇(s) = −Hy = −2ẋyτ, (1.8)

τ̇(s) = −Ht = 0 ⇒ τ(s) = τ = constant, (1.9)

where s designates arclength. Given a point P (x, y, t) we introduce the

boundary conditions

(

x(0), y(0), t(0)
)

= (x0, y0, t0), (1.10)

and
(

x(sf ), y(sf ), t(sf )
)

= (x, y, t), (1.11)

at some final length sf .

Definition 1.1.
(

x(s), y(s), t(s)
)

, the projection of the bicharacteristic

curve onto the base is a subRiemannian geodesic which joins P = P (x, y, t)

to P0 = P (x0, y0, t0).

To simplify matters we note that the vector fields (1.1) are translation

invariant with respect to x and t, so we may assume x0 = 0, t0 = 0 with no

loss of generality. Also, when y0 6= 0, symmetry considerations permit us to

set y0 > 0, see (2.35), (2.36), again with no loss of generality.

Theorem 1.2. y0 > 0. Every point P (x, y, t), y > 0, can be joined to

P (0, y0, 0) by at least one local geodesic. The number of these local geodesics

is finite if and only if

(i) y 6= y0, or

(ii) y = y0 and t+ y20x 6= 0.
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Theorem 1.3. y0 > 0. When y = y0 and t+ y20x = 0, then P (x, y0, t)

is joined to P (0, y0, 0) by a discrete infinity of local geodesics.

Theorem 1.4. y0 = 0. Every point P (x, y, t) is connected to the origin

by at least one geodesic. The number of geodesics joining P (x, y, t) to the

origin is finite if and only if y 6= 0. When y = 0, every point of the “canonical

submanifold” {(x, 0, 0), x 6= 0} is joined to the origin by a continuous infinity

of geodesics, while every point of the complement {(x, 0, t), t 6= 0} is joined

to the origin by a discrete infinity of geodesics.

Due to the length of the proof of Theorems 1.2 and 1.3 we present

it in two consecutive articles. The present paper counts the number of

geodesics which join points of the y = y0-plane to (0, y0, 0); in particular it

describes the canonical submanifold and proves Theorem 1.2(ii) and The-

orem 1.3. A subsequent article counts the number of geodesics which join

points P (x, y, t), y 6= y0 to P (0, y0, 0); in particular it contains the proof of

Theorem 1.2(i). Theorem 1.4 was stated and proved in [9].

Theorems 1.2−1.4 are self-explanatory. Still, we need to discuss the idea

of a “local geodesic” and the idea of a “canonical submanifold”. But first

we start with the notion of a subRiemannian geometry.

Suppose we are given m linearly independent vector fields X1, . . . ,Xm

on an n-dimensional manifold Mn; we shall refer to X1, . . . ,Xm and their

linear combinations as horizontal vector fields, and a curve with horizontal

tangents will be called a horizontal curve. It is useful to introduce a metric

by saying that the Xj-s have length 1 and they are perpendicular to each

other. If m = n, we have a Riemannian metric, and if we let X∗
j denote the

vector field adjoint to Xj with respect to the obvious volume element, then

∆ = −1

2

n
∑

j=1

X∗
jXj (1.12)

is the usual Laplace-Beltrami operator. The Newton potential is

N(x, x0) =
1

(2− n)|Ωn(x0)|d(x, x0)n−2
, n > 2, (1.13)
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where |Ωn(x0)| is the surface area of the induced unit ball with center x0,

and d(x, x0) is the Riemannian distance between x and x0. Then

∆xN(x, x0) = δ(x− x0) +O
(

d(x, x0)
−n+1

)

, (1.14)

in other words, the inverse kernel, or fundamental solution differs from

N(x, x0) by a negligible error.

When m < n, we shall assume Hörmander’s bracket generating condi-

tion [10] which says that X1, . . . ,Xm and a finite number of their Lie brackets

generate all of TMn. Then Chow’s Theorem [5] says that between every two

points, locally, there is a piecewise C1 horizontal curve. This yields a dis-

tance and therefore a geometry which we shall call subRiemannian. To see

how remarkable Chow’s Theorem is, note that given two vector fields ∂/∂x

and ∂/∂y in R3(x, y, z), there is no horizontal curve joining any two points

whose z-components differ. Chow’s Theorem has been improved all the way

up to smooth horizontal curves on smooth manifolds; in particular, nearby

points can be connected by subRiemannian geodesics.

We came to these questions by trying to find the analogue of the Newton

potential for operators of the form

∆ =
1

2

m
∑

j=1

X2
j + · · · , m < n, (1.15)

where · · · stands for lower order terms; we note that the Laplace-Beltrami

operator has the form (1.15) with m = n.

In Riemannian geometry, given a point C, every point in a sufficiently

small neighbourhood of C is connected to C by one, single, unique geodesic.

In subRiemannian geometry this is not the case. A number of examples

have been worked out where given a point C, one can find points arbitrar-

ily near C which may be joined to C by a finite, more than one, and even

by an infinite number of geodesics. The first example was the Heisenberg

group studied by Gaveau in [7]. Then Strichartz [11] pointed out that if

the first brackets generate TMn then every point will have at least two cut

points arbitrarily near it. A rather complete description of the geometry

of Heisenberg groups can be found in [2], and the geometry induced by the

Grusin operator is discussed in [4]. We note that the geometry induced by

the Grusin operator is not included in our definition of a subRiemannian
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geometry, although the same concepts will work there. Example (1.1), dis-

cussed in [9], and the present article, is the first higher step example, more

than one bracket is needed to cover TMn, where infinite number of geodesics

connecting arbitrarily near points have been observed. We believe that this

is the case in all subRiemannian geometries.

When y 6= 0, X, Y and [Y,X] = Y X − XY = 2y∂/∂t yield the full

tangent space. When y = 0, we need X, Y , ([Y,X] = 0) and
[

Y, [Y,X]
]

=

2∂/∂t to cover the tangent space. So R
3 naturally breaks up into 2 domains,

y > 0 and y < 0, and their boundary y = 0; sometime we say that the

domain y > 0 (or y < 0) is step 2, while the set y = 0 is step 3. As already

mentioned y ≷ 0 can be treated at the same time, so we may assume that

y > 0. We shall say that a geodesic which joins 2 points in y > 0 is local if it

stays in the domain y > 0. Geodesics that cross the boundary y = 0 cannot

be localized so we refer to them as nonlocal.

Every point of the line y = y0, t + y20x = 0 is joined to (0, y0, 0) by

a discrete infinity of geodesics. This property provides this line with extra

structure and more symmetry. We shall refer to this line as the “canonical

submanifold”, and speculate that using it as the third coordinate to supple-

ment x and y, or their exponential version, should help our understanding

of the structure of the operator (1.15). ∆ does not have to look simpler in

these coordinates, but it may have geometric meaning; somewhat like spher-

ical coordinates, which make the Laplace operator look more complicated

than cartesian coordinates, but they also give more geometric structure. We

note that the canonical curve goes into the x-axis as y0 → 0, see also Theo-

rem 1.4. Thus our “natural coordinates” near (0, y0, 0) degenerate into the x

and y axes at the origin. In particular this suggest that in higher step cases,

higher than 2, we shall need to deal with singular coordinates, somewhat

like polar coordinates in R
2.

The notion of the canonical submanifold is probably quite general. Its

tangent space provides the missing directions not covered by the horizontal

vector fields. We state this as follows:

“We are given m linearly independent vector fields on an n-dimensional

manifold Mn. For every point P0 ∈ Mn there is an n − m dimensional

submanifold S0, P0 ∈ S0, characterized by having all its points connected to

P0 by an infinite number of geodesics.”
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Of course, [2] and [9] suggest that this general statement will have to be

refined somewhat.

Chapter 2 discusses Hamiltonian mechanics. Chapters 3–8 prove The-

orem 1.2(ii) and Theorem 1.3. Chapter 9 contains a discussion of the be-

haviour of nonlocal geodesics on the y = y0-plane and we apply these results

to obtain parts of Theorem 1.4.

The final version of this article was in part written while the second

named author visited Tokyo University of Science at the end of 2005. He

would like to express his profound gratitude to Professors Kenro Furutani

and Takao Kobayashi for the invitation and for their help in providing very

pleasant working conditions.

2. The Geodesics

Hamilton’s equations.

We consider 2 vector fields in R
3,

X =
∂

∂x
+ g(y)

∂

∂t
, Y =

∂

∂y
, (2.1)

and assume that X, Y and their successive Lie brackets

[Y ]n(X) =
[

Y,
[

Y, . . . , [Y,X]
]

]

=

(

∂

∂y

)n

g(y)
∂

∂t
= g(n)(y)

∂

∂t

cover the tangent space at every point ~r = (x, y, t). This is equivalent

to having g(my)(y) 6= 0 for all y ∈ R with some my = 1, 2, . . .. A curve
(

x(s), y(s), t(s)
)

is called horizontal if its tangent vector
(

ẋ(s), ẏ(s), ṫ(s)
)

is

always a linear combination of X and Y ; equivalently

ṫ(s) = g
(

y(s)
)

ẋ(s). (2.2)

According to a result of Chow [5] this hypothesis implies that for every 2

points ~r0, ~r1 ∈ R
3 there is a continuous, piecewise C1 curve ~r(s) which is

horizontal and joins ~r0 and ~r1:

~r(0) = ~r0, ~r(s1) = ~r1.
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Let Γ(~r0, 0 | ~r1, s1) denote the space of such curves, and for ~r(s) ∈ Γ we let

E
(

~r(·)
)

=
1

2

∫ s1

0

[

ẋ(s)2 + ẏ(s)2
]

ds (2.3)

denote its energy. We are interested in the following variational problem:

“find a curve ~r(s) of minimal energy in Γ(~r0, 0 | ~r1, s1)”.

In other words we are looking for a curve ~r(s) such that

~r(0) = ~r0, ~r(s1) = ~r1,

ṫ(s)− g
(

y(s)
)

ẋ(s) = 0, 0 ≤ s ≤ s1,

E
(

~r(·)
)

= Min
{

E
(

~ρ(·)
)

; ~ρ(s) ∈ Γ
}

.

This is a control problem and to find the stationary curves we introduce

a Lagrange multiplier τ(s) into the Lagrangian

L =

∫ s1

0

[1

2

(

ẋ(s)2 + ẏ(s)2
)

+ τ(s)
(

ṫ(s)− g
(

y(s)
)

ẋ(s)
)

]

ds. (2.4)

One has Lagrange’s equations

ẍ(s)− d

ds

(

τ(s)g
(

y(s)
)

)

= 0,

ÿ(s)− τ(s)g′
(

y(s)
)

= 0,

τ̇(s) = 0,

and τ(s) = τ is a constant. Thus L takes the form

L =

∫ s1

0

[1

2

(

ẋ(s)2 + ẏ(s)2
)

+ τ
(

ṫ(s)− g
(

y(s)
)

ẋ(s)
)

]

ds.

Introducing the associated momenta

ξ =
∂L

∂ẋ
= ẋ− τg, η =

∂L

∂ẏ
= ẏ, τ =

∂L

∂ṫ
,

we obtain the corresponding Hamiltonian

H =
1

2

[

(

ξ + τg(y)
)2

+ η2
]

. (2.5)
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Hamilton’s equations are

dy

ds
= η,

dη

ds
= −τg′(y)

(

ξ + τg(y)
)

, (2.6)

dx

ds
= ξ + τg(y),

dt

ds
= g(y)

(

ξ + τg(y)
)

, (2.7)

ξ and τ are constants of motion. (2.8)

Equations (2.6) form a closed system which can be integrated. Once y(s) is

known, (2.7) yields x(s) and t(s) by quadrature.

Symmetries and reductions.

(i) We need 3 parameters, ξ, τ , sf , and fix H,

H =
1

2
, (2.9)

which implies that s is arclength.

(ii) Changing (ξ, τ) to (−ξ,−τ), the trajectory
(

x(s), y(s), t(s)
)

changes

to
(

− x(s), y(s),−t(s)
)

, see (2.6), (2.7). Consequently, trajectories, or

“geodesics”, with τ ≥ 0 will give us all geodesics, and from now on we

shall assume that

τ ≥ 0. (2.10)

(iii) Solutions of (2.6), (2.7) are invariant with respect to translation

along x and t, so it suffices to assume that

x0 = 0, t0 = 0. (2.11)

From now on all solutions of (2.6)−(2.8) will start at (0, y0, 0).

(iv) τ = 0 implies that η = constant, and the trajectories starting from

(0, y0, 0) are given by

x(s) = ξs, (2.12)

y(s) = y0 + ηs, (2.13)
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t(s) = ξ

∫ s

0
g(y0 + ηs′)ds′ =

ξs

ηs

∫ ηs

0
g(y0 + s′)ds′. (2.14)

The set of points
(

x(s), y(s), t(s)
)

is a surface parametrized by (ξs, ηs).

(v) When

g(0) = 0 and g′(0) = 0,

the x-axis,

x(s) = s, y(s) = 0, t(s) = 0 (2.15)

is a solution of (2.6)−(2.8). In this case ξ = 1, η(s) = 0, and the parameter

τ is indeterminate.

Integration of the equations of motion.

With

H =
1

2
, η =

dy

ds
, (2.16)

we have
(

dy

ds

)2

= 1−
(

ξ + τg(y)
)2
, (2.17)

or,

ds = sgn
(

ẏ(s)
) dy
(

1−
(

ξ + τg(y)
)2
)1/2

. (2.18)

Thus
(

ξ + τg(y)
)2 ≤ 1, (2.19)

and we may replace y by the variable α, where

sin α = ξ + τg(y) = ẋ(s), (2.20)

cos α = ẏ(s), see (2.17). (2.21)

This fixes α,

−π
2
≤ α <

3π

2
. (2.22)
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We note that

−π
2
≤ α ≤ π

2
⇒ ẏ(s) ≥ 0, (2.23)

π

2
≤ α <

3π

2
⇒ ẏ(s) ≤ 0. (2.24)

Differentiating (2.20) yields

dα

ds
= τg′

(

y(s)
)

, α 6= ±π
2
, (2.25)

and

sgn(dα) = sgn
(

g′(y)
)

. (2.26)

Finally, (2.7) and (2.25) give us

dx

dα
=

dx

ds

ds

dα
=

sin α

τg′(y)
, (2.27)

dt

dα
=

dt

ds

ds

dα
=

sin α(sin α− ξ)

τ2g′(y)
. (2.28)

g(y) = yn, n = 1, 2, . . ..

Again we have τ ≥ 0.

a) Trajectories with τ = 0. According to (2.6) η is constant. When

η 6= 0, (2.12)−(2.14) give

x(s) = ξs (2.29)

y(s) = y0 + ηs (2.30)

t(s) =
ξ

(n+ 1)η

[

(y0 + ηs)n+1 − yn+1
0

]

. (2.31)

Extracting ξ and η, η 6= 0, one finds that the trajectories fill the surface

t(y − y0)−
x

n+ 1
(yn+1 − yn+1

0 ) = 0. (2.32)

When η = 0 the trajectories are

x(s) = ξs, y(s) = y0, t(s) = ξyn0 s, (2.33)
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ξ = ±1. This is the straight line

t = yn0x (2.34)

in the y = y0 plane.

b) Trajectories with τ > 0. We shall treat odd n and even n separately.

(i) n = 2m. The hamiltonian system is invariant with respect to the

symmetry,

(x, y, t, ξ, η, τ) −→ (x,−y, t, ξ,−η, τ), (2.35)

so it suffices to find all trajectories with

y0 > 0 and ẏ(0) = η(0) ∈ R, (2.36)

or

y0 = 0 and ẏ(0) = η(0) > 0. (2.37)

Here (2.25) takes the form

dα

ds
= 2mτy2m−1,

so,

sgn(dα) = sgn
(

y(α)
)

. (2.38)

From (2.19),

−1 ≤ ξ + τy2m0 ≤ 1, (2.39)

and since τ > 0, we have

−∞ < ξ < 1, if y0 > 0, (2.40)

−1 ≤ ξ ≤ 1, if y0 = 0. (2.41)

To simplify notation we set

ζ = −ξ, −1 < ζ <∞. (2.42)
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Then (2.20) takes the form

y(α) = sgn
(

y(α)
)(ζ + sinα)1/2m

τ1/2m
. (2.43)

We choose α0 ∈
[

−π
2 ,

3π
2

)

, such that

y0 = y(0) =
(ζ + sinα0)

1/2m

τ1/2m
, (2.44)

so

sgn(cosα0) = sgn
(

ẏ(0)
)

. (2.45)

Integrating (2.27) and (2.28) we obtain

x(α) =
1

nτ1/n

∫ α

α0

sgn
(

y(α′)
) sinα′dα′

(ζ + sinα′)1−1/n
, (2.46)

t(α) =
1

nτ1+1/n

∫ α

α0

sgn
(

y(α′)
)

sinα′(ζ + sinα′)1/ndα′, (2.47)

and then (2.43)−(2.47) yield the trajectories with y0 > 0; note that the y-

motion is bounded and y(α) oscillates between two extreme positions. Next

we describe our trajectories in terms of ζ.

α) ζ > 1. (2.43) implies that y(α) never vanishes, y(α) > 0 so dα > 0,

and α always increases starting at α0.

y(α) is maximum at α = π
2 ,

5π
2 ,

9π
2 , . . ..

y(α) is minimum at α = 3π
2 ,

7π
2 , . . ..

Consequently, α = (2k + 1)π2 are the turning points of the y-motion.

β) ζ = 1 corresponds to trajectories with the minimal turning points on

the y = 0 plane.

γ) −1 < ζ < 1. (2.43) requires that ζ + sinα > 0, therefore

sin−1(−ζ) ≤ α ≤ π − sin−1(−ζ), −π
2
≤ sin−1(−ζ) ≤ π

2
. (2.48)

These trajectories are more complicated. α starts at α0 and increases till

π − sin−1(−ζ), then decreases to sin−1(−ζ) and starts increasing again till

α = α0. Then the cycle starts again. Assuming ẏ(0) > 0, y increases till a
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maximal turning point, then starts decreasing, passes through the y = y0-

plane and the y = 0-plane till it hits a minimal turning point which is

negative, turns around, increases till y = y0 for a full cycle, and then starts

again.

When ẏ(0) < 0, it starts decreasing and does the same cycle; this hap-

pens when α0 ∈
[

π
2 ,

3π
2

)

. In either case the turning points of the y-component

of the trajectory occur at α = π
2 :

ymax =
(1 + ζ)1/2m

τ1/2m
, ymin = −(1 + ζ)1/2m

τ1/2m
, (2.49)

and if ẏ(0) > 0, we have

sin−1(−ζ) < α0 <
π

2
. (2.50)

δ) ζ = −1, (ξ = 1), τ > 0 ⇒ y ≡ 0, and (2.7) yields

x(s) = s, y(s) ≡ 0, t(s) ≡ 0, (2.51)

which is the x-axis.

(ii) n = 2m + 1, τ > 0. Here the Hamiltonian system is invariant with

respect to the symmetry

(x, y, t, ξ, η, τ) −→ (−x,−y, t,−ξ,−η, τ), (2.52)

so we may assume that

y0 > 0, or y0 = 0 and ẏ(0) > 0. (2.53)

Also, (2.26) implies that

dα > 0, (2.54)

and α always increases. Again,

−1 ≤ −ζ + τy2m+1
0 ≤ 1,

thus y0 ≥ 0, τ > 0 yield

−1 ≤ ζ <∞. (2.55)
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Formulas (2.43), (2.46) and (2.47) still hold if we leave off the factor

sgn
(

y(α)
)

, since the odd n-th root takes care of the sign of y(α). y(α) has

turning points at α = (2k + 1)π/2, k = 0, 1, 2, . . .. When ζ ∈ [−1, 1], y(α)

vanishes at 2kπ + sin−1(−ζ), 2kπ + π − sin−1(−ζ), k = 0, 1, 2, . . ..

The discussion of the trajectories in this, the odd n, case is the same as

the discussion in the even n case, as long as we remember that here α always

increases.

Length and action of a trajectory.

With our convention H = 1
2 , ẋ

2 + ẏ2 = 1, and then the parameter s is

arclength. Also, (2.25) yields

ds =
dα

τg′(y(α))
=

dα

nτy(α)n−1
. (2.56)

Consequently, the arclength ℓ of the trajectory between α0 and α is

ℓ =
1

nτ1/n

∫ α

α0

sgn(y(α′))

(ζ + sinα′)1−1/n
dα′, n even, (2.57)

ℓ =
1

nτ1/n

∫ α

α0

dα′

(ζ + sinα′)(n−1)/n
, n odd. (2.58)

We note that when n is even, ζ+sinα′ > 0, and so is sgn
(

y(α′)
)

dα′, and

if n is odd then dα′ > 0 and so is (ζ + sinα′)(n−1)/n. Consequently ℓ > 0, as

expected. The action integral along a trajectory is

S =

∫ s

0
(ξdx+ ηdy + τdt−Hds). (2.59)

According to (2.2), dt = g(y)dx, so

ξdx+ ηdy + τdt =
(

ξ + τg(y)
)

dx+ ηdy,

and the equations of motion yield

ξdx+ ηdy + τdt =
(

(

ξ + τg(y)
)2

+ η2
)

ds = 2Hds.
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Consequently the action is half the arclength of the trajectory,

S =
1

2
s. (2.60)

g(y) = y2.

A given trajectory
(

x(α), y(α), t(α)
)

depends on three parameters, α0,

ζ ≥ −1, τ > 0, and is given by

y0 =
(ζ + sinα0)

1/2

τ1/2
, (2.61)

y(α) = sgn
(

y(α)
) (ζ + sinα)1/2

τ1/2
, (2.62)

x(α) =
1

2τ1/2

∫ α

α0

sgn
(

y(α′)
) sinα′dα′
√
ζ + sinα′ , (2.63)

t(α) =
1

2τ3/2

∫ α

α0

sgn
(

y(α′)
)

sinα′√ζ + sinα′dα′. (2.64)

The arclength along this trajectory from (0, y0, 0) to
(

x(α), y(α), t(α)
)

is

ℓ(α) =
1

2τ1/2

∫ α

α0

sgn
(

y(α′)
) dα′
√
ζ + sinα′ ; (2.65)

we note that (2.63)−(2.65) are elliptic integrals. Recall that −1 ≤ ζ < ∞,

and

(i) for ζ > 1, α always increases starting at α0, and y(α) remains positive

when y0 > 0,

(ii) for |ζ| < 1, α oscillates in the interval
[

sin−1(−ζ), π − sin−1(−ζ)
]

,

sin−1(−ζ) ∈
[

−π
2 ,

π
2

]

. y(α) vanishes at sin−1(−ζ) and at π − sin−1(−ζ).

When y0 = 0, |ζ| ≤ 1. Suppose a geodesic starts at (0, y0, 0), y0 > 0.

For reasons which will become clear later, we shall refer to such geodesics as

“local geodesics” when they stay in the half space y > 0, otherwise we shall

call them “nonlocal geodesics”.

Our aim in this and in a subsequent article is to “count” the number of

geodesics which join (0, y0, 0) to (x, y, t) when g(y) = y2. We shall distinguish

three cases:

(a) y = y0, y0 6= 0,
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(b) y 6= y0, y0 6= 0,

(c) y0 = 0.

The last case was already discussed in detail in [9] using Jacobi’s theory

of elliptic functions.

3. g(y) = y2, ζ > 1. Preliminary Formulas

In Sections 3−7 we are concerned with the following question:

“What points (x, y0, t) are connected to (0, y0, 0) by geodesics, and by

how many geodesics, if ζ > 1?”

From (2.61) one has

y0 =
(ζ + sinα0)

1/2

τ1/2
> 0. (3.1)

Geodesics with ζ > 1 stay in the half space y > 0, so they are local and

sgn
(

y(α)
)

= 1, and α increases, always, starting at α0. So we have

y(α) =
(ζ + sinα)1/2

τ1/2
. (3.2)

If y = y(α) = y0, then α must be

α = α0 + 2nπ, n = 1, 2, . . . , or (3.3)

α = π − α0 + 2nπ, n = 0, 1, 2, . . . , (3.4)

and (2.63)−(2.65) yield

(i) α = α0 + 2nπ, n = 1, 2, . . .

x(α0 + 2nπ) =
n

2τ1/2

∫ 2π

0

sinαdα

(ζ + sinα)1/2
, (3.5)

t(α0 + 2nπ) =
n

2τ3/2

∫ 2π

0
(ζ + sinα)1/2 sinαdα, (3.6)

ℓ(α0 + 2nπ) =
n

2τ1/2

∫ 2π

0

dα

(ζ + sinα)1/2
. (3.7)

(ii) α = π − α0 + 2nπ, n = 0, 1, 2, . . . if ẏ(0) > 0, and n = 1, 2, . . . if
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ẏ(0) < 0.

x(π − α0 + 2nπ) =
1

2τ1/2

∫ π−α0

α0

sinαdα

(ζ + sinα)1/2

+
n

2τ1/2

∫ 2π

0

sinαdα

(ζ + sinα)1/2
, (3.8)

t(π − α0 + 2nπ) =
1

2τ3/2

∫ π−α0

α0

(ζ + sinα)1/2 sinαdα

+
n

2τ3/2

∫ 2π

0
(ζ + sinα)1/2 sinαdα, (3.9)

ℓ(π − α0 + 2nπ) =
1

2τ1/2

∫ π−α0

α0

dα

(ζ + sinα)1/2

+
n

2τ1/2

∫ 2π

0

dα

(ζ + sinα)1/2
. (3.10)

We note that

α0 ∈
[

−π
2
,
π

2

]

⇒ ẏ(0) ≥ 0, (3.11)

α0 ∈
(

π

2
,
3π

2

)

⇒ ẏ(0) < 0. (3.12)

4. αend = α0 + 2nπ, n = 1, 2, . . .

For ζ ≥ 1 we define the functions

I(ζ) =

∫ 2π

0
(ζ + sinα)1/2 sinαdα = 2

∫ π/2

−π/2
(ζ + sinα)1/2 sinαdα, (4.1)

J(ζ) =

∫ 2π

0

sinαdα

(ζ + sinα)1/2
= 2

∫ π/2

−π/2

sinαdα

(ζ + sinα)1/2
. (4.2)

Then (3.5) and (3.6) take the following form:

x(α0 + 2nπ) =
n

2τ1/2
J(ζ), (4.3)

t(α0 + 2nπ) =
n

2τ3/2
I(ζ). (4.4)
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With

τ =
ζ + sinα0

y20
(4.5)

we eliminate τ from (4.3) and (4.4):

2x(α0 + 2nπ)

y0
=

n

(ζ + sinα0)1/2
J(ζ), (4.6)

2t(α0 + 2nπ)

y30
=

n

(ζ + sinα0)3/2
I(ζ) (4.7)

which suggests the following notation,

x̂ =
2x

y0
, t̂ =

2t

y30
. (4.8)

We set n = 1, and study the map

(α0, ζ) −→
(

x̂(α0, ζ), t̂(α0, ζ)
)

, ζ ≥ 1, (4.9)

with

x̂(α0, ζ) =
J(ζ)

(ζ + sinα0)1/2
, (4.10)

t̂(α0, ζ) =
I(ζ)

(ζ + sinα0)3/2
. (4.11)

Lemma 4.1. One has

dI

dζ
=

1

2
J(ζ). (4.12)

J(ζ) increases from J(1) = −∞ to J(∞) = 0.

I(ζ) decreases from I(1) > 0 to I(∞) = 0.

Proof. (4.12) is immediate. Also,

J(ζ) =

∫ π

0
sinα

(

1√
ζ + sinα

− 1√
ζ − sinα

)

dα < 0, (4.13)

therefore (4.13) implies that I(ζ) decreases from I(1) to I(∞). Since
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I(ζ) =
√

ζ

∫ 2π

0

(

1 +
sinα

ζ

)1/2

sinαdα

=
π

2
√
ζ
+

1

16ζ5/2

∫ 2π

0
sin4 αdα+O

(

1

ζ9/2

)

, (4.14)

we have I(∞) = 0, and therefore

I(ζ) > 0, ζ ∈ (1,∞). (4.15)

Also,

dJ

dζ
= −1

2

∫ 2π

0

sinαdα

(ζ + sinα)3/2

= −1

2

∫ π

0
sinα

(

1

(ζ + sinα)3/2
− 1

(ζ − sinα)3/2

)

dα > 0, (4.16)

and J(ζ) is an increasing function of ζ ∈ (1,∞). With α = −π/2 + α′,

(1 + sinα)−1/2 ∼
√
2
α′ , and then (4.2) yields J(1) = −∞. Also J(∞) = 0,

because for large ζ one has

J(ζ) = − π

2ζ3/2
− 5

16ζ7/2

∫ 2π

0
sin4 αdα+O

(

1

ζ11/2

)

. (4.17)

This proves Lemma 4.1. �

We note that

x̂3

t̂
=
J3

I
. (4.18)

Lemma 4.2. The function J(ζ)3/I(ζ) increases from (J3/I)(1) = −∞
to (J3/I)(∞) = 0.

Proof. (4.12) yields

d

dζ

J3

I
=
J2

I2
(3J ′I − JI ′) =

J2

I2

(

3J ′I − 1

2
J2

)

.

For large ζ one has

J ′(ζ) = − 3π

4ζ5/2
+O

(

1

ζ9/2

)

, (4.19)
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and (4.14), (4.17) and (4.19) imply that

3J ′I − 1

2
J2
∣

∣

∣

ζ=∞
= 0. (4.20)

We note that

d

dζ

(

3J ′I − 1

2
J2

)

= 3J ′′I +
1

2
JJ ′,

and

J ′ = −1

2

∫ 2π

0

sinαdα

(ζ + sinα)3/2
> 0,

see (4.16). By similar reasoning

J ′′ =
3

4

∫ 2π

0

sinαdα

(ζ + sinα)5/2
< 0, I > 0, J < 0,

and therefore

3J ′′I +
1

2
JJ ′ < 0.

Consequently, 3J ′I − 1
2J

2 is a decreasing function of ζ which vanishes at

ζ = ∞ by (4.20), hence

3J ′I − 1

2
J2 > 0, ζ ∈ [1,∞).

Thus,

d

dζ

J3

I
> 0,

and J3/I is an increasing function which is −∞ at ζ = 1, see Lemma 4.1,

and vanishes at ζ = ∞ in view of (4.14) and (4.17). This completes the

proof of Lemma 4.2. �

Lemma 4.3. The mapping (4.9),

(α0, ζ) −→
(

x̂(α0, ζ), t̂(α0, ζ)
)

,

is one-to-one onto its image from the domain

(α0, ζ) ∈
[

− π

2
,
π

2

]

× (1,∞).
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Proof. Lemma 4.2 shows that

J3(ζ)

I(ζ)
=
x̂3

t̂

has a unique solution ζ ∈ (1,∞) for every x̂3/t̂ ∈ (−∞, 0). Given this ζ, the

solution α0 ∈
[

−π
2 ,

π
2

]

of

x̂ =
J(ζ)

(ζ + sinα0)1/2
(4.21)

is clearly unique, and we have Lemma 4.3. �

We shall obtain the range of the map (4.9) as the union of the curves

C1(α0),

C1(α0) =
(

x̂(α0, ζ), t̂(α0, ζ)
)

, ζ ∈ (1,∞), (4.22)

over α0 ∈ [−π/2, π/2]. One has the large ζ expansions of x̂ and t̂ from (4.14)

and (4.17):

x̂(α0, ζ)

= − π

2ζ2
+
π sinα0

4ζ3
− 1

16ζ4

(

5

∫ 2π

0
sin4 αdα+ 3π sin2 α0

)

+ · · · , (4.23)

t̂(α0, ζ)

=
π

2ζ2
− 3π sinα0

4ζ3
+

1

16ζ4

(
∫ 2π

0
sin4 αdα+ 15π sin2 α0

)

+ · · · , (4.24)

which are convergent power series in ζ−1. Therefore

x̂(α0, ζ) + t̂(α0, ζ)

= −π sinα0

2ζ3
+

1

4ζ4

(

3π sin2 α0 −
∫ 2π

0
sin4 αdα

)

+ · · · . (4.25)

These formulas yield

Lemma 4.4. The curves C1(α0) start at (0, 0) tangent to the line x̂+t̂ =
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0 when ζ = ∞. More precisely,

α0 ∈
[

0,
π

2

]

: C1(α0) starts below the line x̂+ t̂ = 0, (i)

α0 ∈
[

−π
2
, 0
)

: C1(α0) starts above the line x̂+ t̂ = 0. (ii)

Lemma 4.5. (i) For a fixed α0 ∈ (−π/2, π/2], t̂(α0, ζ) decreases from

I(1)(1+sinα0)
−3/2 to t̂(α0,∞)=0, and t̂(−π/2, ζ) decreases from t̂(−π/2, 1)

= ∞ to t̂(−π/2,∞) = 0.

(ii) x̂(α0, ζ) is an increasing function of ζ, α0 ∈ [−π/2, π/2]; x̂ increases

from x̂(α0, 1) = −∞ to x̂(α0,∞) = 0.

(iii) For α0 ∈ (−π/2, π/2] the curves C1(α0) have a horizontal asymptote

given by t̂(α0, 1) = I(1)(1 + sinα0)
−3/2.

(iv) Along C1(−π/2),

x̂
(

−π
2
, ζ
)

∼
√
2 log(ζ − 1)

(ζ − 1)1/2
< 0 as ζ → 1+,

t̂
(

−π
2
, ζ
)

∼ I(1)

(ζ − 1)3/2
> 0 as ζ → 1+.

In particular,

x̂
(

−π
2
, ζ
)

+ t̂
(

−π
2
, ζ
)

∼ I(1)

(ζ − 1)3/2
as ζ → 1+.

Proof. (i) (4.13) yields

∂t̂(α0, ζ)

∂ζ
= −3

2

I(ζ)

(ζ + sinα0)5/2
+

1

2

J(ζ)

(ζ + sinα0)3/2
< 0, (4.26)

as I > 0 and J < 0, and Lemma 4.1 gives the range of t̂.

(ii) Again,

∂x̂(α0, ζ)

∂ζ
= −1

2

J(ζ)

(ζ + sinα0)3/2
−1

2

1

(ζ + sinα0)1/2

∫ 2π

0

sinαdα

(ζ + sinα)3/2

> 0, (4.27)
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and Lemma 4.1 gives the range of x̂.

(iii) As ζ decreases from ∞ to 1, t̂(α0, ζ) increases to I(1)(1+sin α0)
−3/2

and x̂(α0, ζ) decreases to −∞, α0 ∈ (−π/2, π/2].

(iv) Also,

x̂
(

−π
2
, ζ
)

=
J(ζ)

(ζ − 1)1/2
, t̂

(

−π
2
, ζ
)

=
I(ζ)

(ζ − 1)3/2
.

As ζ → 1+, I(ζ) → I(1) and J(ζ) ∼
√
2 log(ζ − 1); indeed, with ζ = 1 + ε,

J(ζ) =

∫ π

0

sinαdα√
ζ + sinα

−
∫ π

0

sinαdα√
ζ − sinα

∼ −
∫ π

0

sinαdα√
ζ − sinα

= −2

∫ π

π/2

sinαdα√
ζ − sinα

= −2

∫ π/2

0

cosαdα√
1− cosα+ ε

∼ −2

∫ δ

0

dα
√

α2/2 + ε

∼
√
2 log ε. �

Lemma 4.6. (i) The curves C1(α0) do not intersect each other, and

α′
0 < α0 implies that C1(α

′
0) is above C1(α0).

(ii) When α0 ∈ (−π/2, 0), C1(α0) crosses the line x̂+ t̂ at least once.

(iii) The curves C1(±π/2) do not cross the line x̂+ t̂ = 0.

(iv) The half line x̂ + t̂ = 0, t̂ > 0 is contained in the interior of the

image of the mapping (4.9).

Proof. (i) is a consequence of Lemma 4.3: the mapping (α0, ζ) →
(

x̂(α0, ζ), t̂(α0, ζ)
)

is one-to-one and onto its image, so the curves C1(α0)

do not intersect. Along C1(α0), −π/2 ≤ α0 ≤ π/2, t̂(α0, ζ) has the limit

I(1)(ζ+sinα0)
−3/2 as ζ → 1+. This limit function is a decreasing function of

α0, so the horizontal asymptote of C1(α
′
0) is above the horizontal asymptote

of C1(α0). Since these curves do not intersect, C1(α
′
0) is above C1(α0).

(ii) When α0 ∈ (−π/2, 0), C1(α0) starts at (0, 0) tangent to, and above,

the line x̂+ t̂ = 0, and x̂(α0, ζ)+ t̂(α0, ζ) → −∞ as ζ → 1+, see Lemma 4.5.

Consequently, x̂+ t̂ must vanish along C1(α0), at least once.
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(iii) We have

x̂
(

±π
2
, ζ
)

+ t̂
(

±π
2
, ζ
)

=
2

(ζ ± 1)3/2

∫ π/2

0
sinα

(

h±(sinα)− h±(− sinα)
)

dα,

with

h±(x) =
√

x+ ζ +
ζ ± 1√
x+ ζ

, 0 ≤ x ≤ 1.

Then

h′±(x) =
x∓ 1

2(x+ ζ)3/2
,

so,

h′+(x) ≤ 0, h′−(x) ≥ 0,

and therefore,

h+(sinα)− h+(− sinα) ≤ 0,

h−(sinα)− h−(− sinα) ≥ 0.

Hence

x̂
(π

2
, ζ
)

+ t̂
(π

2
, ζ
)

< 0,

x̂
(

−π
2
, ζ
)

+ t̂
(

−π
2
, ζ
)

> 0,

which implies (iii).

(iv) follows from the fact that the curves C1

(

±π
2

)

bound the image of

the mapping (4.9), and we have completed the proof of Lemma 4.6. �

Next we consider the periods. A geodesic, with ζ > 1, leaves (0, y0, 0)

at α = α0, and at α = α0 + 2nπ, n = 1, 2, . . . returns to the y = y0-plane at
(

x(α0 + 2nπ), y0, t(α0 + 2nπ)
)

. Here

2x(α0 + 2nπ)

y0
=

nJ(ζ)

(ζ + sinα0)1/2
= nx̂(α0, ζ), (4.28)

2t(α0 + 2nπ)

y30
=

nI(ζ)

(ζ + sinα0)3/2
= nt̂(α0, ζ), (4.29)
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see (4.6), (4.7), so that this set of points is obtained as a dilation of the

mapping (4.9) by a natural number n = 1, 2, . . .. We have the following

consequence:

Proposition 4.7. (i) Every point (x, y0, t), y0 > 0, with (x̂, t̂) in the

domain bounded by C1(π/2) and C1(−π/2), is connected to (0, y0, 0) by at

least one geodesic of the form (3.5), (3.6) with α0 ∈ [−π/2, π/2], ζ > 1 and

αend = α0 + 2nπ, n = 1, 2, . . ..

(ii) If a point (x, y0, t), x̂ < 0, t̂ > 0, x̂+t̂ 6= 0, is connected to (0, y0, 0) by

a geodesic of the form discussed in (i), then the number of these connecting

geodesics is at most finite.

(iii) Every point (x, y0, t), x̂ < 0, t̂ > 0, x̂ + t̂ = 0, can be joined to

(0, y0, 0) by a discrete infinity of geodesics of the form (3.5), (3.6) with α0 ∈
[−π/2, π/2], ζ > 1, αend = α0 + 2nπ; more precisely, for each n = 1, 2, . . .

there is (α0,n, ζn) ∈ [−π/2, π/2] × (1,∞), such that

x̂ = nx̂(α0,n, ζn), t̂ = nt̂(α0,n, ζn). (4.30)

Proof. (i) holds with n = 0, see Lemma 4.3. As for (ii), given (x̂, t̂),

(4.30) has a solution if and only if (x̂/n, t̂/n) is in the domain of the (x̂, t̂)

plane which is bounded by the curves C1(π/2) and C1(−π/2). As both these

curves start tangent to the half line x̂ + t̂ = 0, t̂ > 0, at (0, 0), the points

(x̂/n, t̂/n) leave this region for n sufficiently large, which proves (ii). We

note that this half line is the only ray from the origin entirely contained in

the region bounded by C1(π/2) and C1(−π/2).

On the other hand, (4.30) has a solution (α0,n, ζn) for all n = 1, 2, . . . if

x̂/n + t̂/n = 0, t̂ > 0. This proves (iii). �

Lemma 4.8. Let (x̂,−x̂) denote a point on the line x̂ + t̂ = 0 with

x̂ < 0. The length of the geodesic joining (0, y0, 0) to (x, y0,−x) after n

periods, with αend = α0 + 2nπ, is

ℓn = O(
√
n), (4.31)

as n→ ∞.
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Proof. From (3.7),

ℓn =
n

2τ
1/2
n

∫ 2π

0

dα

(ζn + sinα)1/2
, (4.32)

where ζn and τn = (ζn + sinα0,n)y
−2
0 are the parameters of the geodesic

which, after n periods, joins (0, y0, 0) and (x, y0,−x). When n is large ζn

may be estimated using (4.23); indeed,

x̂

n
= x̂(α0,n, ζn) ∼= − π

2ζ2n
,

so that ζn = O(
√
n), τn = O(

√
n), and therefore (4.32) yields (4.31), and

Lemma 4.8. �

We shall use R1 to denote the image of the mapping (4.9):

(α0, ζ) −→
(

x̂(α0, ζ), t̂(α0, ζ)
)

,

where

x̂(α0, ζ) =
J(ζ)

(ζ + sinα0)1/2
, t̂(α0, ζ) =

I(ζ)

(ζ + sinα0)3/2

represent the curves C1(α0) as ζ ∈ (1,∞) and α0 ∈ [−π/2, π/2]. We sum-

marize the results about R1 in

Proposition 4.9. (i) The mapping (4.9) is one-to-one onto the region

R1 which is the union of the curves C1(α0), α0 ∈ [−π/2, π/2]. R1 is bounded

by C1(±π/2).

(ii) ζ ∼ ∞. C1(α0) starts at (0, 0) tangent to the line x̂ + t̂ = 0; α0 ∈
[−π/2, 0) ⇒ C1(α0) starts above x̂ + t̂ = 0, α0 ∈ [0, π/2] ⇒ C1(α0) starts

below x̂+ t̂ = 0.

(iii) ζ ∈ (1,∞). α0 ∈ [0, π/2] ⇒ C1(α0) is below the line x̂+ t̂ = 0.

α0 ∈ (−π/2, 0) ⇒ C1(α0) crosses the line x̂+ t̂ = 0; C1(−π/2) does not

cross x̂+ t̂ = 0.

All curves C1(α0), α0 ∈ (−π/2, π/2] have a horizontal asymptote at
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x̂ ∼ −∞. It is

t̂(α0, 1) =
I(1)

(1 + sinα0)3/2
.

(iv) R1 contains the entire half line x̂+ t̂ = 0, t̂ > 0.

(v) Points (x, y0, t) of the y = y0-plane with (x̂, t̂) ∈
∞
⋃

n=1
nR1 can be

joined to (0, y0, 0) by at least one geodesic of the form (3.5), (3.6) with

α0 ∈ [−π/2, π/2]. The number of such geodesics connecting such a point

(x, y0, t) to (0, y0, 0) is finite if x̂ + t̂ 6= 0, t̂ > 0. When x̂ + t̂ = 0, t̂ > 0,

(x, y0, t) is joined to (0, y0, 0) by a discrete infinity of geodesics with param-

eters (α0,n, ζn), n = 1, 2, . . ..

Figure 1. R1.

Proof. We only need to prove the first statement of (iii). A slight

refinement of the proof of Lemma 4.6(iii) will do the trick. In particular,

x̂(α0, ζ) + t̂(α0, ζ) =
2

(ζ + sinα0)3/2

∫ π/2

0
sinα

[

h(sinα)− h(− sinα)
]

dα,

where we set

h(x) =
√

ζ + x+
ζ + sinα0√

ζ + x
, x ∈ [0, 1].
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Then

h′(x) =
x− sinα0

2(ζ + x)3/2
,

d

dx

[

h(x)− h(−x)
]

= h′(x)− h′(−x)

=
x− sinα0

2(ζ + x)3/2
− x+ sinα0

2(ζ − x)3/2

< 0, x ∈ (0, 1), α0 ∈ [0, π/2]. (4.33)

Since h(0) − h(−0) = 0, one has h(sinα) − h(− sinα) < 0 when α ∈ (0, π],

therefore

x̂(α0, ζ) + t̂(α0, ζ) < 0, α0 ∈ [0, π/2].

This proves the first statement of (iii), and we have established Proposition

4.9. �

As for

α0 ∈
[

π

2
,
3π

2

]

, (4.34)

we note that

C1(α0) = C1(π − α0), (4.35)

so the mapping (4.9) with α0 ∈ [π/2, 3π/2] also covers R1 is a 1-1 manner,

and we have

Corollary 4.10. The results of Proposition 4.9, derived when α0 ∈
[−π/2, π/2], also hold for α0 ∈ [π/2, 3π/2], mutatis mutandis. In particular,

the statements made for α0 ∈ [0, π/2] are true when α0 ∈ [π/2, π], and the

results stated for α0 ∈ [−π/2, 0) hold when α0 ∈ (π, 3π/2].

5. αend = π − α0 + 2nπ, n = 0, 1, 2, . . . , ẏ(0) > 0

The geodesics of this chapter are local, start at (0, y0, 0) with parameters

α0 ∈ [−π/2, π/2] and ζ > 1, and return to the y = y0-plane at αend =

π − α0 + 2nπ. The x and t components of the return point are given by
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formulas (3.8) and (3.9), and may be put in the following form:

x(π − α0 + 2nπ) =
1

2τ1/2

(

2

∫ π/2

α0

sinαdα

(ζ + sinα)1/2
+ nJ(ζ)

)

,

t(π − α0 + 2nπ) =
1

2τ3/2

(

2

∫ π/2

α0

sinα(ζ + sinα)1/2dα+ nI(ζ)

)

,

and, eliminating τ , τ = y−2
0 (ζ + sinα0), we have

x̂(π − α0 + 2nπ) =
1

(ζ + sinα0)1/2

(

2

∫ π/2

α0

sinαdα

(ζ + sinα)1/2
+ nJ(ζ)

)

, (5.1)

t̂(π − α0 + 2nπ)

=
1

(ζ + sinα0)3/2

(

2

∫ π/2

α0

sinα(ζ + sinα)1/2dα+ nI(ζ)

)

, (5.2)

with n = 0, 1, 2, . . .. In the rest of chapter 5 we shall assume that n = 0.

The mapping (α0, ζ) → (x̂, t̂) when n = 0.

(α0, ζ) ∈ [−π/2, π/2] × (1,∞), and we set

(x̂, t̂) =
(

Φ(α0, ζ),Ψ(α0, ζ)
)

, (5.3)

Φ(α0, ζ) =
J(α0, ζ)

(ζ + sinα0)1/2
, (5.4)

Ψ(α0, ζ) =
I(α0, ζ)

(ζ + sinα0)3/2
, (5.5)

J(α0, ζ) = 2

∫ π/2

α0

sinαdα

(ζ + sinα)1/2
, (5.6)

I(α0, ζ) = 2

∫ π/2

α0

sinα(ζ + sinα)1/2dα. (5.7)

We note that

J(ζ) = J
(

− π

2
, ζ
)

, I(ζ) = I
(

− π

2
, ζ
)

. (5.8)
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Lemma 5.1. Fix ζ > 1. Then

J(α0, ζ) > 0, α0 ∈ [0, π/2),

J
(π

2
, ζ
)

= 0, J
(

− π

2
, ζ
)

< 0, J
(

− π

2
, 1
)

= −∞.

J(α0, ζ) is an increasing function of α0 when α0 < 0, and a decreasing

function of α0 when α0 > 0. It has a unique zero α̃0(ζ). α̃0(ζ) ∈ (−π/2, 0),
and

α̃0(ζ) ∼ −π
2
+

π

4ζ
+ o
(1

ζ

)

, ζ → ∞. (5.9)

Proof. Clearly, J(α0, ζ) > 0 if α0 ∈ [0, π/2) and J(π/2, ζ) = 0. Also,

J(−π/2, ζ) = 2

∫ π/2

0
sinα

(

1

(ζ + sinα)1/2
− 1

(ζ − sinα)1/2

)

dα < 0.

Since

∂J(α0, ζ)

∂α0
= − 2 sinα0

(ζ + sinα0)1/2
,

J(α0, ζ) is increasing if α0 < 0, and decreasing when α0 > 0, so it has a

unique root α̃0 in (−π/2, π/2) which is in (−π/2, 0). If α = −π/2 + ε, then

1 + sinα ∼ ε2/2, ε ∼ 0, and J(−π/2, 1) = −∞. Finally, when ζ is large,

∫ π/2

α0

sinαdα

(ζ + sinα)1/2
=

1√
ζ

(

cosα0 −
1

4ζ

(π

2
− α0

)

− 1

8ζ
sin 2α0 +O

( 1

ζ2

)

)

,

so when α0 = α̃0(ζ),

0 = cos α̃0(ζ)−
1

4ζ

(

π

2
− α̃0(ζ) +

1

2
sin 2α̃0(ζ)

)

+O
( 1

ζ2

)

.

Therefore

α̃0(ζ) −→ −π
2
+ ε(ζ), lim

ζ→∞
ε(ζ) = 0,

0 = sin ε(ζ)− 1

4ζ

(

π + o(1)
)

+O
( 1

ζ2

)

which yields (5.9), and we have derived Lemma 5.1. �
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Lemma 5.2. One has

(i) Φ
(

π
2 , ζ
)

= 0, Φ
(

− π
2 , ζ
)

< 0, ζ > 1 and Φ
(

− π
2 , 1
)

= −∞,

(ii) ∂Φ/∂α0 has a unique zero at α∗
0(ζ),

α̃0(ζ) < α∗
0(ζ) < 0, (5.10)

where Φ takes its maximum value Φ
(

α∗
0(ζ), ζ

)

> 0. Φ is an increas-

ing function of α0 ∈ (−π/2, α∗
0), and a decreasing function of α0 ∈

(α∗
0, π/2].

Proof. (i) is self-evident. As for (ii) we start with

∂Φ

∂α0
= −1

2

cosα0

ζ + sinα0
(Φ + 4 tanα0) (5.11)

= − cosα0

2(ζ + sinα0)3/2
(

J(α0, ζ) + 4 tanα0(ζ + sinα0)
1/2
)

.

Then

d

dα0

(

tanα0(ζ + sinα0)
1/2
)

=
ζ + sinα0

(

1 + 1
2 cos

2 α0

)

cos2 α0(ζ + sinα0)1/2
,

and

d

dα0

(

sinα0

(

1 +
1

2
cos2 α0

)

)

=
3

2
cos3 α0 > 0

on (−π/2, π/2). Therefore

sinα0

(

1 +
1

2
cos2 α0

)

> −1,

and tanα0(ζ +sinα0)
1/2 is an increasing function of α0 on [−π/2, π/2] with

a zero at α0 = 0. J(α0, ζ) ≥ 0 on [0, π/2], and < 0 on
(

− π/2, α̃0(ζ)
)

, it

increases in
(

α̃0(ζ), 0
)

from J
(

α̃0(ζ), ζ
)

= 0. Therefore J(α0, ζ)+4 tan α0(ζ+

sinα0)
1/2 increases in the interval

(

α̃0(ζ), 0
)

from negative to positive values

with a unique zero α∗
0(ζ) ∈

(

α̃0(ζ), 0
)

. This proves (ii) and Lemma 5.2. �

In particular,

Φ
(

α∗
0(ζ), ζ

)

+ 4 tanα∗
0(ζ) = 0. (5.12)
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Lemma 5.3. One has

dα∗
0(ζ)

dζ
> 0. (5.13)

Proof. Differentiating (5.12) with respect to ζ we obtain

dα∗
0

dζ
= −1

4
cos2 α∗

0(ζ)
∂Φ

∂ζ

(

α∗
0(ζ), ζ

)

. (5.14)

From (5.4),

∂Φ

∂ζ
= − 1

(ζ + sinα0)1/2

[

Φ

2(ζ + sinα0)1/2
+

∫ π/2

α0

sinαdα

(ζ + sinα)3/2

]

, (5.15)

so (5.12) yields

∂Φ

∂ζ

(

α∗
0(ζ), ζ

)

=
1

(ζ + sinα∗
0(ζ))

1/2

[

2 tanα∗
0(ζ)

(ζ + sinα∗
0(ζ))

1/2
−
∫ π/2

α∗

0(ζ)

sinαdα

(ζ + sinα)3/2

]

. (5.16)

Integrating by parts we have

∫ 0

α0

sinαdα

(ζ + sinα)3/2
=

2 tanα0

(ζ + sinα0)1/2
+ 2

∫ 0

α0

1

(ζ + sinα)1/2
dα

cos2 α
. (5.17)

Consequently,

∂Φ

∂ζ

(

α∗
0(ζ), ζ

)

= − 1

(ζ + sinα∗
0(ζ))

1/2

(

∫ π/2

0

sinαdα

(ζ + sinα)3/2
+

∫ 0

α∗

0(ζ)

2

(ζ + sinα)1/2
dα

cos2 α

)

< 0,

and therefore (5.14) implies (5.13). �

Lemma 5.4. When α0 ≥ α∗
0(ζ), one has

(i)
∂Φ

∂ζ
< 0, (ii)

∂2Φ

∂α0∂ζ
> 0.

Proof. When α0 ≥ 0, (5.15) implies (i). When α0 < 0, we may use
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(5.17) to rewrite (5.15):

∂Φ

∂ζ
=− 1

2

Φ + 4 tanα0

ζ + sinα0

− 1

(ζ + sinα0)1/2

[

∫ 0

α0

2

(ζ + sinα)1/2
dα

cos2 α
+

∫ π/2

0

sinαdα

(ζ + sinα)3/2

]

,

and then (5.11) yields

∂Φ

∂ζ
=

1

cosα0

∂Φ

∂α0

− 1

(ζ + sinα0)1/2

[

∫ 0

α0

2

(ζ + sinα)1/2
dα

cos2 α
+

∫ π/2

0

sinαdα

(ζ + sinα)3/2

]

.

The square bracket is always positive and ∂Φ/∂α0 < 0 when α0 > α∗
0,

consequently ∂Φ/∂ζ < 0 if α0 > α∗
0 and we have derived (i). As for (ii), we

differentiate the square bracket in (5.15):

∂

∂α0

[

1

2

Φ

(ζ + sinα0)1/2
+

∫ π/2

α0

sinαdα

(ζ + sinα)3/2

]

=
1

(ζ + sinα0)3/2

[

1

2
(ζ + sinα0)

∂Φ

∂α0
− 1

4
cosα0(Φ + 4 tanα0)

]

.

Then (5.11) yields

∂2Φ

∂α0∂ζ
= −1

2

cosα0

ζ + sinα0

(

∂Φ

∂ζ
+

2

cosα0

∂Φ

∂α0

)

. (5.18)

When α0 > α∗
0 both Φζ and Φα0 are negative and therefore Φα0ζ > 0 which

proves (ii) and Lemma 5.4. �

Lemma 5.5. Φ has the following convergent power series expansion in

ζ−1 when ζ is large:

Φ(α0, ζ) =
2 cosα0

ζ
− 1

2ζ2

(

π

2
− α0 +

3

2
sin 2α0

)

+
1

4ζ3

(

(π

2
− α0

)

sinα0 +
1

8
cosα0(2 + 5 sin2 α0)

)

+O
( 1

ζ4

)

, α0 6=
π

2
. (5.19)
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Remark. In view of (5.11), (5.15) and (5.18), ∂Φ/∂ζ > 0 and is a

decreasing function of α0 in a neighbourhood of α0 = −π/2.

Figure 2.

Next we consider I(α0, ζ) and Ψ(α0, ζ).

Lemma 5.6. I(α0, ζ) is an increasing function of α0 in [−π/2, 0],
reaches a maximum at α0 = 0, then decreases in (0, π/2], I(−π/2, ζ) > 0,

I(π/2, ζ) = 0. In particular, I(α0, ζ) > 0 when α0 ∈ [−π/2, π/2].

Proof. (5.7) yields

∂I

∂α0
= −2 sinα0(ζ + sinα0)

1/2.

Also,

I(−π/2, ζ) = 2

∫ π/2

0
sinα

[

(ζ + sinα)1/2 − (ζ − sinα)1/2
]

dα > 0,

I(π/2, ζ) = 0, hence I(α0, ζ) > 0 when α0 ∈ [−π/2, π/2), and we have

derived Lemma 5.6. �

The bracket above (5.18) is positive when α0 ∈
(

− π/2, α∗
0(ζ)

)

, so
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the bracket in (5.15) is an increasing function of α0 ∈
(

− π/2, α∗
0(ζ)

)

and

may have at most one zero there. Thus ∂Φ/∂ζ has at most one zero in
(

− π/2, α∗
0(ζ)

)

.

A simple calculation yields

∂Ψ

∂α0
= −1

2

cosα0

ζ + sinα0
(3Ψ + 4 tanα0). (5.20)

Lemma 5.7. ∂Ψ/∂α0 has a unique zero α+
0 (ζ) < 0, ζ > 1. Also

(i) Ψ
(

α+
0 (ζ), ζ

)

= −4
3 tanα

+
0 (ζ),

(ii) ∂Ψ
∂α0

> 0, α0 ∈
(

− π
2 , α

+
0 (ζ)

)

,

∂Ψ
∂α0

< 0, α0 ∈
(

α+
0 (ζ),

π
2

)

,

(iii) Ψ(α0, ζ) > 0, α0 ∈
[

− π
2 ,

π
2

)

,

(iv) Ψ(α0, 1) decreases from Ψ
(

− π
2 , 1
)

= ∞ to Ψ
(

π
2 , 1
)

= 0.

Proof. We rewrite (5.5),

Ψ(α0, ζ)

=
2

(ζ + sinα0)3/2

[

∫ π/2

0
sinα(ζ + sinα)1/2dα+

2

3

∫ 0

α0

tanαd(ζ+sinα)3/2

]

.

Integrating by parts one obtains

3

2
Ψ(α0, ζ) + 2 tanα0

=
1

(ζ + sinα0)3/2

[

3

∫ π/2

0
sinα(ζ+sinα)1/2dα−2

∫ 0

α0

(ζ + sinα)3/2
dα

cos2 α

]

.

(5.21)

We note that

∫ 0

α0

(ζ + sinα)3/2
dα

cos2 α
=















∞, α0 = −π
2 ,

0, α0 = 0,

−∞, α0 =
π
2 ,

and is a decreasing function of α0 ∈ [−π/2, π/2]. Consequently the square
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bracket in (5.21) is an increasing function of α0 ∈ [−π/2, π/2). In particular,

when α0 ∈ [−π/2, 0], it increases from −∞ to

3

∫ π/2

0
sinα(ζ + sinα)1/2dα > 0,

and therefore vanishes at a unique point α+
0 ∈ (−π/2, 0). Therefore (5.20)

and (5.21) imply (i) and (ii). Furthermore

Ψ
(

− π

2
, ζ
)

=
1

(ζ − 1)3/2
I
(

− π

2
, ζ
)

> 0, (5.22)

Ψ
(π

2
, ζ
)

= 0, (5.23)

so (ii) implies (iii), and (iv) is obvious from the definition of Ψ. �

Figure 3.

Lemma 5.8. We have

Φ(α0, ζ) ≤ Ψ(α0, ζ), α0 ∈
[

− π

2
,
π

2

]

, ζ ≥ 1. (5.24)
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Proof. When α0 ≥ 0,

Φ−Ψ =
2

(ζ + sinα0)3/2

∫ π/2

α0

sinα

(ζ + sinα)1/2
(sinα0 − sinα)dα < 0. (5.25)

Also, Lemma 5.2(i) and (5.22), (5.23) give

Φ
(

− π

2
, ζ
)

−Ψ
(

− π

2
, ζ
)

< 0, (5.26)

Φ
(π

2
, ζ
)

−Ψ
(π

2
, ζ
)

= 0. (5.27)

Next,

∂

∂α0

∫ π/2

α0

sinα

(ζ + sinα)1/2
(sinα0 − sinα)dα = cosα0

∫ π/2

α0

sinαdα

(ζ + sinα)1/2

=
1

2
cosα0J(α0),

so the integral in (5.25) decreases when α0 < α̃0(ζ), and increases when

α0 > α̃0(ζ). This proves (5.24) in view of (5.26), (5.27). �

Lemma 5.9. We have

∂Ψ

∂ζ
=

Φ− 3Ψ

2(ζ + sinα0)
< 0, (5.28)

α+
0 (ζ) < α∗

0(ζ). (5.29)

Proof. (5.28) follows from Lemma 5.7(iii) and (5.24). Φ has its maxi-

mum at α∗
0 and Ψ has its maximum at α+

0 , so

Φ
(

α+
0 (ζ), ζ

)

≤ Φ
(

α∗
0(ζ), ζ

)

< Ψ
(

α∗
0(ζ), ζ

)

≤ Ψ
(

α+
0 (ζ), ζ

)

,

and therefore

(Ψ− Φ)
(

α+
0 (ζ), ζ

)

≥ (Ψ −Φ)
(

α∗
0(ζ), ζ

)

. (5.30)

But Ψ− Φ is a decreasing function of α0; indeed, (5.20) and (5.11) yield

∂

∂α0
(Ψ− Φ) = − cosα0

ζ + sinα0

(3

2
Ψ− 1

2
Φ
)

= cosα0
∂Ψ

∂ζ
< 0, (5.31)
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and then (5.30) implies (5.29); indeed, since ∂
∂α0

(Ψ − Φ) < 0, one has

α∗
0 6= α+

0 . �

Lemma 5.10. Ψ(α0, ζ) has the following convergent power series ex-

pansion in ζ−1 for large ζ:

Ψ(α0, ζ) =
2 cosα0

ζ
+

1

2ζ2

(

π

2
− α0 −

5

2
sin 2α0

)

+
1

4ζ3

(

3
(π

2
− α0

)

sinα0 −
2

3
cosα0(2− 5 sin2 α0)

)

+O
( 1

ζ4

)

. (5.32)

On the Jacobian ∆2.

We set

∆2 =
∂(Ψ,Φ)

∂(α0, ζ)
, (5.33)

and collect the formulas for its evaluation:

∂Φ

∂α0
= − 1

2(ζ + sinα0)

(

(cosα0)Φ + 4 sinα0

)

, (5.34)

∂Ψ

∂α0
= − 1

2(ζ + sinα0)

(

3(cosα0)Ψ + 4 sinα0

)

, (5.35)

∂Φ

∂ζ
= − 1

2(ζ + sinα0)

(

Φ+ 2(ζ + sinα0)
1/2

∫ π/2

α0

sinαdα

(ζ + sinα)3/2

)

, (5.36)

∂Ψ

∂ζ
=

1

2(ζ + sinα0)
(−3Ψ + Φ). (5.37)

We shall be using

K(α0, ζ) = 2

∫ π/2

α0

sinαdα

(ζ + sinα)3/2
, (5.38)

P (Z,α0, ζ) = −1

2
KZ2 − JZ +

3

2
I, (5.39)

and the discriminant of the polynomial P ,

4D(α0, ζ) = J2 + 3IK. (5.40)
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Lemma 5.11. We have

(ζ + sinα0)
3∆2 = (cosα0)D − 2 sinα0

(ζ + sinα0)1/2
P (ζ + sinα0, α0, ζ), (5.41)

P (ζ + sinα0, α0, ζ)

=

∫ π/2

α0

(sinα− sinα0)(sinα0 + 3 sinα+ 4ζ)
sinαdα

(ζ + sinα)3/2
, (5.42)

∂

∂α0

(

(ζ + sinα0)
3∆2

)

= −(sinα0)D − 2 cosα0

(ζ + sinα0)1/2
P (ζ + sinα0, α0, ζ). (5.43)

Proof. In

(ζ + sinα0)
3∆2 = (ζ + sinα0)

3

(

∂Ψ

∂α0

∂Φ

∂ζ
− ∂Ψ

∂ζ

∂Φ

∂α0

)

=
{1

4

(

3(cosα0)Ψ + 4 sinα0

)(

Φ+ (ζ + sinα0)
1/2K

)

+
1

4

(

(cosα0)Φ + 4 sinα0

)

(Φ − 3Ψ)
}

(ζ + sinα0),

we replace Φ and Ψ by their definition in terms of J and I and obtain (5.41).

As for (5.42),

− P (ζ + sinα0, α0, ζ)

=
1

2
(ζ + sinα0)

2K + (ζ + sinα0)J − 3

2
I

=

∫ π/2

α0

[

2(ζ + sinα0)(ζ + sinα)− 3(ζ + sinα)2 + (ζ + sinα0)
2
]

sinαdα

(ζ + sinα)3/2

which yields (5.42). Next we differentiate (5.41) and (5.42):

∂

∂α0
(ζ + sinα0)

3∆2 = −(sinα0)D +
1

2
cosα0 sinα0

·
[

−3(ζ + sinα0)
1/2K − 3I

1

(ζ + sinα0)3/2
− 2J

1

(ζ + sinα0)1/2

]

−
(

2 cosα0

(ζ + sinα0)1/2
− sinα0 cosα0

(ζ + sinα0)3/2

)

P − 2 sinα0

(ζ + sinα0)1/2
∂P

∂α0
, (5.44)

∂

∂α0
P (ζ + sinα0, α0, ζ) = − cosα0

[

(ζ + sinα0)K + J
]

, (5.45)
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and replacing ∂P/∂α0 by (5.45) and P by P (ζ + sinα0, α0, ζ) in (5.44), the

terms with cosα0 sinα0 cancel and we obtain (5.43). �

Corollary 5.12. One has

(ζ + sinα0)
3∆2







> 0, α0 ∈
[

0, π2

)

,

= 0, α0 =
π
2 ,

(5.46)

∂

∂α0

(

(ζ + sinα0)
3∆2

)







< 0, α0 ∈
[

0, π2

)

,

= 0, α0 =
π
2 .

(5.47)

Proof. When α0 ∈ [0, π/2), P (ζ + sinα0, α0, ζ) > 0, see (5.42). Also

K > 0, I > 0, so D > 0, and (5.43) implies (5.47). Consequently (ζ +

sinα0)
3∆2 is a decreasing function in [0, π/2), it vanishes at α0 = π/2 and

therefore it is positive in [0, π/2). �

Lemma 5.13.

(i) K(α0, ζ) has a unique zero α̂0(ζ) < 0,

(ii) D(α0, ζ) > 0 when α0 ≥ α̂0(ζ),

(iii) D
(

− π
2 , ζ
)

< 0, P
(

X,−π
2 , ζ
)

> 0 when ζ ≥ 1, D
(

− π
2 , 1
)

= −∞.

(iv) At α0 = −π/2,

(ζ + sinα0)
3∆2 > 0,

∂

∂α0

(

(ζ + sinα0)
3∆2

)

< 0, ζ ≥ 1.

Proof. K(α0, ζ) > 0 when α0 ≥ 0, K(−π/2, ζ) < 0, and K is an

increasing function of α0 ∈ [−π/2, 0], since

∂

∂α0
K(α0, ζ) = − 2 sinα0

(ζ + sinα0)3/2
> 0, α0 ∈

[

− π

2
, 0
)

.

Consequently K has a unique zero α̂0(ζ) ∈ (−π/2, 0); in particular K > 0

on (α̂0, π/2), and this implies (ii). As for (iii), we have

D
(

− π

2
, ζ
)

=
1

4
J2
(

− π

2
, ζ
)

+
3

2
I
(

− π

2
, ζ
)

∫ π/2

−π/2

sinαdα

(ζ + sinα)3/2
.
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The integral is −∞ at ζ = 1, so D(−π/2, 1) = −∞. For large ζ one has

J
(

− π

2
, ζ
)

∼ − π

2ζ3/2
, I

(

− π

2
, ζ
)

∼ π

2ζ1/2
, K

(

− π

2
, ζ
)

∼ − 3π

2ζ5/2
,

so

D
(

− π

2
, ζ
)

∼ − π2

2ζ3
< 0, ζ ∼ ∞.

Also,

8Dζ

(

− π

2
, ζ
)

= J
(

− π

2
, ζ
)

K
(

− π

2
, ζ
)

− I
(

− π

2
, ζ
)

∫ π/2

−π/2

18 sinαdα

(ζ + sinα)5/2

> 0,

consequently D(−π/2, ζ) < 0, ζ ∈ [1,∞). Since the discriminant is negative

and −K(−π/2, ζ) > 0, we have P (X,−π/2, ζ) > 0, and this impies (iii). In

view of these results (5.41), (5.43) imply (iv). �

Lemma 5.14. One has

P (ζ + sinα0, α0, ζ) > 0, α0 ≤ α̂0(ζ). (5.48)

Proof. Indeed,

2P (ζ + sinα0, α0, ζ)

= −(ζ + sinα0)
2K(α0, ζ)− 2(ζ + sinα0)J(α0, ζ) + 3I(α0, ζ)

= −(ζ + sinα0)
2K(α0, ζ) +

1

2
(ζ + sinα0)

3/2(3Ψ − Φ).

The first term on the right hand side is positive when α0 ≤ α̂0(ζ), and

the second term is always positive in view of (5.24). Thus we have established

Lemma 5.14. �

Proposition 5.15. ∆2 > 0 for ζ ≥ 1 and α0 ∈ [−π/2, π/2).

Proof. According to Corollary 5.12 and Lemma 5.13(iv),

ζ + sinα0)
3∆2 > 0,

∂

∂α0
(ζ + sinα0)

3∆2 < 0,

}

when α0 ∈
[

0,
π

2

)

, α0 = −π
2
.
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In particular, if (ζ+sinα0)
3∆2 vanishes, it can only vanish in (−π/2, 0),

and it must vanish at least twice there. The derivative (∂/∂α0)(ζ+sinα0)
3∆2

must have opposite signs at these consecutive zeros, or, possibly vanish at a

double zero.

(i) ∆2(α0, ζ) 6= 0, α0 ≤ α̂0(ζ). At the endpoints we have

∆2(−π/2, ζ) > 0,

and, in view of Lemma 5.13(ii) and Lemma 5.14,

D
(

α̂0(ζ), ζ
)

> 0, P
(

ζ + sin α̂0(ζ), α̂0(ζ), ζ
)

> 0,

hence (5.41) yields

(

ζ + sin α̂0(ζ)
)3
∆2

(

α̂0(ζ), ζ
)

> 0.

If ∆2(ᾱ0, ζ) = 0, ᾱ0 ∈
(

− π/2, α̂0(ζ)
)

, then

cos ᾱ0D(ᾱ0, ζ) =
2 sin ᾱ0

(ζ + sin ᾱ0)1/2
P (ζ + sin ᾱ0, ᾱ0, ζ) < 0 (5.49)

according to (5.41) and (5.48), and then (5.48), (5.43) and (5.40) imply that

∂

∂α0
(ζ + sinα0)

3∆2 < 0 at α0 = ᾱ0.

This contradicts the necessity of (∂/∂α0)(ζ + sinα0)
3∆2 having opposite

signs at consecutive zeros or vanishing at a double zero of (ζ + sinα0)
3∆2,

consequently ∆2 cannot vanish in
(

− π/2, α̂0(ζ)
)

.

(ii) ∆2 cannot vanish in
(

α̂0(ζ), 0
)

. For α0 > α̂0(ζ), K(α0, ζ) > 0,

so D(α0, ζ) > 0. At a zero of ∆2 in
(

α̂0(ζ), 0
)

, (5.43) and (5.41) yield

∂

∂α0
(ζ + sinα0)

3∆2 = −D(α0, ζ)

sinα0
> 0,

in view of Lemma 5.13(ii). This cannot happen and we have completed the

proof of Proposition 5.15. �

The rest of chapter 5 is devoted to a careful description of
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The curves Γ2(ζ).

For fixed ζ ≥ 1 we define the curves Γ2(ζ):

(x̂, t̂) =
(

Φ(α0, ζ),Ψ(α0, ζ)
)

, α0 ∈ [−π/2, π/2]. (5.50)

Lemma 5.16. We let α0 start at π/2 and decrease to −π/2.

(i) ζ > 1. Γ2(ζ) starts at (0, 0) tangent to x̂ − t̂ = 0. x̂ increases from 0

to Φ
(

α∗
0(ζ), ζ

)

then decreases to Φ(−π/2, ζ) < 0. t̂ increases from 0 to

Ψ
(

α+
0 (ζ), ζ

)

and then decreases to Ψ(−π/2, ζ) > 0.

(ii) ζ = 1. Γ2(1) starts at (0, 0) tangent to x̂− t̂ = 0. x̂ increases from 0 to

Φ
(

α∗
0(1), 1

)

then decreases to −∞. t̂ increases from 0 to ∞, with

lim
α0→−π

2

t̂(α0, 1)

x̂(α0, 1)
= −∞.

(iii) Γ2

(

− π
2 , ζ
)

= C1(−π/2), when considered as sets.

Proof. ζ ≥ 1:

∂t̂

∂x̂
=
∂Ψ/∂α0

∂Φ/∂α0
=

3Ψ + 4 tan α0

Φ+ 4 tanα0
= 1 +

3Ψ− Φ

Φ+ 4 tanα0
→ 1 as α→ π

2
.

This shows that Γ2(α0, ζ) starts at the origin tangent to x̂− t̂ = 0. The rest

of the statements in Lemma 5.16 is a reformulation of our results on Φ and

Ψ. �

Next we translate the results of Lemmas 5.1 and 5.2 into statements on

the solvability of

x̂ = Φ(α0, ζ). (5.51)

Lemma 5.17. Given x̂ ∈
[

Φ(−π/2, ζ),Φ
(

α∗
0(ζ), ζ

)]

, x̂ = Φ(α0, ζ)

has

(i) one solution α
(1)
0 (x̂, ζ) ∈

(

− π/2, α̃0(ζ)
)

, provided

x̂ ∈
[

Φ(−π/2, ζ), 0
)

, (5.52)
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(ii) two solutions α
(j)
0 (x̂, ζ), j = 1, 2,

α̃0(ζ) ≤ α
(1)
0 (x̂, ζ) ≤ α∗

0(ζ) ≤ α
(2)
0 (x̂, ζ), (5.53)

provided

x̂ ∈
[

0,Φ
(

α∗
0(ζ), ζ

)]

. (5.54)

Lemma 5.18. One has

d

dζ
Φ
(

α∗
0(ζ), ζ

)

< 0, and (5.55)

d

dζ
Φ
(

− π

2
, ζ
)

> 0. (5.56)

Proof. Setting α0 = −π/2 in (5.15) we obtain (5.56). Next,

d

dζ
Φ
(

α∗
0(ζ), ζ

)

= Φα0

(

α∗
0(ζ), ζ

)dα∗
0

dζ
+Φζ

(

α∗
0(ζ), ζ

)

= Φζ
(

α∗
0(ζ), ζ

)

< 0

in view of Lemma 5.4(i). �

A simple consequence is

Corollary 5.19. When x̂ ∈
[

0,Φ
(

α∗
0(1), 1

)]

,

x̂ = Φ
(

α∗
0(ζ), ζ

)

(5.57)

has a unique solution, and when x̂ < 0,

x̂ = Φ
(

− π

2
, ζ
)

(5.58)

has a unique solution. We shall denote this unique solution by ζM(x̂).

We note that ζM(x̂) = max ζ among all those ζ for which either

x̂ = Φ(α0, ζ), x̂ ∈
[

0,Φ
(

α∗
0(1), 1

)]

has a solution, or

x̂ = Φ
(

− π

2
, ζ
)

, x̂ < 0
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has a solution.

If x̂ ∈
(

0,Φ
(

α∗
0(1), 1

))

, then for every ζ ∈
(

1, ζM (x̂)
)

, x̂ = Φ(α0, ζ) has

2 solutions α
(1)
0 (x̂, ζ), α

(2)
0 (x̂, ζ); this is a consequence of Lemma 5.17(ii).

When x̂ < 0, then Lemma 5.17(i) implies that x̂ = Φ(α0, ζ) has a unique

solution α
(1)
0 (x̂, ζ) for each ζ such that Φ(−π/2, ζ) < x̂; according to (5.56)

this is equivalent to ζ ≤ ζM (x̂). We note that in this case, that is x̂ < 0,

α
(1)
0 (x̂, ζM ) = −π

2
.

Lemma 5.20.

(i) x̂>0: ζM (x̂) decreases from ∞ to 1 as x̂ increases from 0 to Φ
(

α∗
0(1), 1

)

.

(ii) x̂<0: ζM (x̂) increases from 1 to ∞ as x̂ increases from −∞ to 0.

(iii) lim
x̂→0

α
(1)
0 (x̂, ζ) = α̃0(ζ), lim

x̂→0+
α
(2)
0 (x̂, ζ) = π

2 ,
∂α

(1)
0
∂x̂ > 0,

∂α
(2)
0
∂x̂ < 0.

Proof. The results are implied by the picture of the graph of Φ, prop-

erties of ζM (x̂) and the following simple fact:

lim
ζ→∞

Φ(α0, ζ) = 0.

�

Before we embark on solving

t̂ = Ψ
(

α
(j)
0 (x̂, ζ), ζ

)

= Ψ(j)(x̂, ζ), ζ ∈
[

1, ζM (x̂)
]

, (5.59)

for ζ, it may help to summarize our understanding of the structure of the

solutions α
(j)
0 (x̂, ζ) of (5.51):

(i) Necessarily

x̂ ∈
(

−∞,Φ
(

α∗
0(1), 1

)]

.

(ii) For such an x̂,

ζ ∈
[

1, ζM (x̂)
]

.
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(iii) There are 2 possible roots of (5.51):

α
(1)
0 (x̂, ζ) ∈

[

− π

2
, α∗

0(ζ)
]

,

α
(2)
0 (x̂, ζ) ∈

[

α∗
0(ζ),

π

2

)

.

For x̂ < 0, only α
(1)
0 (x̂, ζ) is a root. When 0 < x̂ ∈

(

0,Φ
(

α∗
0(1), 1

)]

, there

are 2 roots, α
(j)
0 (x̂, ζ), j = 1, 2.

Lemma 5.21. We have

(i) ∂Ψ(j)

∂ζ (x̂, ζ) = − ∆2
∂Φ/∂α0

∣

∣

∣

α0=α
(j)
0 (x̂,ζ)

,

(ii) ∂Ψ(1)

∂ζ < 0, ∂Ψ
(2)

∂ζ > 0, ζ ∈
(

1, ζM (x̂)
)

,

(iii) each equation

t̂ = Ψ(1)(x̂, ζ), t̂ = Ψ(2)(x̂, ζ)

has at most one solution in ζ.

Proof. From

x̂ = Φ
(

α
(j)
0 (x̂, ζ), ζ

)

one has

∂α
(j)
0 (x̂, ζ)

∂ζ
= − ∂Φ/∂ζ

∂Φ/∂α0

∣

∣

∣

α0=α
(j)
0 (x̂,ζ)

,

and therefore

∂Ψ(j)

∂ζ
=

(

∂Ψ

∂α0

∣

∣

∣

α0=α
(j)
0 (x̂,ζ)

)

∂α
(j)
0 (x̂, ζ)

∂ζ
+
∂Ψ

∂ζ

∣

∣

∣

α0=α
(j)
0 (x̂,ζ)

= − ∆2

∂Φ/∂α0

∣

∣

∣

α0=α
(j)
0 (x̂,ζ)

which is (i). ∆2 > 0, except at α0 = π/2. Since α
(1)
0 < α∗

0(ζ) < α
(2)
0 ,

∂Φ

∂α0
(α

(1)
0 , ζ) > 0,

∂Φ

∂α0
(α

(2)
0 , ζ) < 0,

and we have derived (ii) which implies (iii). �
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Remark 5.22. We note that

x̂ = Φ
(

α∗
0

(

ζM(x̂)
)

, ζM (x̂)
)

,

so α
(1)
0 = α

(2)
0 = α∗

0 is excluded from the above discussion. On the other

hand, Φα0

(

α∗
0(ζ), ζ

)

= 0 implies that

∂Ψ(j)(x̂, ζ)

∂ζ
−→

{

−∞, j=1,

∞, j=2,

as α
(j)
0 (x̂, ζ) → α∗

0(ζ), j = 1, 2.

Corollary 5.23. The system of equations

x̂ = Φ(α0, ζ), t̂ = Ψ(α0, ζ) (5.60)

has at most 2 solutions in α0 ∈ [−π/2, π/2], ζ ∈ [1,∞). When x̂ < 0 it has

at most one solution.

We shall improve on this result.

Definition 5.24. Let R2 denote the image of the mapping

(α0, ζ) →
(

Φ(α0, ζ),Ψ(α0, ζ)
)

, (5.61)

(α0, ζ) ∈
[

− π

2
,
π

2

]

× [1,∞). (5.62)

Evidently R2 =
⋃

ζ

Γ2(ζ), ζ ∈ [1,∞).

Lemma 5.25. x̂ < 0.

(i) The intersection of R2 with the vertical abscissa at x̂ is the following

segment of t̂:

Ψ
(

− π

2
, ζM (x̂)

)

≤ t̂ ≤ Ψ
(

α
(1)
0 (x̂, 1), 1

)

, (5.63)

with ζM (x̂) being the unique root of

x̂ = Φ
(

− π

2
, ζ
)

. (5.64)



126 BERNARD GAVEAU AND PETER GREINER [March

(ii) The lower end
(

x̂,Ψ
(

− π/2, ζM (x̂)
))

of this segment is on the curve

C1(−π/2).
(iii) The upper end

(

x̂,Ψ
(

α
(1)
0 (x̂, 1), 1

))

of this segment is on the curve

Γ2(1). In particular, Γ2(1) is above C1(−π/2).
(iv) The mapping (5.61), (5.62) is 1-1 into R2 ∩ {x̂ < 0}.
(v) Γ2(ζ) ∩C1(−π/2) =

(

Φ(−π/2, ζM ),Ψ(−π/2, ζM )
)

.

Proof. When x̂ < 0, (5.51) has a unique root α
(1)
0 (x̂, ζ) for each

ζ ∈
[

1, ζM (x̂)
]

, and Ψ
(

α
(1)
0 (x̂, ζ), ζ

)

= Ψ(1)(x̂, ζ) is a decreasing function

of ζ. Consequently,

Ψ
(

− π

2
, ζM (x̂)

)

= Ψ
(

α
(1)
0

(

x̂, ζM (x̂)
)

, ζM (x̂)
)

< Ψ
(

α
(1)
0 (x̂, ζ), ζ

)

< Ψ
(

α
(1)
0 (x̂, 1), 1

)

,

if 1 < ζ < ζM (x̂). The lower end of this interval is the set of points

(x̂, t̂) =
(

Φ
(

− π

2
, ζM (x̂)

)

,Ψ
(

− π

2
, ζM (x̂)

))

,

ζM(x̂) ∈ (1,∞), which is the curve C1(−π/2) parametrized by ζM ∈ (1,∞).

The upper end is the following set of points:

(x̂, t̂) =
(

Φ
(

α
(1)
0 (x̂, 1), 1

)

,Ψ
(

α
(1)
0 (x̂, 1), 1

))

,

where α
(1)
0 (x̂, 1) runs in

−π
2
= α

(1)
0 (−∞, 1) < α

(1)
0 (x̂, 1) < α

(1)
0 (0, 1) = α̃0(1).

This is the arc of Γ2(1) in the half-space x̂ < 0. Thus for a fixed x̂ < 0 the

vertical segment of abscissa x̂ in R2 is the interval (5.63) stretching between

C1(−π/2) and Γ2(1), and Γ2(1) is above C1(−π/2).

R2 is the union of the vertical intervals
[

Ψ(1)
(

x̂, ζM (x̂)
)

,Ψ(1)(x̂, 1)
]

,

x̂ < 0. ζM (x̂) occurs only at α0 = −π/2. If Γ2(ζ) strikes C1(−π/2) at

α0 > −π/2, then that ζ < ζM(x̂), so for that particular x̂, in view of the

decreasing behaviour of Ψ(1)(x̂, ζ), the lower end Ψ(1)
(

x̂, ζM (x̂)
)

of the seg-

ment
[

Ψ(1)
(

x̂, ζM (x̂)
)

,Ψ(1)(x̂, 1)
]

would be below C1(−π/2), outside of R2,

and this is a contradiction. Hence Γ2(ζ) meets C1(−π/2) only at α0 = −π/2,
and we have derived Lemma 5.25. �
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When x̂ > 0, we separate R2 into 2 subdomains, namely α0 < α∗
0(ζ)

and α0 > α∗
0(ζ).

Lemma 5.26.

(i) Given x̂ > 0, the intersection of the region R2 with the vertical line of

abscissa x̂ which corresponds to the root α
(1)
0 (x̂, ζ) is the segment

Ψ
(

α∗
0

(

ζM (x̂)
)

, ζM (x̂)
)

≤ t̂ ≤ Ψ
(

α
(1)
0 (x̂, 1), 1

)

, (5.65)

where ζM (x̂) is the unique root of x̂ = Φ
(

α∗
0(ζ), ζ

)

.

(ii) The upper end of these segments is the upper arc of Γ2(1) between x̂ = 0

and x̂ = Φ
(

α∗
0(1), 1

)

.

(iii) The lower end of these segments is the curve

(x̂, t̂) =
(

Φ
(

α∗
0(ζ), ζ

)

,Ψ
(

α∗
0(ζ), ζ

))

, (5.66)

ζ ∈ [1,∞). This curve is the locus of those points of Γ2(ζ) where x̂ is

maximum.

(iv) The points in this part of R2 are in 1-1 correspondence with (α0, ζ),

α0 = α
(1)
0 (x̂, ζ).

Proof. We note that

α
(1)
0

(

x̂, ζM (x̂)
)

= α∗
0

(

ζM (x̂)
)

= α
(2)
0

(

x̂, ζM (x̂)
)

.

Also,

Ψ(1)(x̂, ζ) = Ψ
(

α
(1)
0 (x̂, ζ), ζ

)

(5.67)

is a decreasing function of ζ, so t̂ = Ψ
(

α
(1)
0 (x̂, ζ), ζ

)

varies in the interval

(5.65). The upper end of this interval corresponds to the set of points

(x̂, t̂) =
(

Φ
(

α
(1)
0 (x̂, 1), 1

)

,Ψ
(

α
(1)
0 (x̂, 1), 1

))

,

with

x̂ ∈
[

0,Φ
(

α∗
0(1), 1

)]

.

This is an arc of Γ2(1) which extends from α0 = α̃0(1), where x̂ = 0 on

Γ2(1), to α0 = α∗
0(1), where x̂ is maximum on Γ2(1). The lower end of the
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interval (5.65) is the arc

(x̂, t̂) =
(

Φ
(

α∗
0

(

ζM (x̂)
)

, ζM (x̂)
)

,Ψ
(

α∗
0

(

ζM (x̂)
)

, ζM (x̂)
)

)

, (5.68)

where x̂ acts as the parameter,

x̂ ∈
[

0,Φ
(

α∗
0(1), 1

)]

.

We recall that for ζ ∈ [1,∞), Φ
(

α∗
0(ζ), ζ

)

is the maximum value of x̂ along

Γ2(ζ). Consequently the lower end of the interval (5.65) is the curve joining

the points of Γ2(ζ) where x̂ is maximal.

Finally (iv) follows from the strictly decreasing behaviour of the function

Ψ(1)(x̂, ζ) in ζ, and we have completed the derivation of Lemma 5.26. �

Lemma 5.27.

(i) When x̂ > 0, the intersection of the region R2 with the vertical line of

abscissa x̂ which corresponds to the root α
(2)
0 (x̂, ζ) is the segment

Ψ
(

α
(2)
0 (x̂, 1), 1

)

≤ t̂ ≤ Ψ
(

α∗
0

(

ζM(x̂)
)

, ζM (x̂)
)

. (5.69)

(ii) The lower end of this interval is the lower arc of Γ2(1) between x̂ = 0

and x̂ = Φ
(

α∗
0(1), 1

)

.

(iii) The upper end of this interval is the curve (5.68).

(iv) The points (x̂, t̂) in this part of R2 are in 1-1 correspondence with

(α0, ζ), α0 = α
(2)
0 (x̂, ζ).

Proof. Given x̂ > 0,

t̂ = Ψ(2)(x̂, ζ) = Ψ
(

α
(2)
0 (x̂, ζ), ζ

)

is an increasing function of ζ ∈ (1,∞), and the corresponding t̂ varies in the

interval

Ψ
(

α
(2)
0 (x̂, 1), 1

)

≤ t̂ ≤ Ψ
(

α∗
0

(

ζM (x̂)
)

, ζM (x̂)
)

,

since

α
(2)
0

(

x̂, ζM (x̂)
)

= α∗
0

(

ζM (x̂)
)

.

The rest of the argument is similar to the derivation of Lemma 5.26. �
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We summarize these results in

Proposition 5.28.

(i) For (α0, ζ) ∈ [−π/2, π/2) × [1,∞),

(α0, ζ) −→
(

Φ(α0, ζ),Ψ(α0, ζ)
)

(5.70)

is a 1-1 mapping onto the region R2, where R2 is the domain bounded

by C1(−π/2) and Γ2(1).

(ii) R2 ∩ {x̂ < 0} corresponds to the root α
(1)
0 (x̂, ζ) of (5.51).

(iii) When x̂ ≥ 0, the part of R2 between the upper part of Γ2(1) and the

curve (5.68) corresponds to α
(1)
0 (x̂, ζ).

(iv) When x̂ ≥ 0, the part of R2 between the lower part of Γ2(1) and the

curve (5.68) corresponds to α
(2)
0 (x̂, ζ).

(v) The mapping (5.70) is not C1 on the curve (5.68); see Remark 5.22.

Figure 4.

6. αend = π − α0 + 2nπ, n = 1, 2, . . ., ẏ(0) > 0

We still need to consider geodesics which return to the plane after n =

1, 2, . . . full periods at αend = π − α0 + 2nπ. The final points are given by
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formulas (5.1) and (5.2) which may be rewritten in the following form:

(x̂, t̂) =
(

Φ(α0, ζ),Ψ(α0, ζ)
)

+ n

(

J(ζ)

(ζ + sinα0)1/2
,

I(ζ)

(ζ + sinα0)3/2

)

, (6.1)

α0 ∈ [−π/2, π/2], ζ ∈ [1,∞). According to Lemma 4.1, I(ζ) > 0, I(1) <∞,

J(ζ) < 0, J(1) = −∞.

Proposition 6.1. (x, y0, t) cannot be connected to (0, y0, 0) by an infi-

nite number of geodesics of the form (6.1).

Remark 6.2. Suppose there are an infinite number of geodesics of

the form (6.1) which connect (x, y0, t) to (0, y0, 0) with parameters α0,np ,

ζnp ≥ 1, p = 1, 2, . . .. Clearly t̂ > 0. Then we have two possibilities:

(i) if {np} is unbounded, we may choose a strictly increasing subsequence,

which we again denote by n1, n2, . . ..

(ii) if {np} is bounded, there is a fixed positive integer q, such that (x, y0, t)

is connected to (0, y0, 0) by an infinite number of geodesics of the form

(6.1) with n = q.

In the following 2 Lemmas we shall show that neither case can occur;

this will prove Proposition 6.1.

Lemma 6.3. It is not possible to find a subsequence np, p = 1, 2, . . . of

the positive integers n such that there are an infinite number of geodesics, one

for each np, p = 1, 2, . . ., of the form (6.1) which join (x, y0, t) to (0, y0, 0).

Proof of Lemma 6.3. Assume the opposite. Then there are param-

eters α0,np and ζnp with α0,np ∈ [−π/2, π/2], ζnp ∈ [1,∞) such that for the

given (x, y0, t) one has

x̂ =Φ(α0,np , ζnp) +
npJ(ζnp)

(ζnp + sinα0,np)
1/2

, (6.2)

t̂ =Ψ(α0,np , ζnp) +
npI(ζnp)

(ζnp + sinα0,np)
3/2

, (6.3)

p = 1, 2, 3, . . .. We may assume that

lim
p→∞

α0,np = ᾱ0, lim
p→∞

ζnp = ζ̄, ζ̄ ∈ [1,∞]. (6.4)
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a) 1 < ζ̄ <∞. In this case Φ(α0,np , ζnp), Ψ(α0,np , ζn), J(ζnp) and I(ζnp)

all have finite limits and I(ζ̄) > 0. Consequently the second term on the

right hand side of (6.3) has an infinite limit as np → ∞ which contradicts

the finiteness of t̂.

b) ζ̄ = 1. Here lim
p→∞

J(ζnp) = −∞, and (6.2) gives

J(α0,np , ζnp)

(ζnp + sinα0,np)
1/2

≡ Φ(α0,np , ζnp) = − npJ(ζnp)

(ζnp + sinα0,np)
1/2

+ x̂,

so that for large p one has

J(α0,np , ζnp) ∼ −npJ(ζnp) → ∞.

This contradicts the fact that J(α0, 1) is bounded from above by J(0, 1).

c) ζ̄ = ∞. (4.23) and (4.24) yield

npJ(ζnp)

(ζnp + sinα0,np)
1/2

= − np
ζ2np

(

π

2
− π

4ζnp

sinα0,np + · · ·
)

,

and

npI(ζnp)

(ζnp + sinα0,np)
3/2

=
np
ζ2np

(

π

2
− 3π

4ζnp

sinα0,np + · · ·
)

.

Also, in view of (5.19) and (5.32) we have

Φ(α0,np , ζnp) =
2

ζnp

(cosα0,np + · · · ), (6.5)

Ψ(α0,np , ζnp) =
2

ζnp

(cosα0,np + · · · ). (6.6)

Each of these right hand sides represents the beginning of a convergent power

series in ζ−1
np

. Consequently,

x̂ =− np
ζ2np

(

π

2
− π

4ζnp

sinα0,np + · · ·
)

+O

(

1

ζnp

)

, (6.7)

t̂ =
np
ζ2np

(

π

2
− 3π

4ζnp

sinα0,np + · · ·
)

+O

(

1

ζnp

)

. (6.8)
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x̂ and t̂ are finite and fixed, therefore

lim
p→∞

(

− np
ζ2np

)

=
2x̂

π
= −E, lim

p→∞

np
ζ2np

=
2t̂

π
= E ≥ 0, (6.9)

with some constant E, so

x̂ = −πE
2
, t̂ =

πE

2
, (6.10)

and (x̂, t̂) must be on the critical line x̂+ t̂ = 0, t̂ > 0. Since x and t are not

both zero, on the critical line neither are zero, and therefore E > 0. We still

need to show that points on the critical line cannot be connected to (0, y0, 0)

by an infinite number of geodesics of the form (6.2), (6.3). To this end we

need more information on ᾱ0. As np/ζ
2
np

has a finite nonzero limit we may

write

x̂+
π

2

n

ζ2np

=
npπ

4ζ3np

sinα0,np +
2

ζnp

cosα0,np +O
( 1

ζ2np

)

,

t̂− π

2

np
ζ2np

=− 3npπ

4ζ3np

sinα0,np +
2

ζnp

cosα0,np +O
( 1

ζ2np

)

.

We set

np
ζ2np

= E + ε(np), ε(np) = o(1), p→ ∞. (6.11)

Then

π

2
ε(np)ζnp =

π

4

(

E + ε(np)
)

sinα0,np + 2cosα0,np +O
( 1

ζnp

)

,

−π
2
ε(np)ζnp =− 3π

4

(

E + ε(np)
)

sinα0,np + 2cosα0,np +O
( 1

ζnp

)

.

Adding, one has

0 = −π
2

(

E + ε(np)
)

sinα0,np + 4cosα0,np +O
( 1

ζnp

)

.

Letting p→ ∞,

0 = −Eπ
2

sin ᾱ0 + 4cos ᾱ0,
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and

tan ᾱ0 =
8

Eπ
> 0 ⇒ ᾱ0 ∈

(

0,
π

2

)

. (6.12)

Consequently, as p→ ∞,

Ψ(α0,np , ζnp) ∼ Ψ(ᾱ0, ζnp) = O
( 1

ζnp

)

→ 0,

npI(ζnp)

(ζnp + sinα0,np)
3/2

∼
np
√

ζnp

∫ π/2
ᾱ0

sinαdα

ζ
3/2
np

∼
√

npE cos ᾱ0 → ∞,

which yields

lim
p→∞

(

Ψ(α0,np , ζnp) +
npI(ζnp)

(ζnp + sinα0,np)
3/2

)

= ∞.

t̂ is finite, and we have contradicted (6.3). This shows that we cannot have

infinitely many geodesics, represented by (6.2), (6.3) with lim
p→∞

np = ∞,

connecting points on the critical line with the point (0, y0, 0). Thus we have

completed the proof of Lemma 6.3. �

Lemma 6.4. Given a fixed positive integer q, one cannot join (x, y0, t)

to (0, y0, 0) by an infinite number of distinct geodesics of the form

x̂ =Φq(α0, ζ) = Φ(α0, ζ) +
qJ(ζ)

(ζ + sinα0)1/2
, (6.13)

t̂ =Ψq(α0, ζ) = Ψ(α0, ζ) +
qI(ζ)

(ζ + sinα0)3/2
, (6.14)

α0 ∈ [−π/2, π/2], ζ ∈ [1,∞).

Proof of Lemma 6.4. We start with (6.14) and note that Ψ(α0, ζ) and

I(ζ) are both decreasing functions of ζ, hence so is Ψq(α0, ζ), ζ ∈ [1,∞).

Consequently, if (6.14) has a solution ζ(α0) for a given α0, then the solu-

tion is unique. For a fixed α0, Ψq(α0, ζ) decreases from Ψq(α0, 1) > 0 to

Ψq(α0,∞) = 0. As for Ψq(α0, 1), it decreases from Ψq(−π/2, 1) = ∞ to

Ψq(π/2, 1) = qI(1)/2 > 0. Thus for a fixed α0, (6.14) has a solution if and

only if t̂ ≤ Ψq(α0, 1).

(i) If t̂ ≤ Ψq(π/2, 1) = qI(1)/2, then (6.14) has a unique solution ζ(α0)
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for all

α0 ∈
[

− π

2
,
π

2

]

. (6.15)

(ii) If t̂ > Ψq(π/2, 1) = qI(1)/2, then (6.14) has a unique solution when-

ever

α0 ∈
[

− π

2
, α0,t̂

]

, (6.16)

where we let α0,t̂ denote the unique solution of

t̂ = Ψq(α0,t̂, 1). (6.17)

We note that ζ(−π/2) > 1, ζ(α0,t̂) = 1 and ζ(π/2) ≥ 1. We need ζ ′(α0) at

the end points of the intervals (6.15) and (6.16). To this end we differentiate

(6.14):

0 =
d

dα0

[

Ψ
(

α0, ζ(α0)
)

+
qI
(

ζ(α0)
)

(

ζ(α0) + sinα0

)3/2

]

=
∂Ψ

∂α0

(

α0, ζ(α0)
)

− 3

2

qI
(

ζ(α0)
)

cosα0
(

ζ(α0) + sinα0

)5/2

+
∂

∂ζ

[

Ψ(α0, ζ) +
qI(ζ)

(ζ + sinα0)3/2

]

ζ=ζ(α0)

· ζ ′(α0)

= −1

2

cosα0

ζ(α0) + sinα0

(

3Ψ
(

α0, ζ(α0)
)

+ 4 tanα0

)

− 3

2

qI
(

ζ(α0)
)

cosα0
(

ζ(α0) + sinα0

)5/2

+

[

∂Ψ

∂ζ

(

α0, ζ(α0)
)

+
qI ′
(

ζ(α0)
)

(

ζ(α0) + sinα0

)3/2
− 3

2

qI
(

ζ(α0)
)

(

ζ(α0) + sinα0

)5/2

]

ζ ′(α0).

Multiplying both sides by 2
(

ζ(α0) + sinα0

)

we obtain

0 =− 3 cosα0

[

Ψ
(

α0, ζ(α0)
)

+
qI
(

ζ(α0)
)

(

ζ(α0) + sinα0

)3/2

]

− 4 sinα0

+

[

{

Φ
(

α0, ζ(α0)
)

− 3Ψ
(

α0, ζ(α0)
)

}

+ q
{ J

(

ζ(α0)
)

(

ζ(α0) + sinα0

)1/2
− 3I

(

ζ(α0)
)

(

ζ(α0) + sinα0

)3/2

}

]

ζ ′(α0).
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Both curly brackets are negative, the first by (5.24) and the second because

J(ζ) < 0 and I(ζ) > 0. Consequently so is their sum,

Φq(α0, ζ)− 3Ψq(α0, ζ) < 0. (6.18)

Thus we have

ζ ′(α0) =
3t̂ cosα0 + 4 sinα0

Φq
(

α0, ζ(α0)
)

− 3Ψq

(

α0, ζ(α0)
) . (6.19)

In particular

ζ ′
(

− π

2

)

=
−4

Φq

(

− π
2 , ζ
(

− π
2

))

− 3Ψq

(

− π
2 , ζ
(

− π
2

)) > 0, (6.20)

and

ζ ′
(π

2

)

< 0. (6.21)

Consequently ζ(α0) starts out increasing at α0 = −π/2, ζ(−π/2) > 1, at-

tains its maximum at α+
0,q, where we set

tanα+
0,q =

3t̂

4
, α+

0,0 = α+
0 , (6.22)

then decreases to

ζ(α0,t̂) = 1, or to ζ
(π

2

)

≥ 1.

To complete the proof of Lemma 6.4, which will complete the proof of

Proposition 6.1, we still need to show that

x̂ = Φq
(

α0, ζ(α0)
)

(6.23)

has at most a finite number of solutions in α0∈ [−π/2, α0,t̂], or in [−π/2, π/2].
Φq
(

α0, ζ(α0)
)

is an analytic function of α0. Therefore an infinite number

of solutions α0 of (6.23) implies that x̂ is a limit point of the values of

Φq
(

α0, ζ(α0)
)

at either one or both end points of the α0-interval. This

cannot happen at α0,t̂, because Φ(α0,t̂, 1) is finite and J(1) = −∞, so we

have Φq(α0,t̂, 1) = −∞. It cannot happen at α0 = ±π/2 either, because it
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has a nonvanishing derivative with respect to α0 at α0 = ±π/2. Indeed,

d

dα0
Φq
(

α0, ζ(α0)
)

=
∂Φ

∂α

(

α0, ζ(α0)
)

− 1

2

qJ
(

ζ(α0)
)

cosα0
(

ζ(α0) + sinα0

)3/2
+
∂Φq
∂ζ

(

α0, ζ(α0)
)

ζ ′(α0),

and at α0 = −π/2 we have

dΦq
dα0

(

−π
2
, ζ
(

− π

2

))

=
2

ζ(−π
2 )− 1

+
∂

∂ζ

(q + 1)J(ζ)

(ζ − 1)1/2

∣

∣

∣

ζ=ζ
(

−π
2

) · ζ ′
(

− π

2

)

=
2

ζ(−π
2 )−1

+(q+1)







J ′
(

ζ(−π
2 )
)

(

ζ(−π
2 )− 1

)1/2
−

J
(

ζ(−π
2 )
)

2
(

ζ(−π
2 )−1

)3/2






ζ ′
(

− π

2

)

.

The square bracket is positive and so is ζ ′(−π/2). Therefore

d

dα0
Φq
(

α0, ζ(α0)
)

∣

∣

∣

α0=−π
2

> 0.

Similarly,

d

dα0
Φq
(

α0, ζ(α0)
)

∣

∣

∣

α0=
π
2

< 0.

This implies that (6.23) can have at most a finite number of solutions which

proves Lemma 6.4, and we have completed the proof of Proposition 6.1. �

7. αend = π − α0 + 2nπ, n = 1, 2, . . ., ẏ(0) < 0

We are still interested in formulas (5.1) and (5.2):

x̂(π − α0 + 2nπ) =Φ(α0, ζ) +
nJ(ζ)

(ζ + sinα0)1/2
, (7.1)

t̂(π − α0 + 2nπ) =Ψ(α0, ζ) +
nI(ζ)

(ζ + sinα0)3/2
, (7.2)
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n = 1, 2, . . ., although here ẏ(0) < 0 which is equivalent to

π

2
< α0 <

3π

2
. (7.3)

Note that n 6= 0 if ẏ(0) < 0, see Chapter 3 (ii). We introduce

α′
0 = π − α0, α′ = π − α, (7.4)

and obtain

Φ(α0, ζ) =
−2

(ζ + sinα′
0)

1/2

∫ π/2

α′

0

sinα′dα′

(ζ + sinα′)1/2
= −Φ(α′

0, ζ),

Ψ(α0, ζ) =
−2

(ζ + sinα′
0)

3/2

∫ π/2

α′

0

sinα′(ζ + sinα′)dα′ = −Ψ(α′
0, ζ).

Thus

x̂ =− Φ(α′
0, ζ) +

nJ(ζ)

(ζ + sinα′
0)

1/2
, (7.5)

t̂ =−Ψ(α′
0, ζ) +

nI(ζ)

(ζ + sinα′
0)

3/2
, (7.6)

with

α′
0 =

[

− π

2
,
π

2

]

. (7.7)

n = 1. Here we use

∫ π

0
f(sinα)dα = 2

∫ π/2

0
f(sinα)dα,

∫ 2π

π
f(sinα)dα = 2

∫ 0

−π/2
f(sinα)dα,

and write

x̂ =
2

(ζ + sinα0)1/2

∫ α0

−π/2

sinαdα

(ζ + sinα)1/2
= ϕ(α0, ζ), (7.8)

t̂ =
2

(ζ + sinα0)3/2

∫ α0

−π/2
sinα(ζ + sinα)1/2dα = ψ(α0, ζ), (7.9)
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with

−π
2
≤ α0 ≤

π

2
, ζ > 1, (7.10)

where we returned to using α0 for α′
0; we note that α0 of (7.10) is the π−α0

of the chapter heading.

n = 2,3, . . .. With m = n− 2 we have

x̂ =ϕ(α0, ζ) +
mJ(ζ)

(ζ + sinα0)1/2
, (7.11)

t̂ =ψ(α0, ζ) +
mI(ζ)

(ζ + sinα0)3/2
, (7.12)

m = 0, 1, 2, . . ., α0 ∈ [−π/2, π/2]. We set

ϕ(α0, ζ) =
j(α0, ζ)

(ζ + sinα0)1/2
, (7.13)

ψ(α0, ζ) =
i(α0, ζ)

(ζ + sinα0)3/2
, (7.14)

with

j(α0, ζ) = 2

∫ α0

−π/2

sinαdα

(ζ + sinα)1/2
, (7.15)

i(α0, ζ) = 2

∫ α0

−π/2
sinα(ζ + sinα)1/2dα, (7.16)

and work with ϕ, ψ, j and i in a manner similar to the use of Φ, Ψ, J and

I in chapter 5.

On the functions ϕ, ψ, j and i.

Lemma 7.1. (i) For α0 ∈ (−π/2, π/2],

j(α0, ζ) < 0, and j
(

− π

2
, ζ
)

= 0, (7.17)

(ii) j has a minimum at α0 = 0.

Proof. Clearly j(π/2, ζ) = J(ζ) < 0, and

∂j

∂α0
=

2 sinα0

(ζ + sinα0)1/2
= 0 ⇒ α0 = 0. (7.18)



2006] ON GEODESICS IN SUBRIEMANNIAN GEOMETRY 139

�

Lemma 7.2. (i) We have

∂ϕ

∂α0
= −1

2

cosα0

ζ + sinα0
(ϕ− 4 tanα0). (7.19)

(ii) Given ζ > 1, ∂ϕ/∂α0 has a unique zero at α∗
0,ϕ(ζ) < 0, where

ϕ
(

α∗
0,ϕ(ζ), ζ

)

= 4 tanα∗
0,ϕ(ζ), (7.20)

and ϕ achieves its minimum at α∗
0,ϕ(ζ). In particular,

ϕ
(

− π

2
, ζ
)

= 0, ϕ
(π

2
, ζ
)

< 0 (7.21)

imply that

ϕ(α0, ζ) < 0, α0 ∈
(

− π

2
,
π

2

]

. (7.22)

(iii) lim
ζ→1+

ϕ(α0, ζ) = −∞, uniformly when α0 is bounded away from

−π/2.

(iv)

lim
ζ→1+

α∗
0,ϕ(ζ) = −π

2
. (7.23)

Proof. (i) is immediate. (ii) Note that

ϕ− 4 tanα0 =
1

(ζ + sinα0)1/2
(

j − 4
√

ζ + sinα0 tanα0

)

.

j is strictly decreasing from 0 and 4
√
ζ + sinα0 tanα0 is strictly increasing

to 0 when α0 ∈ (−π/2, 0), see the proof of Lemma 5.2(ii), so they intersect

once at α∗
0,ϕ(ζ) < 0, and we have (7.20). Finally one has

lim
ζ→1+

∫ α0

−π/2

sinαdα

(ζ + sinα)1/2
= −∞,

which proves (iii), and then (7.20) and (iii) imply that lim
ζ→1+

tanα∗
0,ϕ(ζ) =

−∞ which yields (iv). �
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Lemma 7.3. For large ζ one has

ϕ(α0, ζ) =
2

ζ

{

− cosα0 +
1

2ζ

(

sinα0 cosα0 −
∫ α0

−π/2
sin2 αdα

)

− 3

8ζ2

(

sin2 α0 cosα0 −
2

3
sinα0

∫ α0

−π/2
sin2 αdα−

∫ α0

−π/2
sin3 αdα

)

+ · · ·
}

. (7.24)

A simple calculation gives

∂ϕ

∂ζ
= − 1

(ζ + sinα0)1/2

[

ϕ

2(ζ + sinα0)1/2
+

∫ α0

−π/2

sinαdα

(ζ + sinα)3/2

]

. (7.25)

Since ϕ < 0 when α0 ∈ (−π/2, π/2], and
∫ α0

−α0

sinαdα

(ζ + sinα)3/2
< 0, α0 > 0,

we have

Figure 5.

Lemma 7.4. For all α0 ∈ (−π/2, π/2],

∂ϕ

∂ζ
> 0. (7.26)
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Lemma 7.5. For a fixed ζ ≥ 1, (i) i(α0, ζ) has a unique zero α̃0,i(ζ) >

0, (ii) i is minimum at α0 = 0.

Proof. i(π/2, ζ) > 0, i(α0, ζ) < 0 for α0 ≤ 0, and

∂i

∂α0
= 2 sinα0(ζ + sinα0)

1/2.

Consequently i is decreasing when α0 < 0, and increasing when α0 > 0.

These imply (i) and (ii) and Lemma 7.5. �

We note that

∂ψ

∂α0
= −1

2

cosα0

ζ + sinα0
(3ψ − 4 tanα0). (7.27)

Lemma 7.6. (i) For fixed ζ > 1, ∂ψ/∂α0 has a unique zero α+
0,ψ(ζ) < 0.

In particular,

3ψ
(

α+
0,ψ(ζ), ζ

)

= 4 tanα+
0,ψ(ζ). (7.28)

ψ decreases from ψ(−π/2, ζ) = 0 to ψ
(

α+
0,ψ(ζ), ζ

)

and then increases to

ψ(π/2, ζ) > 0.

(ii) ψ(α0, 1) increases from ψ(−π/2, 1) = −∞ to ψ(π/2, 1) > 0.

Proof. We integrate by parts in ψ,

ψ =
2

(ζ + sinα0)3/2

(

∫ 0

−π/2
sinα(ζ + sinα)1/2dα

− 2

3

∫ α0

0
(ζ + sinα)3/2

dα

cos2 α
+

2

3
(ζ + sinα0)

3/2 tanα0

)

,

and obtain

3ψ − 4 tanα0 =
2

(ζ + sinα0)3/2

(

3

∫ 0

−π/2
sinα(ζ + sinα)1/2dα

− 2

∫ α0

0
(ζ + sinα)3/2

dα

cos2 α

)

. (7.29)
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As a function of α0

−
∫ α0

0
(ζ + sinα)3/2

dα

cos2 α

decreases in the interval (−π/2, π/2) from +∞ to −∞, and has a unique zero

at α0 = 0. Therefore the bracket on the right side of (7.29) has a unique

zero at α+
0,ψ(ζ) < 0. Consequently, (7.27) implies that

∂ψ

∂α0
< 0, α0 < α+

0,ψ(ζ), (7.30)

∂ψ

∂α0
> 0, α0 > α+

0,ψ(ζ), (7.31)

ψ(0, ζ) < 0. (7.32)

When ζ = 1, the second integral in the bracket in (7.29) exists even at

α0 = −π/2. The bracket is a decreasing function of α0. Integrating by parts

the first integral in (7.29) we find that the bracket vanishes at α0 = −π/2,
therefore it is negative for all α0 ∈ (−π/2, π/2], and ∂ψ/∂α0 > 0 by (7.27).

As the right hand side of (7.29) is ≤ 0, we see that ψ(−π/2, 1) = −∞ which

implies (ii) and we have established Lemma 7.6. �

Figure 6.
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Lemma 7.7. For large ζ,

ψ(α0, ζ) =
1

ζ

{

− 2 cosα0 +
1

ζ

(

3 sinα0 cosα0 +

∫ α0

−π/2
sin2 αdα

)

− 1

ζ2

(15

4
sin2 α0 cosα0 +

3

2
sinα0

∫ α0

−π/2
sin2 αdα

+
1

4

∫ α0

−π/2
sin3 αdα

)

+ · · ·
}

. (7.33)

One has
∂ψ

∂ζ
=

−3ψ + ϕ

2(ζ + sinα0)
. (7.34)

Lemma 7.8. α̂0,ψ(ζ) is the unique zero of ∂ψ/∂ζ in (−π/2, π/2]. In

particular,

3ψ
(

α̂0,ψ(ζ), ζ
)

= ϕ
(

α̂0,ψ(ζ), ζ
)

, (7.35)

∂ψ

∂ζ
> 0, α0 < α̂0,ψ(ζ), (7.36)

∂ψ

∂ζ
< 0, α0 > α̂0,ψ(ζ). (7.37)

Proof. We shall derive (7.36) and (7.37) for −3ψ + ϕ.

− 3ψ + ϕ

=
1

(ζ + sinα0)3/2

∫ α0

−π/2

sinα

(ζ + sinα)1/2
(sinα0 − 3 sinα− 2ζ)dα. (7.38)

The integral vanishes at α0 = −π/2. Also, ψ(π/2, ζ) > 0, ϕ(π/2, ζ) < 0,

and the integral is negative at α0 = π/2. Furthermore,

∂

∂α0

∫ α0

−π/2

sinα

(ζ + sinα)1/2
(sinα0 − 3 sinα− 2ζ)dα

=
1

2
cosα0(ζ + sinα0)

1/2(ϕ− 4 tan α0),

so the integral increases when α0 < α∗
0,ϕ(ζ), hence positive at α∗

0,ϕ(ζ), and

then decreases for α0 > α∗
0,ϕ(ζ). Since the integral is negative at α0 = π/2,
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it attains a unique zero at some point α̂0,ψ(ζ),

α∗
0,ϕ(ζ) < α̂0,ψ(ζ) <

π

2
. (7.39)

�

Lemma 7.9. We have

ϕ < ψ. (7.40)

Proof.

ϕ− ψ =
2

(ζ + sinα0)3/2

∫ α0

−π/2

sinα

(ζ + sinα)1/2
(sinα0 − sinα)dα.

When α0 ≤ 0, the integrand is negative and therefore so is ϕ− ψ. Also,

∂

∂α0

∫ α0

−π/2

sinα

(ζ + sinα)1/2
(sinα0 − sinα)dα =

1

2
j cosα0 < 0

by (7.17). Consequently the integral, and therefore ϕ− ψ stay negative for

α0 > 0. �

On the Jacobian ∆3

We are interested in the mapping

(α0, ζ) −→ (x̂, t̂) =
(

ϕ(α0, ζ), ψ(α0, ζ)
)

, (7.41)

and to this end we let

∆3 =
∂(ψ,ϕ)

∂(α0, ζ)
(7.42)

denote its Jacobian. Then

∆3 =
1

2

cosα0

(ζ + sinα0)3/2

(

ϕ

2(ζ + sinα0)1/2
+

∫ α0

−π/2

sinαdα

(ζ + sinα)3/2

)

+
1

4

cosα0

(ζ + sinα0)2
(ϕ− 4 tanα0)(−3ψ + ϕ). (7.43)

We set

k(α0, ζ) = 2

∫ α0

−π/2

sinαdα

(ζ + sinα)3/2
, (7.44)
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P (X,α0, ζ) = −1

2
kX2 − jX +

3

2
i, (7.45)

D =
3

4
ik +

1

4
j2, (7.46)

so 4D is the discriminant of P .

Lemma 7.10. We have

(ζ + sinα0)
3∆3 = (cosα0)D +

2 sinα0

(ζ + sinα0)1/2
P (ζ + sinα0, α0, ζ), (7.47)

P (ζ + sinα0, α0, ζ)

=

∫ α0

−π/2
(sinα− sinα0)(sinα0 + 3 sinα+ 4ζ)

sinαdα

(ζ + sinα)3/2
. (7.48)

Proof. (7.45) yields

P (ζ + sinα0, α0, ζ) =

∫ α0

−π/2

sinα

(ζ + sinα)3/2
[

− (ζ + sinα0)
2

− 2(ζ + sinα0)(ζ + sinα) + 3(ζ + sinα)2
]

dα

which yields (7.48). As for (7.47), we replace ψ and ϕ in (7.43) by their

integrals, and then a direct calculation gives

(ζ + sinα0)
3∆3 = cosα0

[

3

4
ki+

1

4
j2
]

+ sinα0

[

−2(ζ + sinα0)j +
3i

(ζ + sinα0)1/2
− (ζ + sinα0)

3/2k

]

which is (7.47). �

Lemma 7.11. The α0 derivatives of P and ∆3 are given by

d

dα0
P (ζ + sinα0, α0, ζ) = −(cosα0)

[

j + (ζ + sinα0)k
]

, (7.49)

∂

∂α0
(ζ + sinα0)

3∆3

= −(sinα0)D +
2cosα0

(ζ + sinα0)1/2
P (ζ + sinα0, α0, ζ). (7.50)
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Proof. (7.49) follows easily from (7.48). Then (7.47) yields

∂

∂α0
(ζ + sinα0)

3∆3 = −(sinα0)D

+ cosα0

[

3

2
sinα0(ζ + sinα0)

1/2k +
3

2

sinα0

(ζ + sinα0)3/2
i+

sinα0

(ζ + sinα0)1/2
j

]

+ 2cosα0

[

1

(ζ + sinα0)1/2
− 1

2

sinα0

(ζ + sinα0)3/2

]

P

+
2 sinα0

(ζ + sinα0)1/2
d

dα0
P (ζ + sinα0, α0, ζ).

We replace dP/dα0 by the right side of (7.49), note that the terms with

sinα0 cosα0 cancel and obtain (7.50). �

Proposition 7.12. ∆3 > 0, α ∈ (−π/2, π/2], ζ > 1.

Proof. We shall argue as we did in the proof of Proposition 5.15.

1)

∆3







= 0, α0 = −π
2 ,

> 0, α0 ∈
(

− π
2 , 0
]

.
(7.51)

Indeed i and k are negative when α ≤ 0, so D > 0 there. Furthermore, the

integrand in (7.48) is positive when α0 ≤ 0, consequently

P (ζ + sinα0, α0, ζ) > 0, α0 ≤ 0, (7.52)

and, in view of (7.50),

∂

∂α0
(ζ + sinα0)

3∆3 > 0, α0 ≤ 0. (7.53)

(7.47) and (7.48) imply that (ζ + sinα0)
3∆3 = 0 at α0 = −π/2, therefore

(7.53) implies that

(ζ + sinα0)
3∆3 > 0, −π

2
< α0 ≤ 0,

and we have derived (7.51).

2) ∆3>0 near α0=π/2. We note that D(π/2, ζ) agrees with D(−π/2, ζ)
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of Lemma 5.13(iii) which is negative, so

D
(π

2
, ζ
)

< 0, ζ ≥ 1, (7.54)

and P (X,π/2, ζ) has no real roots. Therefore P (0, π/2, ζ) = (3/2)i(π/2, ζ) >

0 implies that

P
(

X,
π

2
, ζ
)

> 0. (7.55)

In view of (7.47),

(ζ + sinα0)
3∆3

∣

∣

∣

α0=π/2
=

2√
ζ + 1

P
(

ζ + 1,
π

2
, ζ
)

> 0, (7.56)

which proves 2). Clearly, (7.50) and (7.54) yield

∂

∂α0
(ζ + sinα0)

3∆3

∣

∣

∣

α0=
π
2

= −D > 0. (7.57)

3) Thus, if ∆3 has a zero, it must have a least 2 zeros in α0 > 0 where

∂(ζ + sinα0)
3∆3/∂α0 has opposite signs.

4) ∆3 does not vanish for α0 ≥ α̃0,i; we recall that α̃0,i is the unique

zero of i, and α̃0,i > 0. Indeed, i > 0 when α0 > α̃0,i, and since j and k are

always negative, we have

P (ζ + sinα0, α0, ζ) = −1

2
(ζ + sinα0)

2k − (ζ + sinα0)j +
3

2
i > 0, (7.58)

α0 ≥ α̃0,i. Furthermore, as i(α̃0,i, ζ) = 0, we have

D(α̃0,i, ζ) =
1

4
j2 > 0, (7.59)

and (7.47) yields

(ζ + sinα0)
3∆3

∣

∣

∣

α0=α̃0,i

> 0. (7.60)

Consequently, in view of (7.56), if (ζ + sinα0)
3∆3 vanishes in (α̃0,i, π/2), it

must have at least 2 zeros there with ∂(ζ + sinα0)
3∆3/∂α0 having opposite

signs at the 2 zeros, or a double zero of ∆3. This cannot happen. At a zero
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of ∆3 we have

D = − 2 tanα0

(ζ + sinα0)1/2
P (ζ + sinα0, α0, ζ), (7.61)

see (7.47). Substituting (7.61) into (7.50) we obtain

∂

∂α0
(ζ + sinα0)

3∆3 =
2P (ζ + sinα0, α0, ζ)

cosα0(ζ + sinα0)1/2
> 0 (7.62)

at a zero of ∆3 in (α̃0,i, π/2), in view of (7.58). This proves 4). We still need

5) ∆3 has no zero in (0, α̃0,i). In this interval i < 0. Since k is always

negative, one has D > 0 when α0 ≤ α̃0,i, and at a zero of ∆3 in (0, α̃0,i) we

have P (ζ + sinα0, α0, ζ) < 0 see (7.61). According to (7.62), at a zero of ∆3

in (0, α̃0,i)

∂

∂α0
(ζ + sinα0)

3∆3 =
2P (ζ + sinα0, α0, ζ)

cosα0(ζ + sinα0)1/2
< 0,

and at consecutive zeros the slope of (ζ + sinα0)
3∆3 cannot change sign,

or vanish at a double zero, which again contradicts 3). This completes the

proof of Proposition 7.12. �

The curves C3(α0).

Let C3(α0), α0 ∈ [−π/2, π/2], denote the following curve

C3(α0) =
{(

x̂ = ϕ(α0, ζ), t̂ = ψ(α0, ζ)
)

, 1 < ζ <∞
}

, (7.63)

parametrized by ζ, in the (x̂, t̂)-plane,

C3(−π/2) collapses to (0, 0),

C3(π/2) coincides with C1(π/2), since

ϕ
(π

2
, ζ
)

=
J(ζ)

(ζ + 1)1/2
, ψ

(π

2
, ζ
)

=
I(ζ)

(ζ + 1)3/2
.

Lemma 7.13. (i) For α0 ∈ (−π/2, π/2), the curves C3(α0) start, when

ζ = ∞, at the origin (0, 0) tangent to the line x̂ = t̂.

(ii) All curves C3(α0) stay in the half plane t̂ ≥ x̂.
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(iii) As ζ → 1+, x̂(α0, ζ) → −∞, t̂(α0, ζ) → ψ(α0, 1), so that each curve

C3(α0) has a horizontal asymptote

t̂ = ψ(α0, 1).

(iv) As ζ decreases from ∞ to 1, x̂ decreases from 0 to −∞.

(v) When ζ decreases from ∞ to 1, t̂ starts decreasing, reaches a unique

minimum, then increases to its asymptotic value ψ(α0, 1).

Proof. (i) is a consequence of the large ζ expansions of ϕ and ψ given

in Lemmas 7.3 and 7.7.

(ii) follows from ϕ < ψ as proved in Lemma 7.9.

(iii) is a consequence of the definition of ϕ and ψ and (iv) follows from

Lemma 7.4, which says that the ζ-derivative of ϕ is positive.

(v) is a consequence of the following �

Figure 7.

Lemma 7.14. ∂ψ/∂ζ has a unique zero ζ̄(α0); ∂ψ/∂ζ > 0 for ζ > ζ̄

and ∂ψ/∂ζ < 0 for ζ < ζ̄.

Proof. We start with (7.34):

∂ψ

∂ζ
=

−3ψ + ϕ

2(ζ + sinα0)
.
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As ζ → 1+, ψ stays finite but ϕ→ −∞, so

lim
ζ→1+

∂ψ

∂ζ
= −∞.

The sign of ∂ψ/∂ζ is the sign of u = −3ψ + ϕ,

u(α0, ζ) =

∫ α0

−π/2
(sinα0 − 3 sinα− 2ζ)

sinαdα

(ζ + sinα)1/2

=

∫ α0

−π/2

sinα(sinα0 − sinα)

(ζ + sinα)1/2
dα− i(α0, ζ). (7.64)

The large ζ expansions of ϕ and ψ given in Lemmas 7.3 and 7.7 yield

−3ψ + ϕ ∼ 4

ζ
cosα0 > 0, ζ → ∞,

and u(α0, ζ) > 0 when ζ ∼ ∞. Also, u(α0, ζ) → −∞ as ζ → 1+, α0 ∈
(−π/2, π/2). From (7.64),

∂u

∂ζ
= −1

2

∫ α0

−π/2

sinα(sinα0 − sinα)

(ζ + sinα)3/2
dα−

∫ α0

−π/2

sinαdα

(ζ + sinα)1/2

= −1

2
v(α0, ζ)−

1

2
j(α0, ζ). (7.65)

We note that

(i) v
(

− π
2 , ζ
)

= 0,

(ii)
∂v

∂α0
= cosα0

∫ α0

−π/2

sinαdα

(ζ + sinα)3/2
< 0.

Consequently v < 0 and therefore (7.65) implies that ∂u/∂ζ > 0. Thus u

increases from −∞ to u(α0,∞) > 0 as ζ increases from 1 to ∞, and u(α0, ζ)

has a unique zero ζ̄(α0), and so does ∂ψ/∂ζ. �

The region R3.

We let R3 denote the image of the mapping (7.41):

(α0, ζ) −→
(

ϕ(α0, ζ), ψ(α0, ζ)
)

= (x̂, t̂),

(α0, ζ) ∈ (−π/2, π/2] × (1,∞). In particular R3 is the union of the curves

C3(α0), −π/2 < α0 ≤ π/2.
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Lemma 7.15. (i) For (x̂, t̂) ∈ R3 the equations

x̂ = ϕ(α0, ζ), t̂ = ψ(α0, ζ)

have a unique solution. Consequently the mapping (7.41) is 1-1 and onto its

image R3.

(ii) The curves C3(α0) do not intersect; their t̂ component increases as

α0 increases from −π/2 to π/2.

Proof. (i) According to Lemma 7.13(iv) and Lemma 7.4, ϕ varies be-

tween −∞ and 0, and ∂ϕ/∂ζ > 0. Thus ϕ is an increasing function of ζ,

and for any x̂ < 0 the equation

x̂ = ϕ(α0, ζ)

has a unique solution in ζ, ζ = ζ(α0, x̂). Substituting this value of ζ into

t̂ = ψ(α0, ζ), we obtain

t̂(α0, x̂) = ψ
(

α0, ζ(α0, x̂)
)

. (7.66)

Now

x̂ = ϕ
(

α0, ζ(α0, x̂)
)

(7.67)

yields

0 =
∂ϕ

∂α0
+
∂ϕ

∂ζ

∂ζ

∂α0
,

and

∂t̂(α0, x̂)

∂α0
=

∆3

∂ϕ/∂ζ

∣

∣

∣

ζ=ζ(α0,x̂)
> 0, (7.68)

in view of Proposition 7.12 and Lemma 7.4. Thus t̂(α0, x̂) is an increasing

function of α0, and (7.66) has at most one solution.

(ii) is a consequence of (i) and of (7.68). �

Lemma 7.16. The region R3 is bounded by C1(π/2) = C3(π/2) and

the line x̂ = t̂, x̂ < 0.
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Proof. C3(−π/2) degenerates to a point. Nevertheless, t̂(α0, x̂) de-

creases as α0 decreases to −π/2, it is bounded from below by x̂ = t̂, x̂ < 0,

so it converges to a limit position. We shall show that this limit is the line

x̂ = t̂, x̂ < 0, i.e.

lim
α0→−π

2

t̂(α0, x̂) = x̂. (7.69)

This will prove that the mapping α0 → t̂(α0, x̂) sends (−π/2, π/2) onto the

interval
(

x̂, t̂(π/2, x̂)
]

, and t̂(π/2, x̂) ∈ C3(π/2). The key is the behaviour of

ζ(α0, x̂) as α0 → −π/2. From (7.67) we have

x̂ =
2

(ζ(α0, x̂) + sinα0)1/2

∫ α0

−π/2

sinαdα

(ζ(α0, x̂) + sinα)1/2
. (7.70)

When α0 → −π/2, the integral has limit zero if ζ(α0, x̂) is bounded away

from 1, so for a fixed x̂ < 0,

lim
α0→−π

2

ζ(α0, x̂) = 1. (7.71)

We set

α0 = −π
2
+ ε0, (7.72)

ζ(α0, x̂) = 1 + δ, lim
ε0→0

δ(ε0) = 0, (7.73)

α = −π
2
+ ε. (7.74)

Then
∫ α0

−π/2

sinαdα

(ζ(α0, x̂) + sinα)1/2
= −

∫ ε0

0

cos εdε

(1 + δ − cos ε)1/2

= −
√
2Argsinh

(

√

2

δ
sin

ε0
2

)

+O(ε30);

this is easily seen if we introduce x = sin(ε/2) as the variable of integration.

As x̂ = −|x̂| 6= 0, (7.70) yields

|x̂| =
2
√
2Argsinh

(
√

2
δ sin

ε0
2

)

+O(ε30)
√

δ + 2 sin2 ε02

.
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The denominator vanishes as ε0 → 0, hence so does the numerator. In

particular

lim
ε0→0

ε0√
2δ

= 0.

|x̂|+O(ε0) =
2
√
2Argsinh

(

ε0√
2δ

)

√

δ +
ε20
2

,

or,

sinh
(1

4

(

|x̂|+O(ε0)
)

√

2δ + ε20

)

=
ε0√
2δ
,

and for small ε0 we have

1

4

(

|x̂|+O(ε0)
)

√

2δ + ε20 =
ε0√
2δ
.

This leads to a quadratic equation in δ which we solve when ε0 is small,

δ(ε0) =
2ε0
|x̂| + o(ε0). (7.75)

Rewriting (7.66),

t̂
(

α0, ζ(α0, x̂)
)

=
2

(ζ(α0, x̂) + sinα0)3/2

∫ α0

−π/2
sinα

(

ζ(α0, x̂) + sinα
)1/2

dα, (7.76)

and we note that using (7.73) and (7.75) we can calculate the integral,

∫ α0

−π/2
sinα

(

ζ(α0, x̂) + sinα
)1/2

dα ∼ −
∫ ε0

0
cos ε

√

δ +
1

2
ε2dε

∼ −
√
2

√

|x̂|
ε
3/2
0 , ε0 ∼ 0.

Therefore

lim
α0→−π/2

t̂
(

α0, ζ(α0, x̂)
)

= −|x̂| = x̂

which is (7.69) and we have completed the proof of Lemma 7.16. �
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Figure 8. R3.

In summary,

Proposition 7.17. The mapping

(

− π

2
,
π

2

]

× (1,∞) ∋ (α0, ζ) −→ (x̂, t̂) =
(

ϕ(α0, ζ), ψ(α0, ζ)
)

,

which corresponds to the first return point on the plane y = y0 of the

geodesics issued from (0, y0, 0) with ẏ(0) < 0, is 1-1 and onto a domain

R3. R3 is bounded by C1(π/2) = C3(π/2) from above and by the half-line

x̂ = t̂, x̂ < 0 from below. This half-line cannot be reached by the mapping.

The next statement concerning the effect of the periods (7.11)−(7.12)

is immediate.

Lemma 7.18. The mapping (7.11)−(7.12) has its image in the space

bounded by t̂ > x̂, x̂ < 0.

On the returns after m = 1,2, . . . periods.

The relevant formulas are given by (7.11) and (7.12). To simplify our

notation we replacem by n and look for geodesics with endpoints represented
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by

(x̂, t̂) =
(

ϕ(α0, ζ), ψ(α0, ζ)
)

+ n

(

J(ζ)

(ζ + sinα0)1/2
,

I(ζ)

(ζ + sinα0)3/2

)

, (7.77)

α0 ∈ (−π/2, π/2], ζ ∈ (1,∞), n = 1, 2, . . ..

Proposition 7.19. (x, y0, t) cannot be joined to (0, y0, 0) by an infinite

number of geodesics of the form (7.77).

To prove this result we shall imitate the proof of Proposition 6.1. In par-

ticular, Remark 6.2 holds as long as we replace formulas (6.1) with formulas

(7.77).

Lemma 7.20. There is no subsequence {np, p = 1, 2, . . .} of the positive

integers N , such that we have an infinite number of geodesics, one for each

np, p = 1, 2, . . . represented by (7.77) which join (x, y0, t) to (0, y0, 0).

Proof. Assume the opposite. Then there are parameters α0,np ∈
(−π/2, π/2] and ζnp ∈ (1,∞) such that for the given (x, y0, t) one has

x̂ = ϕ(α0,np , ζnp) +
npJ(ζnp)

(ζnp + sinα0,np)
1/2

, (7.78)

t̂ = ψ(α0,np , ζnp) +
npI(ζnp)

(ζnp + sinα0,np)
3/2

, (7.79)

p = 1, 2, . . .. We may assume that

lim
p→∞

α0,np = ᾱ0, lim
p→∞

ζnp = ζ̄, ζ̄ ∈ [1,∞]. (7.80)

a) 1 < ζ̄ <∞. In this case ϕ(ᾱ0, ζ̄), ψ(ᾱ0, ζ̄), J(ζ̄) and I(ζ̄) are all finite

with I(ζ̄) > 0. Consequently the right hand side of (7.79) grows without

limit as p→ ∞, which contradicts the finiteness of t̂, and a) cannot occur.

b) If ζ̄ = 1, then (7.78) yields

j(α0,np , ζnp)

(ζnp + sinα0,np)
1/2

=
−npJ(ζnp)

(ζnp + sinα0,np)
1/2

+ x̂,
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so for large p we have

j(α0,np , ζnp) ∼ −npJ(ζnp) −→ ∞, (7.81)

since J(1) = −∞. Since j is bounded by 0, (7.81) leads to a contradiction

and ζ̄ = 1 is not possible.

c) ζ̄ = ∞. The proof follows the argument of the proof of Lemma 6.3(c).

Expansions (6.5) and (6.6) are replaced by Lemmas 7.3 and 7.7. (6.7)−(6.10)

still hold, and we conclude that if (x, y0, t) is connected to (0, y0, 0) by an

infinite number of geodesics represented by (7.78), (7.79) with lim
p→∞

ζnp = ∞,

then (x, y0, t) must be on the critical line x̂ + t̂ = 0, x̂ < 0. That this is

impossible is a consequence of the argument following (6.10) in the proof

of Lemma 6.3(c); here we get tan ᾱ0 = −8/(Eπ) < 0 which implies that

ᾱ0 ∈ (−π/2, 0). �

Lemma 7.21. Given a fixed integer q, it is not possible to connect

(x, y0, t) and (0, y0, 0) by an infinite number of distinct geodesics which can

be represented in the form

x̂ =ϕq(α0, ζ) = ϕ(α0, ζ) +
qJ(ζ)

(ζ + sinα0)1/2
, (7.82)

t̂ =ψq(α0, ζ) = ψ(α0, ζ) +
qI(ζ)

(ζ + sinα0)3/2
, (7.83)

α0 ∈ [−π/2, π/2], ζ ∈ (1,∞).

Proof of Lemma 7.21. We shall follow the argument of the proof of

Lemma 6.4, but exchange the roles of x̂ and t̂. Lemma 7.4 implies that ϕ is

an increasing function of ζ. So is the second term on the right hand side of

(7.82). Indeed,

∂

∂ζ

J(ζ)

(ζ + sinα0)1/2

=
−1

2(ζ + sinα0)3/2

[

(ζ + sinα0)

∫ 2π

0

sinαdα

(ζ + sinα)3/2
+ J(ζ)

]

> 0. (7.84)
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Therefore ϕq(α0, ζ) is an increasing function of ζ, and if (7.82) has a solution

ζ(α0) = ζ(α0, x̂) then ζ(α0) is unique. By Lemma 7.13(iv) ϕ increases from

−∞ to 0 as ζ goes from 1 to ∞. This holds for J(ζ) too, and thus holds for

ϕq(α0, ζ). Consequently for any α0 ∈ (−π/2, π/2] and x̂ ∈ (−∞, 0), there is

a unique ζ(α0) such that

x̂ = ϕq
(

α0, ζ(α0)
)

. (7.85)

We shall show that

t̂ = ψq
(

α0, ζ(α0)
)

(7.86)

has at most a finite number of solutions α0. This will prove Lemma 7.21 and

completes the proof of Proposition 7.19. To prove that (7.86) cannot have

infinitely many solutions we argue by contradiction. Suppose (7.86) does

have infinitely many solutions α0. Since ψq
(

α0, ζ(α0)
)

is analytic in α0, the

infinite set of solutions of (7.86) must have as a limit point at least one of

the endpoints of the interval [−π/2, π/2]. We shall show that this cannot

happen by proving that the α0-derivative of ψq
(

α0, ζ(α0)
)

does not vanish

at α0 = ±π/2. To this end we note that ζ(−π/2) is the unique solution of

qJ
(

ζ(−π/2)
)

√

ζ(−π/2)− 1
= x̂, x̂ ∈ (−∞, 0), (7.87)

and ζ(π/2) is the unique solution of

ϕ
(π

2
, ζ
(π

2

))

+
qJ
(

ζ(π/2)
)

√

ζ(π/2) + 1
= x̂, (7.88)

so

ζ± = ζ
(

± π

2

)

∈ (1,∞). (7.89)

(i) α0 = −π/2. To find ζ ′(−π/2) we differentiate (7.85).

0 =
∂ϕ

∂α0

∣

∣

∣

α0=−π/2
+
∂ϕ

∂ζ

∣

∣

∣

α0=−π/2
· ζ ′
(

− π

2

)

+
∂

∂ζ

( qJ(ζ)

(ζ − 1)1/2

)∣

∣

∣

ζ=ζ−
· ζ ′
(

− π

2

)

=
−2

ζ− − 1
− qζ ′(−π/2)

2(ζ− − 1)3/2

[

(ζ− − 1)

∫ 2π

0

sinαdα

(ζ− + sinα)3/2
+ J(ζ−)

]

.
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The content of the square bracket is negative, so

ζ ′
(

− π

2

)

> 0. (7.90)

Then

d

dα0
ψq
(

α0, ζ(α0)
)

∣

∣

∣

α0=−π/2

=
∂ψ

∂α0

∣

∣

∣

α0=−π/2
+
∂ψ

∂ζ

∣

∣

∣

α0=−π/2
· ζ ′
(

− π

2

)

+
∂

∂ζ

( qI(ζ)

(ζ−1)3/2

)∣

∣

∣

ζ=ζ−
· ζ ′
(

− π

2

)

=
−2

ζ− − 1
+

[

− 3qI(ζ−)

2(ζ− − 1)5/2
+

J(ζ−)

2(ζ− − 1)3/2

]

ζ ′
(

− π

2

)

< 0,

since the content of the square bracket is negative.

(ii) α0 = π/2. Again,

0 =
∂ϕ

∂α0

∣

∣

∣

α0=π/2
+

[

∂ϕ

∂ζ

∣

∣

∣

α0=π/2
+

∂

∂ζ

( qJ(ζ)

(ζ + 1)1/2

)∣

∣

∣

ζ=ζ+

]

ζ ′
(π

2

)

.

∂ϕ/∂ζ > 0 at α0 = π/2, see Lemma 7.7, and so is the second term in the

square bracket according to (7.84). Also,

∂ϕ

∂α0

∣

∣

∣

α0=π/2
=

2

ζ+ + 1
> 0,

so we have

ζ ′
(π

2

)

< 0. (7.91)

Consequently,

d

dα0
ψq
(

α0, ζ(α0)
)

∣

∣

∣

α0=π/2

=
∂ψ

∂α0

∣

∣

∣

α0=π/2,ζ=ζ+
+
∂ψ

∂ζ

∣

∣

∣

α0=π/2,ζ=ζ+
· ζ ′
(π

2

)

+
∂

∂ζ

( qI(ζ)

(ζ+1)3/2

)
∣

∣

∣

ζ=ζ+
· ζ ′
(π

2

)

=
2

ζ+ + 1
+

1

2(ζ+ + 1)

[ −3I(ζ+)

(ζ+ + 1)3/2
+

J(ζ+)

(ζ+ + 1)1/2

]

ζ ′
(π

2

)

+ q

[

J(ζ+)

2(ζ+ + 1)3/2
− 3I(ζ+)

2(ζ+ + 1)5/2

]

ζ ′
(π

2

)

> 0,
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since both square brackets are negative. This proves Lemma 7.21, and we

have completed the proof of Proposition 7.19. �

8. ζ ∈ (−1, 1), ẏ(0) > 0

We recall the behaviour of a geodesic when ζ = (−1, 1); for details the

reader may consult chapter 2. For fixed ζ and τ > 0, the y-component of

the motion is given by formula (2.62),

y(α) = sgn
(

y(α)
)(ζ + sinα)1/2

τ1/2
.

α starts at α0 ∈ [−π/2, 3π/2], which is uniquely determined by the following

requirements:

y0 = y(0) =
(ζ + sinα0)

1/2

τ1/2
, see (2.61),

ẏ(0) = η(0) = cosα0, see (2.21). (8.1)

The x and t components of the geodesic curve are given by formulas (2.63)

and (2.64),

x(α) =
1

2τ1/2

∫ α

α0

sgn
(

y(α′)
) sinα′dα′

(ζ + sinα′)1/2
,

t(α) =
1

2τ3/2

∫ α

α0

sgn
(

y(α′)
)

sinα′(ζ + sinα′)1/2dα′.

The behaviour of the curve represented by (2.62)−(2.64) is described

after formula (2.48). We recall some of the salient points. To begin with,

(2.62) restricts α to the interval

A(ζ) ≤ α ≤ π −A(ζ), (8.2)

with

A(ζ) = Arcsin(−ζ) = sin−1(−ζ) ∈
[

− π

2
,
π

2

]

. (8.3)

Then (2.38) implies that α increases when y(α) > 0, and decreases when

y(α) < 0. In particular, the geodesic crosses the y = 0 plane everytime

α = A(ζ) or α = π−A(ζ), at which time α changes direction. The maxima
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and minima of the y-component of the motion occur at α = π/2, with

y
(π

2

)

= ±
√
1 + ζ√
τ

. (8.4)

We shall classify the geodesics which leave (0, y0, 0) in the increasing y-

direction, ẏ(0) > 0, and return to the y = y0 plane according to the direction

in which they pierce the y = y0 plane. The ones that arrive from the left

always arrive at α = α0 after a finite number n = 1, 2, . . . of periods. The

ones that arrive from the right always arrive at α = π − α0 after a finite

number n = 0, 1, 2, . . . of periods. In short, we have

α = α0, n = 1, 2, . . . , (8.5)

α = π − α0, n = 0, 1, 2, . . . (8.6)

All the geodesics (8.5) and (8.6) with n = 1, 2, . . . are nonlocal, that is,

they cross the y = 0 plane. So are the geodesics whose y-component starts

as a decreasing function, ẏ(0) < 0, or, equivalently α0 > π/2. Thus the last

batch of local geodesics are given by (8.6) when n = 0 and α0 ≤ π/2. We

shall show that this family of geodesics fill the missing domain in the half

plane t̂ > x̂, which we shall denote by R4.

The case α = π − α0, α0 ≤ π/2.

Start with n = 0, and

A(ζ) ≤ α0 ≤
π

2
, (8.7)

so ẏ(0) > 0, at least when α0 < π/2. y(α) starts at y0 = y(α0), increases,

reaches a maximum at α = π/2, turns back and reaches the y = y0 plane at

α = π − α0 with negative velocity ẏ(π − α0) = −ẏ(0), see (8.1). We rewrite

(2.63) and (2.64),

x̂ =
1

(ζ + sinα0)1/2

∫ π−α0

α0

sinαdα

(ζ + sinα)1/2
= Φ(α0, ζ), (8.8)

t̂ =
1

(ζ + sinα0)3/2

∫ π−α0

α0

(ζ + sinα)1/2 sinαdα = Ψ(α0, ζ), (8.9)
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with

Φ(α0, ζ) =
J(α0, ζ)

(ζ + sinα0)1/2
, (8.10)

Ψ(α0, ζ) =
I(α0, ζ)

(ζ + sinα0)3/2
. (8.11)

Adding a period means that α continues to increase to π−A(ζ), then it

decreases all the way to A(ζ), where it turns around and increases to π−α0.

This adds

2

(ζ + sinα0)1/2

∫ π−A(ζ)

A(ζ)

sinαdα

(ζ + sinα0)1/2
, (8.12)

to x̂ and an analogous quantity to t̂. After n periods one has

x̂ = Φ(α0, ζ) +
2n

(ζ + sinα0)1/2

∫ π−A(ζ)

A(ζ)

sinαdα

(ζ + sinα)1/2
, (8.13)

t̂ = Ψ(α0, ζ) +
2n

(ζ + sinα0)3/2

∫ π−A(ζ)

A(ζ)
(ζ + sinα)1/2 sinαdα. (8.14)

We note that these geodesics always strike the y = y0 plane from the right,

that is with negative velocity. The ones coming from the left have the form

(8.5). The functions Φ, Ψ, J and I agree with the same named functions of

chapter 5, at least formally. Their domain is different here, ζ ∈ (−1, 1) and

α0 ∈
[

A(ζ), π/2
]

, so we need to study their behaviour again.

Whatever other conditions we may set on α0 in chapter 8, they are

always in addition to the sometime unstated condition

A(ζ) ≤ α0 ≤
π

2
. (8.15)

The functions J and Φ, and I and Ψ.

Lemma 8.1. J
(

A(ζ), ζ
)

is a decreasing function of ζ, ζ ∈ (−1, 1), with

a unique zero ζ̃ which is in the interval (0, 1),

J
(

A(ζ̃), ζ̃
)

= 0. (8.16)
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Also,

lim
ζ→1

J
(

A(ζ), ζ
)

=−∞, (8.17)

lim
ζ→−1

J
(

A(ζ), ζ
)

=
√
2π. (8.18)

Proof. We start with

J
(

A(ζ), ζ)
)

= 2

∫ π/2

A(ζ)

sinαdα

(ζ + sinα)1/2
, (8.19)

and note that ζ > 0 ⇒ A(ζ) < 0 and ζ < 0 ⇒ A(ζ) > 0. Consequently

(8.19) shows that

ζ ≤ 0 ⇒ J
(

A(ζ), ζ
)

> 0. (8.20)

When ζ > 0 we integrate the integral in (8.19) by parts and obtain

J
(

A(ζ), ζ
)

= 2

∫ π/2

0

sinαdα

(ζ + sinα)1/2
− 4

∫ 0

A(ζ)
(ζ + sinα)1/2

dα

cos2 α
. (8.21)

Differentiating (8.21) with respect to ζ, one has

d

dζ
J
(

A(ζ), ζ
)

=−
∫ π/2

0

sinαdα

(ζ + sinα)3/2
−2

∫ 0

A(ζ)

1

(ζ + sinα)1/2
dα

cos2 α

< 0, (8.22)

where we used A(ζ) = Arcsin(−ζ) to drop the nonintegrated term. Fur-

thermore, ζ → 1 ⇒ A(ζ) → −π/2, and therefore (8.17) is equivalent to

J(−π/2, 1) = −∞ which can be found in Lemma 5.1. In view of (8.17),

(8.20) and (8.22), we have established the existence of a unique zero ζ̃ of

J
(

A(ζ), ζ
)

in (0, 1) which is the only zero of J
(

A(ζ), ζ
)

in (−1, 1) courtesy

of (8.20). When ζ < 0, we cannot use (8.21) to study J(α0, ζ). Instead we

return to (8.19) and change the variable of integration to x = sinα:

J
(

A(ζ), ζ
)

= 2

∫ 1

−ζ

1√
ζ + x

xdx√
1− x2

= 2

∫ 1

γ

1√
x− γ

xdx√
1− x2

, (8.23)
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−ζ = γ > 0. When ζ ∼ −1, we have γ ∼ 1, and

lim
ζ→−1

J
(

A(ζ), ζ
)

= lim
γ→1

2

∫ 1

γ

1
√

(x− γ)(1 − x)

xdx√
1 + x

= lim
γ→1

√
2

∫ 1

γ

dx
√

(x− γ)(1 − x)

= lim
γ→1

√
2

∫ 1

γ

dx
√

(

1−γ
2

)2
−
(

x− 1+γ
2

)2

= lim
γ→1

√
2

∫
1−γ
2

− 1−γ
2

dt
√

(

1−γ
2

)2
− t2

, t = x− 1 + γ

2

=
√
2

∫ 1

−1

ds√
1− s2

, t =
1− γ

2
s

=
√
2π, (8.24)

and this proves (8.18). This calculation yields more. Namely, if we do not

simplify (8.23) for the sake of finding the limit we easily obtain

J
(

A(ζ), ζ
)

=

∫ 1

−1

2ds√
1− s2

1−γ
2 s+ 1+γ

2
√

1 + 1−γ
2 s+ 1+γ

2

=

∫ 1

−1

2ds√
1− s2





√

2− (1− s)
1− γ

2
− 1
√

2− (1− s)1−γ2



 .

(8.25)

The integrand is an increasing function of γ, hence a decreasing function

of ζ ∈ (−1, 0); as an extra bonus, we note that this argument works for

ζ ∈ (−1, 1). Thus we have shown that J
(

A(ζ), ζ
)

is a decreasing function of

ζ, ζ ∈ (−1, 1), and thus completed the proof of Lemma 8.1. �

Lemma 8.2. (i) ζ ∈ (−1, 0). We have

J(α0, ζ) > 0, α0 ∈
[

A(ζ),
π

2

)

,

and J(α0, ζ) is a decreasing function of α0.
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(ii) ζ ∈ [0, ζ̃). Here

J(α0, ζ) > 0, α0 ∈
[

A(ζ),
π

2

)

,

and J(α0, ζ) has a maximum at α0 = 0.

(iii) When ζ ∈ [ζ̃ , 1], J(α0, ζ) increases from J
(

A(ζ), ζ
)

≤ 0 to its

maximum J(0, ζ) > 0, then decreases to J(π/2, ζ) = 0, has a unique zero

α̃0(ζ) ∈
[

A(ζ), 0
)

with α̃0(ζ̃) = A(ζ̃).

(iv) J(π/2, ζ) = 0, ζ ∈ (−1, 1].

Figure 9.

Proof. We note that

∂J

∂α0
= − 2 sinα0

(ζ + sinα0)1/2
. (8.26)

(i) ζ ∈ (−1, 0). Here 0 < A(ζ) ≤ α0, so ∂J/∂α0 < 0, and J is a

decreasing function of α0 with J(π/2, ζ) = 0. This proves (i).

(ii) ζ ∈ (0, ζ̃). For each fixed ζ, J(α0, ζ) increases from J
(

A(ζ), ζ
)

> 0

to J(0, ζ), and then decreases to J(π/2, ζ) = 0 which implies (ii).

(iii) is a consequence of Lemma 8.1 and (iv) is obvious, and this proves

Lemma 8.2. �
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We note that

∂Φ

∂α0
= − cosα0

2(ζ + sinα0)

(

Φ(α0, ζ) + 4 tanα0

)

. (8.27)

Lemma 8.3. (i) ζ ∈ (−1, ζ̃). Φ(α0, ζ) decreases from Φ
(

A(ζ), ζ
)

= ∞
to Φ(π/2, ζ) = 0. In particular,

Φ(α0, ζ) > 0, ζ ∈ (−1, ζ̃), α0 ∈
(

A(ζ), π/2
)

. (8.28)

(ii) ζ ∈ (ζ̃ , 1). Here ∂Φ/∂α0 has a unique zero α∗
0(ζ) with

Φ
(

α∗
0(ζ), ζ

)

= −4 tanα∗
0(ζ), (8.29)

A(ζ) < α̃0(ζ) < α∗
0(ζ) < 0. (8.30)

Φ(α0, ζ) increases from Φ
(

A(ζ), ζ
)

= −∞ to Φ
(

α∗
0(ζ), ζ

)

> 0, then decreases

to Φ(π/2, ζ) = 0.

(iii) ζ = ζ̃. Φ(α0, ζ̃) decreases from Φ
(

A(ζ̃), ζ̃
)

> 0 to Φ(π/2, ζ̃) = 0.

Proof. (i) We start with ζ ∈ (−1, 0]. Here A(ζ) ≥ 0, so (8.27) gives

∂Φ(α0, ζ)

∂α0
< 0, α0 ∈

[

A(ζ),
π

2

]

.

Since J
(

A(ζ), ζ
)

> 0 and finite, and
(

ζ + sinA(ζ)
)−1/2

= ∞, we have (i)

when ζ = (−1, 0].

When ζ > 0, so that A(ζ) < 0, we may integrate by parts. Starting

with

J(α0, ζ) = 2

∫ π/2

0

sinαdα

(ζ + sinα)1/2
+ 4

∫ 0

α0

tanαd(ζ + sinα)1/2, (8.31)

an integration by parts yields

J(α0, ζ) + 4 tan(α0)(ζ + sinα0)
1/2

= 2

∫ π/2

0

sinαdα

(ζ + sinα)1/2
− 4

∫ 0

α0

(ζ + sinα)1/2
dα

cos2 α
. (8.32)
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The function

α0 −→ −4

∫ 0

α0

(ζ + sinα)1/2
dα

cos2 α
(8.33)

is an increasing function on the interval
[

A(ζ), π/2
)

, so its minimum is at-

tained at α0 = A(ζ). Consequently the right hand side of (8.32) is an in-

creasing function of α0 in the same interval with its minimum at α0 = A(ζ).

We note that

2

∫ π/2

0

sinαdα

(ζ + sinα)1/2
− 4

∫ 0

A(ζ)
(ζ + sinα)1/2

dα

cos2 α
= J

(

A(ζ), ζ
)

. (8.34)

When ζ < ζ̃, J
(

A(ζ), ζ
)

> 0, so we have

J(α0, ζ) + 4(tanα0)(ζ + sinα0)
1/2 > 0,

and from (8.27)

∂Φ

∂α0
< 0, α0 ∈

[

A(ζ),
π

2

)

, ζ ∈ (0, ζ̃).

This completes the proof of (i). When ζ > ζ̃, J
(

A(ζ), ζ
)

< 0, and the

increasing function J(α0, ζ) + 4(tanα0)(ζ + sinα0)
1/2 < 0 when α0 < α̃0(ζ),

and (8.32) implies that J(α0, ζ) + 4(tan α0)(ζ + sinα0)
1/2 > 0 when α0 ≥ 0.

Consequently, J(α0, ζ) + 4(tanα0)(ζ + sinα0)
1/2 has a unique zero α∗

0(ζ) ∈
(

α̃0(ζ), 0
)

, and

∂Φ

∂α0
> 0, α0 ∈

[

A(ζ), α∗
0(ζ)

)

,

∂Φ

∂α0
< 0, α0 ∈

(

α∗
0(ζ),

π

2

]

.

Therefore, when ζ ∈ (ζ̃ , 1), Φ(α0, ζ) increases from Φ
(

A(ζ), ζ
)

= −∞ to its

maximum value Φ
(

α∗
0(ζ), ζ

)

> 0, and then decreases to Φ(π/2, ζ) = 0. This

gives (ii).

(iii) ζ = ζ̃. According to Lemma 8.2(iii), J(α0, ζ̃) > 0 for α0 ∈
(

A(ζ̃), π/2
)

. Therefore so is Φ(α0, ζ). Also,

lim
α0→A(ζ̃)

J(α0, ζ̃) = 0.
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We need more accurate information about this vanishing. From (8.26)

∂J(α0, ζ̃)

∂α0
= − 2 sinα0

(ζ̃ + sinα0)1/2
. (8.35)

When α0 → A(ζ),

sinα0 = sin
(

α0 −A(ζ) +A(ζ)
)

= sin
(

α0 −A(ζ)
)

cosA(ζ) + cos
(

α0 −A(ζ)
)

sinA(ζ)

=
(

α0 −A(ζ)
)

cosA(ζ) + sinA(ζ) +O
(

[α0 −A(ζ)]2
)

,

and therefore one has

ζ + sinα0 = sinα0 − sinA(ζ)

=
(

α0 −A(ζ)
)

cosA(ζ) +O
(

[α0 −A(ζ)]2
)

. (8.36)

We may rewrite (8.35) in the following form,

∂J(α0, ζ̃)

∂α0
=

−2 sinA(ζ̃) +O
(

α0 −A(ζ̃)
)

√

cosA(ζ̃)
(

α0 −A(ζ̃)
)1/2

,

and integrating one obtains

J(α0, ζ̃) =
−4 sinA(ζ̃)
√

cosA(ζ̃)

(

α0 −A(ζ̃)
)1/2

+O
(

(α0 −A(ζ̃))3/2
)

= −4
(

tanA(ζ̃)
)

(ζ̃ + sinα0)
1/2 +O

(

(ζ̃ + sinα0)
3/2
)

.

This yields

lim
α0→A(ζ̃)

Φ(α0, ζ̃) = −4 tanA(ζ̃) > 0.

Finally, (8.32) and (8.34) show that

J(α0, ζ̃) + 4(tanα0)(ζ̃ + sinα0)
1/2

{

= 0, α0 = A(ζ̃),

> 0, α0 > A(ζ̃),

and therefore

∂Φ(α0, ζ̃)

∂α0
< 0, α0 ∈

(

A(ζ̃),
π

2

)

.
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This proves (iii), and we have completed the proof of Lemma 8.3. �

One has

∂Φ

∂ζ
=

−1

(ζ + sinα0)1/2

[

Φ

2(ζ + sinα0)1/2
+

∫ π/2

α0

sinαdα

(ζ + sinα)3/2

]

. (8.37)

Figure 10.

Lemma 8.4. (i) ζ ∈ (−1, ζ̃]. Then

∂Φ(α0, ζ)

∂ζ
< 0, α0 ∈

(

A(ζ),
π

2

)

, (8.38)

and

lim
α0→A(ζ)

∂Φ(α0, ζ)

∂ζ
= −∞. (8.39)

(ii) ζ ∈ (ζ̃ , 1). In this case ∂Φ/∂ζ, as a function of α0, has a unique

zero which is in
(

A(ζ), α∗
0(ζ)

)

. Also

lim
α0→A(ζ)

∂Φ(α0, ζ)

∂ζ
= ∞. (8.40)



2006] ON GEODESICS IN SUBRIEMANNIAN GEOMETRY 169

Proof. First we shall derive the limits (8.39) and (8.40). To this end

we need to consider the individual terms in the square bracket of formula

(8.37). We start with

J(α0, ζ) = 2

∫ π/2

A(ζ)

sinαdα

(ζ + sinα)1/2
+ 2

∫ A(ζ)

α0

sinαdα

(ζ + sinα)1/2

= J
(

A(ζ), ζ
)

+O
(
√

α0 −A(ζ)
)

, α0 ∼ A(ζ).

For the second term in the square bracket we choose a small ε0, fix it,

and let α0 ∈
(

A(ζ), A(ζ) + ε0
)

. Then

∫ π/2

α0

sinαdα

(ζ + sinα)3/2

=

∫ π/2

α0

sinA(ζ)dα

(ζ + sinα)3/2
+

∫ π/2

α0

dα

(ζ + sinα)1/2

=
sinA(ζ)

cos3/2A(ζ)

∫ A(ζ)+ε0

α0

[

1
(

α−A(ζ)
)3/2

+O
( 1
(

α−A(ζ)
)1/2

)

]

dα+O(1)

=
sinA(ζ)

cos3/2A(ζ)
(−2)

1
(

α−A(ζ)
)1/2

∣

∣

∣

α=A(ζ)+ε0

α=α0

+O(1)

=
2 sinA(ζ)

cos3/2A(ζ)

1
(

α0 −A(ζ)1/2
+O(1),

and the square bracket in (8.37) has the following behaviour when α0 ∼ A(ζ),

ζ 6= ζ̃:

1

2

Φ(α0, ζ)

(ζ + sinα0)1/2
+

∫ π/2

α0

sinαdα

(ζ + sinα)3/2

=
J
(

A(ζ), ζ
)

2 cos
(

A(ζ)
)(

α0 −A(ζ)
) +O

( 1
√

α0 −A(ζ)

)

, (8.41)

hence

lim
α0→A(ζ)

[

1

2

Φ(α0, ζ)

(ζ + sinα0)1/2
+

∫ π/2

α0

sinαdα

(ζ + sinα)3/2

]

=

{

∞, ζ < ζ̃,

−∞, ζ̃ < ζ.
(8.42)

When ζ = ζ̃ we must make use of the vanishing of J
(

A(ζ̃), ζ̃
)

. To this
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end we note that A(ζ̃) < 0, and we can integrate by parts.

∫ π/2

α0

sinαdα

(ζ̃ + sinα)3/2

=
(

∫ π/2

0
+

∫ 0

α0

) sinαdα

(ζ̃ + sinα)3/2

=

∫ π/2

0

sinαdα

(ζ̃ + sinα)3/2
− 2

∫ 0

α0

tanαd(ζ̃ + sinα)−1/2

=

∫ π/2

0

sinαdα

(ζ̃ + sinα)3/2
+

2 tanα0

(ζ̃ + sinα0)1/2
+ 2

∫ 0

α0

1

(ζ̃ + sinα)1/2
dα

cos2 α
.

For the first term in the square bracket we use J
(

A(ζ̃), ζ̃
)

= 0 and obtain

1

2

Φ(α0, ζ̃)

(ζ̃ + sinα0)1/2

=
1

ζ̃ + sinα0

∫ π/2

α0

sinαdα

(ζ̃ + sinα0)1/2

= − 1

ζ̃ + sinα0

∫ α0

A(ζ̃)

sinαdα

(ζ̃ + sinα0)1/2

= − 1

ζ̃ + sinα0

∫ α0

A(ζ̃)

[

sinA(ζ̃)

(ζ̃ + sinα)1/2
+ (ζ̃ + sinα)1/2

]

dα

= − sinA(ζ̃)

ζ̃ + sinα0

∫ α0

A(ζ̃)

dα

(ζ̃ + sinα)1/2
+O

(

√

α0 −A(ζ̃)
)

= − sinA(ζ̃)

cos3/2
(

A(ζ̃)
)(

α0 −A(ζ̃)
)

∫ α0

A(ζ̃)

dα
(

α−A(ζ̃)
)1/2

+O
(

√

α0 −A(ζ̃)
)

=
−2 tanA(ζ̃)

√

cosA(ζ̃)
(

α0 −A(ζ̃)
)1/2

+O
(

√

α0 −A(ζ̃)
)

.

Therefore

1

2

Φ(α0, ζ̃)

(ζ̃ + sinα0)1/2
+

∫ π/2

α0

sinαdα

(ζ̃ + sinα)3/2

=

∫ π/2

0

sinαdα

(ζ̃ + sinα)3/2
+

∫ 0

α0

2

(ζ̃ + sinα)1/2
dα

cos2 α
+O

(

√

α0 −A(ζ̃)
)
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α0→A(ζ̃)−−−−−−→
∫ π/2

0

sinαdα

(ζ̃ + sinα)3/2
+ 2

∫ 0

A(ζ̃)

1

(ζ̃ + sinα)1/2
dα

cos2 α

> 0, (8.43)

and

lim
α0→A(ζ̃)

∂Φ

∂ζ
(α0, ζ̃) = −∞.

As for (8.38) we note that

∂

∂α0

[

1

2

Φ(α0, ζ)

(ζ + sinα0)1/2
+

∫ π/2

α0

sinαdα

(ζ + sinα)3/2

]

=
1

(ζ + sinα0)1/2
∂Φ

∂α0
. (8.44)

According to Lemma 8.3(i) and (iii), ∂Φ/∂α0 < 0 for ζ ∈ (−1, ζ̃ ], α0 ∈
(

A(ζ), π/2
)

. Consequently, (8.44) implies that

1

2

Φ(α0, ζ)

(ζ + sinα0)1/2
+

∫ π/2

α0

sinαdα

(ζ + sinα)3/2
(8.45)

is a decreasing function of α0. It vanishes at α0 = π/2, so it is positive for

α0 ∈
(

A(ζ), π/2
)

, and this, together with (8.37) imply (8.38).

(ii) ζ ∈ (ζ̃ , 1). According to (8.42), (8.45) is −∞ at α0 = A(ζ), and it is

clearly 0 at α0 = π/2. (8.44) and Lemma 8.3(ii) show that

1

2

Φ(α0, ζ)

(ζ + sinα0)1/2
+

∫ π/2

α0

sinαdα

(ζ + sinα)3/2

increases from −∞ at α0 = A(ζ) until α0 reaches α∗
0(ζ) where it is positive

because after α∗
0(ζ) it decreases to 0 at α0 = π/2. In particular,

∂Φ

∂ζ

(

A(ζ), ζ
)

= ∞, and
∂Φ

∂ζ

(

α∗
0(ζ), ζ

)

< 0,

see (8.37). Therefore ∂Φ/∂ζ, as a function of α0, has a unique zero in (A(ζ),

α∗
0(ζ)) which yields (ii), and this concludes the proof of Lemma 8.4. �
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Figure 11.

Lemma 8.5. For all ζ ∈ (−1, 1) and α0 ∈ [A(ζ), π/2] one has

I(α0, ζ) > 0. (8.46)

In particular, (i) when ζ ∈ (−1, 0], I(α0, ζ) is a decreasing function of

α0 ∈ [A(ζ), π/2].

(ii) When ζ ∈ (0, 1), I(α0, ζ) increases from I
(

A(ζ), ζ
)

to I(0, ζ), then

decreases to I(π/2, ζ) = 0.

At α0 = A(ζ) we have

∂I

∂α0

(

A(ζ), ζ
)

= 0. (8.47)

Proof. (8.47) is an immediate consequence of

∂I(α0, ζ)

∂α0
= −2 sin(α0)(ζ + sinα0)

1/2.

When ζ ≤ 0, and A(ζ) ≥ 0, one has

I
(

A(ζ), ζ
)

= 2

∫ π/2

A(ζ)
(ζ + sinα)1/2 sinαdα > 0.
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When ζ > 0, and A(ζ) < 0, we write

I
(

A(ζ), ζ
)

=2

∫ π/2

−A(ζ)
(ζ + sinα)1/2 sinαdα

+ 2

∫ −A(ζ)

0

[

(ζ + sinα)1/2 − (ζ − sinα)1/2
]

sinαdα.

Both integrals are positive, so we have derived (8.46). With A(ζ) ≥ 0,

I(α0, ζ) is decreasing which is (i). When A(ζ) < 0, (ii) is immediate, and

we have Lemma 8.5. �

(8.46) implies that

Ψ
(

A(ζ), ζ
)

= ∞. (8.48)

An elementary calculation yields

∂Ψ

∂α0
= − cosα0

ζ + sinα0

(3

2
Ψ + 2 tan α0

)

. (8.49)

Lemma 8.6.
∂Ψ

∂α0
< 0. (8.50)

Proof. When α0 ≥ 0, (8.49) implies (8.50). When α0 < 0, we may

assume that A(ζ) < 0, and therefore ζ > 0. In this case

3

2
Ψ + 2 tanα0 =

3

(ζ + sinα0)3/2

∫ π/2

0
(ζ + sinα)1/2 sinαdα

+
3

(ζ + sinα0)3/2

∫ 0

α0

(ζ + sinα)1/2 sinαdα+ 2 tanα0,

and after integrating the second integral by parts we obtain

3

2
Ψ + 2 tanα0 =

1

(ζ + sinα0)3/2

[

3

∫ π/2

0
(ζ + sinα)1/2 sinαdα

− 2

∫ 0

α0

(ζ + sinα)3/2
dα

cos2 α

]

. (8.51)
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The second integral in the square bracket is a decreasing function of α0,

therefore the square bracket is an increasing function of α0, and, if it has

a zero, it has at most one. According to (8.48), Ψ
(

A(ζ), ζ
)

= ∞. Also,

Ψ(0, ζ) > 0, so 3Ψ/2 + tanα0 > 0 at α0 = A(ζ) and at α0 = 0. Thus,

if it has a zero when α0 ∈
(

A(ζ), 0
)

, it must have at least 2 zeros which

contradicts the statement that the square bracket in (8.51) may have at

most one zero. Consequently, 3Ψ/2 + tanα0 has no zero in
[

A(ζ), 0
)

, it is

positive there, and this proves (8.50). �

Lemma 8.7. For all ζ ∈ (−1, 1) and α0 ∈
[

A(ζ), π/2
]

we have

Ψ− Φ ≥ 0, (8.52)

and
∂Ψ

∂ζ
< 0. (8.53)

Proof. We note that

Ψ− Φ =
2

(ζ + sinα0)3/2

∫ π/2

α0

(sinα− sinα0)
sinαdα

(ζ + sinα)1/2
, (8.54)

which is positive when α0 ≥ 0. When α0 < 0, we may assume that A(ζ) < 0,

so ζ > 0, and consider the derivative

∂

∂α0

∫ π/2

α0

(sinα− sinα0)
sinαdα

(ζ + sinα)1/2
= −1

2
cos(α0)J(α0, ζ). (8.55)

(i) ζ ∈ (0, ζ̃). In this case J(α0, ζ) > 0 for α0 ∈
[

A(ζ), 0
]

, see Lemma

8.2(ii), therefore

∂

∂α0

∫ π/2

α0

(sinα− sinα0)
sinαdα

(ζ + sinα)1/2
< 0.

The integral is positive for α0 = 0, therefore it is positive for α0 ∈
[

A(ζ), 0
]

,

and then (8.54) implies (8.52).
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(ii) ζ ∈ [ζ̃ , 1). According to Lemma 8.2(iii),

J(α0, ζ) < 0, α0 ∈
[

A(ζ), α̃0(ζ)
)

,

J(α0, ζ) > 0, α0 ∈
(

α̃0(ζ), 0
]

,

and therefore (8.55) yields

∂

∂α0

∫ π/2

α0

(sinα− sinα0)
sinαdα

(ζ + sinα)1/2

{

> 0, α0 ∈
[

A(ζ), α̃0(ζ)
)

,

< 0, α0 ∈
(

α̃0(ζ), 0
]

.
(8.56)

The integral is positive at α0 = 0, so it is positive when α0 ∈
(

α̃0(ζ), 0
]

, in

particular it reaches its maximum at α0 = α̃0(ζ), and this proves (8.52) for

α0 ∈
(

α̃0(ζ), 0
]

. Next we note that at α0 = A(ζ) = Arcsin(−ζ),
∫ π/2

A(ζ)

(

sinα− sinA(ζ)
) sinαdα

(ζ + sinα)1/2
=

∫ π/2

A(ζ)
(ζ + sinα)1/2 sinαdα

=
1

2
I
(

A(ζ), ζ
)

> 0,

see (8.46). Since the integral is increasing in
[

A(ζ), α̃0(ζ)
)

, it remains posi-

tive there, and this concludes the derivation of (8.52). As for (8.53), we note

that
∂Ψ

∂ζ
=

Φ− 3Ψ

2(ζ + sinα0)
, (8.57)

and Ψ > 0 and so is Ψ−Φ, and we have (8.53). This completes the proof of

Lemma 8.7. �

The Jacobian ∆4

We need to understand the behaviour of the mapping

(α0, ζ) −→ (x̂, t̂) =
(

Φ(α0, ζ),Ψ(α0, ζ)
)

, (8.58)

(α0, ζ) ∈
⋃

ζ∈(−1,1)

([

A(ζ),
π

2

]

× {ζ}
)

. (8.59)
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To that end we shall calculate its Jacobian

∆4 =
∂(Ψ,Φ)

∂(α0, ζ)
. (8.60)

K, P and its discriminant D are still given by (5.38), (5.39), and (5.40). The

formal calculations of Lemma 5.11 go through unchanged and we restate the

formulas:

(ζ + sinα0)
3∆4 = (cosα0)D − 2 sinα0

(ζ + sinα0)1/2
P (ζ + sinα0, α0, ζ), (8.61)

P (ζ + sinα0, α0, ζ)

=

∫ π/2

α0

(sinα− sinα0)(sinα0 + 3 sinα+ 4ζ)
sinαdα

(ζ + sinα)3/2
, (8.62)

∂

∂α0

(

(ζ + sinα0)
3∆4

)

= −(sinα0)D − 2 cosα0

(ζ + sinα0)1/2
P (ζ + sinα0, α0, ζ). (8.63)

Proposition 8.8. ∆4 > 0 on (8.59) except at π/2 where it vanishes.

We shall follow the argument of the proof of Proposition 5.15.

Lemma 8.9. For all ζ ∈ (−1, 1), we have

∆4 > 0, 0 ≤ α0 <
π

2
, ∆4(π/2, ζ) = 0. (8.64)

In particular,

∆4 > 0 when ζ ∈ (−1, 0], α0 ∈
[

A(ζ),
π

2

)

. (8.65)

Proof. In view of Lemma 8.5, I(α0, ζ) > 0 when α0 ∈
[

A(ζ), π/2
)

, and

K > 0 when 0 ≤ α0 < π/2, obviously. Consequently D > 0 when α0 ≥ 0

and D(π/2) = 0. Also, (8.62) implies that

P (ζ + sinα0, α0, ζ)







> 0, α0 ∈
[

0, π2

)

,

= 0, α0 =
π
2 ,

(8.66)
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and then (8.63) yields

∂

∂α0
(ζ + sinα0)

3∆4

{

< 0, α0 ∈ [0, π2 ),

= 0, α0 =
π
2 .

(8.67)

(ζ +1)3∆4(π/2, ζ) = 0, therefore (8.67) implies that (ζ + sinα0)
3∆4 > 0 for

α0 ∈ [0, π/2), and we have derived (8.64) and Lemma 8.9. �

This still leaves the question of α0 < 0 which occurs with ζ > 0.

Lemma 8.10. Suppose ζ ∈ (0, 1). Then

lim
α0→A(ζ)

D(α0, ζ) = −∞, (8.68)

and

lim
α0→A(ζ)

P (ζ + sinα0, α0, ζ) =
3

2
I
(

A(ζ), ζ
)

> 0. (8.69)

Therefore,

∂

∂α0
(ζ + sinα0)

3∆4 < 0, (8.70)

(ζ + sinα0)
3∆4 > 0 (8.71)

when A(ζ) < α0 = A(ζ) + ε0 < 0, ε0 > 0 sufficiently small.

Proof. (8.46) yields

lim
α0→A(ζ)

I(α0, ζ) = I
(

A(ζ), ζ
)

> 0,

and Lemma 8.1 implies that

J
(

A(ζ), ζ
)

= lim
α0→A(ζ)

J(α0, ζ)

is finite. We choose a small ε0 and set α0 = A(ζ)+ ε0. The proof of Lemma

8.4 yields
∫ π/2

α0

sinαdα

(ζ + sinα)3/2
=

2 sinA(ζ)

cos3/2 A(ζ)

1√
ε0

+O(1).
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Therefore we have

D
(

A(ζ) + ε0, ζ
)

= 3I
(

A(ζ), ζ
) sinA(ζ)

cos3/2A(ζ)

1√
ε0

+O(1)

which implies (8.68), since A(ζ) < 0. Next we note that

P (ζ + sinα0, α0, ζ) =− (ζ + sinα0)
2

∫ π/2

α0

sinαdα

(ζ + sinα)3/2

− (ζ + sinα0)J(α0, ζ) +
3

2
I(α0, ζ),

see (5.39). With α0 = A(ζ) + ε0, the first term is O(ε
3/2
0 ) and the second

term is O(ε0). Therefore

P (ζ + sinα0, α0, ζ) =
3

2
I
(

A(ζ), ζ
)

+O(ε0), (8.72)

and this yields (8.69). In view of (8.68) and (8.69), both terms on the right

hand side of (8.63) are negative, assuming that A(ζ) < α0 = A(ζ) + ε0 <

0, ε0 > 0 sufficiently small, and this implies (8.70). Finally we come to

(ζ + sinα0)
3∆4, represented by (8.61). Substituting the definition (5.40) of

D and formula (8.72) into (8.61) we obtain

(ζ + sinα0)
3∆4 =

3

2
I(α0, ζ)

[

(cosα0)

∫ π/2

α0

sinαdα

(ζ + sinα)3/2
− 2 sinα0

(ζ + sinα0)1/2

]

+
1

4
J(α0, ζ)

2 +O(
√
ε0).

An integration by parts yields

(cosα0)

∫ π/2

α0

sinαdα

(ζ + sinα)3/2
− 2 sinα0

(ζ + sinα0)1/2

= (cosα0)

{

∫ π/2

0

sinαdα

(ζ + sinα)3/2
− 2

∫ 0

α0

tanαd
( 1

(ζ + sinα)1/2

)

− 2 tanα0

(ζ + sinα0)1/2

}

= (cosα0)

{

∫ π/2

0

sinαdα

(ζ + sinα)3/2
+ 2

∫ 0

α0

1

(ζ + sinα)1/2
dα

cos2 α

}

> 0,
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and the curly bracket stays finite, positive and nonzero as α0 → A(ζ). This

proves (8.71). �

Proof of Proposition 8.8. In view of Lemma 8.9 we need to prove

that ∆4 > 0 only when α0 ∈
[

A(ζ), 0
)

, A(ζ) < 0. In particular ζ ∈ (0, 1).

According to (8.61),

(ζ + sinα0)
3∆4

∣

∣

∣

α0=0
> 0, (8.73)

and (8.71) yields

(ζ + sinα0)
3∆4

∣

∣

∣

α0=A(ζ)
> 0. (8.74)

K(α0, ζ) is an increasing function of α0 ∈
[

A(ζ), 0
]

, and the proof of

Lemma 8.4 and the definition of K(α0, ζ) show that

K(α0, ζ)

{

= −∞, α0 = A(ζ),

> 0, α0 = 0.
(8.75)

Consequently K(α0, ζ) has a zero α̂0(ζ) ∈
(

A(ζ), 0
)

.

(i) A(ζ) ≤ α0 ≤ α̂0(ζ). For such α0,

P (ζ + sinα0, α0, ζ)

= −1

2
K(α0, ζ)(ζ + sinα0)

2 − J(α0, ζ)(ζ + sinα0) +
3

2
I(α0, ζ)

= −1

2
K(α0, ζ)(ζ + sinα0)

2 +
1

4
(ζ + sinα0)

3/2(3Ψ − Φ)

> 0. (8.76)

If ∆4 vanishes in
[

A(ζ), α̂0(ζ)
]

, then at the zero we have

D =
2 sinα0

(ζ + sinα0)1/2 cosα0
P (ζ + sinα0, α0, ζ) < 0, (8.77)

see (8.61). Therefore (8.63) and (8.77) give

∂

∂α0
(ζ + sinα0)

3∆4 = − 2P (ζ + sinα0, α0, ζ)

(ζ + sinα0)1/2 cosα0
< 0

at the zero of ∆4, which shows that ∆4 can have at most one zero when

α0 ∈
[

A(ζ), α̂0(ζ)
]

. On the other hand (ζ + sinα0)
3∆4 > 0 at α0 = A(ζ),
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see (8.71), and at α0 = α̂0(ζ) (8.61) yields

(

ζ + sin α̂0(ζ)
)3
∆4

(

α̂0(ζ), ζ
)

=
1

4
J2
(

α̂0(ζ), ζ
)

cos α̂0(ζ)−
2 sin α̂0(ζ)

(ζ + sin α̂0(ζ)
)1/2

P
(

ζ + sin α̂0(ζ), α̂0(ζ), ζ
)

> 0,

in view of (8.76). Therefore (ζ +sinα0)
3∆4 cannot have only one zero when

α0 ∈
[

A(ζ), α̂0(ζ)
]

, so it has none.

(ii) α̂0(ζ) < α0 < 0. Here K > 0 and therefore D > 0. At a zero of

(ζ + sinα0)
3∆4, in this interval, one has

∂

∂α0
(ζ + sinα0)

3∆4 = − D

sinα0
> 0,

in view of (8.61) and (8.63), and (ζ + sinα0)
3∆4 has at most one zero when

α0 ∈
(

α̂0(ζ), 0
)

. Again, (ζ + sinα0)
3∆4 > 0 at α0 = α̂0(ζ) and also at

α0 = 0, where its value is D(0, ζ) > 0, thus (ζ + sinα0)
3∆4 cannot vanish

when α0 ∈
(

α̂0(ζ), 0
)

. This concludes the proof of Proposition 8.8. �

The curves Γ4(ζ).

For each fixed ζ ∈ (−1, 1] we let Γ4(ζ) denote the curve

x̂ = Φ(α0, ζ), t̂ = Ψ(α0, ζ), α0 ∈
[

A(ζ),
π

2

]

(8.78)

in the (x̂, t̂) plane. When ζ = 1, the curve Γ4(1) agrees with the curve Γ2(1)

of (5.50), one of the boundary curves of R2. We rewrite some of the results

on Φ and Ψ as results on x̂ and t̂.

Lemma 8.11. (i) ζ̃ < ζ < 1. As α0 decreases from π/2 to A(ζ),

t̂ increases from 0 to ∞ along Γ(ζ). x̂ increases from Φ(π/2, ζ) = 0 to

Φ
(

α∗
0(ζ), ζ

)

and then decreases to Φ
(

A(ζ), ζ
)

= −∞.

(ii) ζ = ζ̃. As α0 decreases from π/2 to A(ζ̃), t̂ increases from 0 to ∞
and x̂ increases from 0 to Φ

(

A(ζ̃), ζ̃
)

= −4 tanA(ζ̃) > 0.

(iii) ζ ∈ (−1, ζ̃). Both t̂ and x̂ increase from 0 to ∞ as α0 decreases

from π/2 to A(ζ).

(iv) All curves Γ4(ζ), ζ ∈ (−1, 1] start tangent to the line t̂ = x̂ at (0, 0)

when α0 = π/2 and stay in the half space t̂ > x̂.
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Proof. (i), (ii) and (iii) are reformulations of Lemma 8.3 for Φ, and

formula (8.48) and Lemma 8.6 for Ψ.

(iv) is a consequence of (8.52) and (8.27), (8.49); the last two imply that

dt̂/dx̂ = 1 at α0 = π/2. �

Lemma 8.12. The mapping (8.58) is 1-1 onto its image, therefore the

curves Γ4(ζ) do not cross each other. As ζ decreases in (−1, 1], the curves

Γ4(ζ) move to the right.

Proof. For a given ζ ∈ (−1, 1], Ψ(α0, ζ) decreases from ∞ to 0 as α0

increases from A(ζ) to π/2, see (8.48) and Lemma 8.6. Therefore for any

ζ ∈ (−1, 1] and t̂ ∈ (0,∞),

t̂ = Ψ(α0, ζ) (8.79)

has a unique solution α0(t̂, ζ); we note that α0(0, ζ) = π/2 for all ζ. So, if

(x̂, t̂) is in the image of the mapping (8.58), we must have

x̂ = Φ
(

α0(t̂, ζ), ζ
)

. (8.80)

But

∂

∂ζ
Φ
(

α0(t̂, ζ), ζ
)

=
∆4

∂Ψ
∂α0

∣

∣

∣

∣

∣

α0=α0(t̂,ζ)

< 0, (8.81)

since by Proposition 8.8, ∆4 > 0, except at α0 = π/2 where it vanishes, and

∂Ψ/∂α0 < 0 by Lemma 8.6. Thus (8.80) has a unique solution ζ ∈ (−1, 1],

and the system of equations

x̂ = Φ(α0, ζ), t̂ = Ψ(α0, ζ)

is uniquely solvable if (x̂, t̂) is in the image of the mapping (8.58). For a

given t̂0, the point of intersection of the line t̂ = t̂0 with Γ(ζ) moves to the

right when ζ decreases from 1 toward −1; this is a consequence of (8.81).�

The region R4

Definition 8.13. We shall denote by R4 the image set of the mapping

(8.58).
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Figure 12.

Proposition 8.14. The region R4 is the set in the (x̂, t̂)-plane bounded

on the left by the curve Γ4(1), included in R4, and on the right by the half

line t̂ = x̂, x̂ > 0, not included in R4. R4 is in 1-1 correspondence with the

domain
⋃

−1<ζ≤1

([

A(ζ),
π

2

)

× {ζ}
)

via the mapping (8.58).

Proof. Choose x̂ > 0 and let α0(x̂, ζ) denote the unique solution of

x̂ = Φ(α0, ζ)

for ζ ∈ (−1, ζ̃), see Lemma 8.3(i). To prove Proposition 8.14 it suffices to

show that

lim
ζ→−1

Ψ
(

α0(x̂, ζ), ζ
)

= x̂. (8.82)
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In other words, the vertical line with abscissa x̂ intersects R4 in the interval

(x̂,∞); note that the line x̂ = t̂, x̂ > 0, corresponds to ζ = −1 where the

mapping (8.58) is not defined, but see Remark 8.15. The limit (8.82) is

equivalent to letting A = A(ζ) → π/2, and we shall look at the behaviour of

α0(x̂, ζ) as A→ π/2 first. Recall that

x̂ =
2

(sinα0 − sinA)1/2

∫ π/2

α0

sinαdα

(sinα− sinA)1/2
, (8.83)

and we are interested in

A ≤ α0 ≤ α ≤ π

2
, A→ π

2
.

Then

sinα− sinA = sin(α−A) cosA+ cos(α−A) sinA− sinA

=

[

(α−A)− 1

3!
(α−A)3 + · · ·

]

sin
(π

2
−A

)

+

[

1− 1

2!
(α−A)2 + · · ·

]

cos
(π

2
−A

)

− cos
(π

2
−A

)

= (α−A)

[

π

2
−A− 1

3!

(π

2
−A

)3
]

− 1

2!
(α −A)2

[

1− 1

2!

(π

2
−A

)2
]

+O

(

(α−A)2
(π

2
−A

)3
)

,

and with

ε =
π

2
−A

we have

sinα− sinA = (α−A)ε− 1

2
(α−A)2 +O

(

(α−A)ε3
)

. (8.84)

Similarly,

sinα0 − sinA = (α0 −A)ε− 1

2
(α0 −A)2 +O

(

(α0 −A)ε3
)

. (8.85)

We note that

0 ≤ α−A ≤ α0 −A ≤ ε,
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and rewrite the integrand in (8.83),

sinα

(sinα− sinA)1/2
=

sinA+ (sinα− sinA)

(sinα− sinA)1/2

=
cos ε+O

(

(α−A)ε
)

(sinα− sinA)1/2

=
1 +O(ε2)

(α−A)1/2
(

ε− 1
2(α−A) +O(ε3)

)1/2

=
1 +O(ε2)

(α−A)1/2
(

ε− 1
2(α−A)

)1/2

(

1 +O(ε2)
)−1/2

=
1 +O(ε2)

(

(α−A)ε− 1
2(α−A)2

)1/2
,

since ε− (α−A)/2 > ε/2. A similar calculation yields

1

(sinα0 − sinA)1/2
=

1 +O(ε2)
(

(α0 −A)ε− 1
2(α0 −A)2

)1/2
.

With this approximation (8.83) takes the following form:

x̂ =
2
(

1 +O(ε2)
)

(

(α0 −A)ε− 1
2(α0 −A)2

)1/2

∫ π/2

α0

dα
(

(α−A)ε− 1
2 (α−A)2

)1/2
.

In the integral we set u = α−A,

∫ π/2

α0

dα
(

(α −A)ε − 1
2 (α−A)2

)1/2
=

√
2

∫ ε

α0−A

du
(

ε2 − (ε− u)2
)1/2

=
√
2Arcsin

(

1− α0 −A

ε

)

,

so we have

x̂ =
2
√
2Arcsin

(

1− α0−A
ε

)

(α0 −A)1/2ε1/2
(

1− α0−A
2ε

)1/2

(

1 +O(ε2)
)

. (8.86)
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x̂ is fixed and the denominator vanishes as ε → 0, so the numerator must

also vanish when ε→ 0, and this implies that α0 −A ∼ ε, as ε→ 0. To find

out how near α0 −A and ε are, we set

1− α0 −A

ε
= γ = o(1), ε→ 0, (8.87)

and substitute this into (8.86),

sin
(

(

1 +O(ε2)
)1

4
x̂ε(1− γ2)1/2

)

= γ,

or,

(

1 +O(ε2)
) x̂ε

4

(

1− γ2
)1/2

+O(ε3) = γ ⇒ γ = O(ε),

and therefore
(

1 +O(ε2)
) x̂ε

4

(

1− 1

2
γ2
)

+O(ε3) = γ,

x̂ε

4

(

1 +O(ε2)
)

+O(ε3) = γ,

so

γ =
1

4
x̂ε+O(ε2).

Therefore (8.87) yields

α0 −A = ε− 1

4
x̂ε2 +O(ε3). (8.88)

We are ready to derive (8.82). Recall the integral in Ψ:

∫ π/2

α0

(sinα− sinA)1/2 sinαdα

=

∫ π/2

α0

(

(α−A)ε− 1

2
(α−A)2

)1/2
(

1 +O(ε2)
)(

sinA+O(ε2)
)

dα

=
(

1 +O(ε2)
)

∫ π/2

α0

(

(α−A)ε− 1

2
(α−A)2

)1/2
dα.
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But,

∫ π/2

α0

(

(α−A)ε− 1

2
(α−A)2

)1/2
dα

=
1√
2

∫ ε

α0−A

(

ε2 − (u− ε)2
)1/2

du =
ε2√
2

∫ Arcsin(1−α0−A
ε

)

0
cos2 θdθ

=
ε2

2
√
2

[

Arcsin
(

1− α0 −A

ε

)

+
1

2
sin
(

2Arcsin
(

1− α0 −A

ε

))

]

,

and then

1− α0 −A

ε
=
x̂ε

4

(

1 +O(ε)
)

implies that

∫ π/2

α0

(sinα− sinA)1/2 sinαdα =
x̂ε3

4
√
2

(

1 +O(ε)
)

.

Consequently,

Ψ
(

α0(x̂, ζ), ζ
)

=
2 x̂ε

3

4
√
2

(

1 +O(ε)
)

(α0 −A)3/2ε3/2
(

1− α0−A
2ε

)3/2

ε→0−−−→ x̂,

since 1− (α0 −A)/2ε→ 1/2 as ε→ 0. Thus we have derived (8.82) and this

concludes the proof of Proposition 8.14. �

Remark 8.15. We recall that when t̂ = x̂, or t = y20x, the geodesics

joining (x, y0, t) to (0, y0, 0) are given by (2.33). For these geodesics τ = 0,

η = 0, ξ = ±1 and y(s) stays in the y = y0-plane; ξ = 1 ⇒ x > 0, and

ξ = −1 ⇒ x < 0.

In view of the symmetry that led to (2.10) we have completed the proof

of Theorem 1.2(ii) and of Theorem 1.3. For the sake of completeness we add

chapter 9 with a discussion of the behaviour of nonlocal geodesics on the

y = y0-plane.

9. On nonlocal Geodesics

In Chapters 2−8 we established Theorem 1.2(ii) and Theorem 1.3, based
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on the study of local geodesics, that is geodesics which do not leave the step

2 domain y > 0; the point of issue of these geodesics is (0, y0, 0), y0 > 0. In

our last chapter we shall discuss the behaviour of geodesics which cross the

y = 0 plane, or, at least contain points of the y = 0 plane, before returning

to the y0-plane, y0 > 0. There are 3 such classes of geodesics and they all

have ξ = −ζ ∈ [−1, 1], so α0 ∈
[

A(ζ), π −A(ζ)
]

.

(i) Geodesics that end on the y0-plane at α0, α0 ∈
[

A(ζ), π−A(ζ)
]

, after

n periods. The y-component may start in either the positive or negative

direction; in particular (8.5) is included.

(ii) Geodesics that start in the positive y-direction, return to the y0-

plane at π − α0, and then do n = 1, 2, . . . periods. These include (8.6) with

n = 1, 2, . . ..

(iii) Geodesics which start in the negative y-direction, return to the

y0-plane at π − α0, then do n = 1, 2, . . . periods.

Finally we shall include a short discussion of the case y0 = 0; this was

already dealt with in much more detail in [9].

Geodesics with αend = α0 after n periods

To obtain the formulas for these curves we use (2.63) and (2.64) while

carefully following the motion of α ∈
[

A(ζ), π − A(ζ)
]

as described in the

paragraph after (2.48). Assuming α0 ∈
[

A(ζ), π/2
]

, after one period

x =
1

2τ1/2

∫ αend

α0

sgn
(

y(α)
) sinαdα

(ζ + sinα)1/2
(9.1)

yields

x =
1

2τ1/2

{

∫ π−A(ζ)

α0

−
∫ A(ζ)

π−A(ζ)
+

∫ α0

A(ζ)

}

sinαdα

(ζ + sinα)1/2
(9.2)

=
1

τ1/2

∫ π−A(ζ)

A(ζ)

sinαdα

(ζ + sinα)1/2
,

and after n periods we have

x =
n

τ1/2
J
(

A(ζ), ζ
)

, ζ ∈ [−1, 1), (9.3)
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see (8.19). Similarly,

t =
n

τ3/2
I
(

A(ζ), ζ
)

. (9.4)

These formulas are also valid for α0 ∈
(

π/2, π −A(ζ)
]

. We set γ = −ζ, and
note that

dA(ζ)

dγ
=

1
√

1− γ2
> 0, (9.5)

so we shall use γ, and α0 = A(ζ), interchangeably as new variables. In

particular it is helpful to use

J(α0) = 2

∫ π/2

α0

sinαdα

(sinα− sinα0)1/2
, (9.6)

I(α0) = 2

∫ π/2

α0

(sinα− sinα0)
1/2 sinαdα; (9.7)

as the arguments are angles we don’t envisage any confusion about the no-

tation. Clearly

J
(

A(ζ), ζ
)

= J
(

A(ζ)
)

, (9.8)

I
(

A(ζ), ζ
)

= I
(

A(ζ)
)

, (9.9)

and after n full periods the return mapping (9.3), (9.4) takes the form

(x, t) = n

(

J(α0)

τ1/2
,
I(α0)

τ3/2

)

, (9.10)

with (α0, τ) ∈ (−π/2, π/2] × (0,∞); we note that α0 = A(ζ). A simple

calculation along the lines of (8.24) and (8.25) yields the derivatives of I and

J . In particular,

∂J
(

A(ζ)
)

∂γ

=
1

2

∫ 1

−1

√

1− s

1 + s

(

1
(

2− 1−γ
2 (1− s)

)1/2
+

1
(

2− 1−γ
2 (1− s)

)3/2

)

ds, (9.11)

and therefore

∂J
(

A(ζ)
)

∂γ
> 0. (9.12)
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It is worth mentioning that the integral in (9.11) is well defined as long

as 2− 1−γ
2 (1−s) 6= 0, s ∈ [−1, 1], which is certainly true if −1 < γ = −ζ ≤ 1.

Similarly,

I
(

A(ζ)
)

= 2

∫ π/2

A(ζ)
(ζ + sinα)1/2 sinαdα

= 2

∫ 1

−ζ

√

ζ + xd
(

−
√

1− x2
)

= −2

∫ 1

γ

√
x− γd

√

1− x2 =

∫ 1

γ

√
1− x2√
x− γ

dx

=

∫ 1

γ

(1− x)
√
1 + x

√

(1− x)(x− γ)
dx

=

∫
1−γ
2

− 1−γ
2

(

1− t− 1+γ
2

)(

1 + t+ 1+γ
2

)1/2

√

(

1−γ
2

)2
− t2

dt

=

∫ 1

−1

ds√
1− s2

(

1− 1− γ

2
s− 1 + γ

2

)(

2− 1− γ

2
(1− s)

)1/2
,

(9.13)

and simplifying one has

I
(

A(ζ)
)

=
1− γ

2

∫ 1

−1

√

1− s

1 + s

(

2− 1− γ

2
(1− s)

)1/2
ds > 0. (9.14)

For future reference we note that

∂

∂γ

I

1− γ
=

1

4

∫ 1

−1

√

1− s

1 + s

1
2 (1− s)ds

(

2− 1−γ
2 (1− s)

)1/2
> 0, (9.15)

and

d

dγ

(

J
(

A(ζ)
)

− I
(

A(ζ)
)

1 + ζ

)

=
1

2

∫ 1

−1

√

1− s

1 + s

(

1− 1
4 (1− s)

(

2− 1−γ
2 (1− s)

)1/2
+

1
(

2− 1−γ
2 (1− s)

)3/2

)

ds, (9.16)
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so

d

dγ

(

J
(

A(ζ)
)

− I
(

A(ζ)
)

1 + ζ

)

> 0. (9.17)

Lemma 9.1. (i) J(α0) is an increasing function of α0 = A(ζ) ∈
(−π/2, π/2], where J increases from J(−π/2) = −∞ to J(π/2) =

√
2π.

J(α0) has a unique zero at α̃0 = A(ζ̃) ∈ (−π/2, 0).

(ii) We have

lim
ζ→1

I
(

A(ζ)
)

=
4
√
2

3
, (9.18)

lim
ζ→−1

I
(

A(ζ)
)

ζ + 1
=

√
2π

2
, (9.19)

and

dI(α0)

dα0
= −1

2
cosα0J(α0). (9.20)

Since A(1) = −π/2 and A(−1) = π/2, (9.19), (9.20) imply that I(α0) in-

creases from I(−π/2) = 4
√
2

3 to I(α̃0) > 0, then decreases to I(π/2) = 0. In

particular,

I(α0) > 0, α0 ∈ [−π/2, 0). (9.21)

(iii) J3(α0)/I(α0) increases from (J3/I)(−π/2) = −∞ to (J3/I)(π/2) =

∞.

Proof. (i) is just a restatement of Lemma 8.1. As for (ii), (9.14) yields

lim
ζ→−1

I
(

A(ζ)
)

ζ + 1
=

√
2

2

∫ 1

−1

√

1− s

1 + s
ds

=

√
2

4

∫ 1

−1

(

√

1− s

1 + s
+

√

1 + s

1− s

)

ds

=

√
2

2

∫ 1

−1

ds√
1− s2

=
√
2
π

2
, (9.22)
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which is (9.19). Also

I
(

− π

2

)

= 2

∫ 1

−1

√
1 + x

xdx√
1− x2

= 2

∫ 1

−1

xdx√
1− x

=
4
√
2

3
,

which gives (9.18), and (9.20) is clear.

(iii) J(π/2) =
√
2π and I(π/2) = 0+, hence (J3/I)(π/2) = ∞. Also,

J(−π/2) = −∞ and I(−π/2) > 0, so (J3/I)(−π/2) = −∞. Next we have

d

dα0

J3(α0)

I(α0)
=

3J2(α0)

I(α0)

dJ(α0)

dα0
− J3(α0)

I2(α0)

dI(α0)

dα0

=
1

I2(α0)

(

1

2
cosα0J

4(α0) + 3J2(α0)I(α0)
dJ(α0)

dα0

)

> 0,

since I(α0) > 0 and so is dJ(α0)/dα0. This completes the proof of Lemma

9.1. �

Proposition 9.2. The mapping

(α0, τ) → (x, t) =

(

J(α0)

τ1/2
,
I(α0)

τ3/2

)

(9.23)

sends the domain (−π/2, π/2) × (0,∞) onto the half plane (x, t), t > 0 in a

1-1 manner.

Proof. For any t > 0 and x ∈ (−∞,∞),

x3

t
=
J3(α0)

I(α0)
(9.24)

has a unique solution α0 ∈ (−π/2, π/2), and then τ is obtained from

τ3/2 =
I(α0)

t
. (9.25)

�

Remark 9.3. We note that t = 0 implies that α0 = π/2. This is

equivalent to ζ = −1, and then (2.51) gives the x-axis itself as the trajectory

of the geodesic. Thus A(ζ) = π/2 is not allowed when y0 6= 0.
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Corollary 9.4. After completing n full periods n=1, 2, . . ., the geodesics

of (9.3), (9.4) send the domain (−π/2, π/2) × (0,∞) onto the half plane

(x, y0, t), t > 0 in a 1-1 manner.

Remark 9.5. This suggests that nonlocal geodesics, in our case this

refers to those which cross the y = 0 plane, are unreliable when giving

information about the local behaviour of the manifold around the point

(0, y0, 0). We recall that the y = 0 plane is the boundary of the uniformly

step 2 domain y > 0 which contains the point (0, y0, 0), y0 > 0.

Geodesics with αend = π − α0 after n+ 1/2 periods, ẏ(α0) > 0.

These are the geodesics of (8.6) explicitly given by formulas (8.13), (8.14)

which we write in the following form:

x̂ = Φ(n)(α0, ζ) = Φ(α0, ζ) + 2n
J
(

A(ζ), ζ
)

(ζ + sinα0)1/2
, (9.26)

t̂ = Ψ(n)(α0, ζ) = Ψ(α0, ζ) + 2n
I
(

A(ζ), ζ
)

(ζ + sinα0)3/2
, (9.27)

n = 0, 1, 2, . . .. Chapter 8 contains the discussion of the n = 0 case, and here

we shall consider the cases when n = 1, 2, . . ..

Proposition 9.6. (x, y0, t) cannot be joined to (0, y0, 0) by an infinite

number of distinct geodesics of the form (9.26), (9.27).

We shall follow the argument developed in the proof of Proposition 6.1.

In particular we shall refute the two possibilities of Remark 6.2.

Lemma 9.7. The function

I
(

A(ζ), ζ
)

(ζ + sinα0)3/2
(9.28)

is a strictly decreasing function of ζ. It is also a strictly decreasing function

of α0 with its minimum at α0 = π/2, where we have

lim
ζ→−1

I
(

A(ζ), ζ
)

(ζ + 1)3/2
= ∞, (9.29)
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lim
ζ→1

I
(

A(ζ), ζ
)

(ζ + 1)3/2
=

2

3
. (9.30)

Proof. Clearly

(

ζ + 1

ζ + sinα0)

)3/2

=

(

1 +
1− sinα0

ζ + sinα0

)3/2

(9.31)

is a decreasing function of ζ, and by (9.15) so is

I
(

A(ζ), ζ
)

(ζ + 1)3/2
. (9.32)

Therefore so is their product which is (9.28). Also (9.29) and (9.30) are

immediate consequences of (9.19) and (9.18), respectively. �

Lemma 9.8. Let

f(ζ) = J
(

A(ζ), ζ
)

− I
(

A(ζ), ζ
)

ζ + 1
. (9.33)

Then f(ζ) and f ′(ζ) are both decreasing functions of ζ. f(ζ) decreases from

f(−1) = π/
√
2 to −∞ as ζ → 1. f(0) > 0, and therefore f(ζ) has a unique

zero ζ0 ∈ (0, 1). Furthermore, one has

d

dζ

f(ζ)

(ζ + 1)1/2
< 0. (9.34)

Proof. We recall that γ = −ζ. Then (9.17) shows that f(ζ) is decreas-

ing, and (9.16) yields

f ′(ζ)

=

∫ 1

−1

√

1− s

1 + s

(

−1
2

(

1− 1
4(1− s)

)

(

2− 1−γ
2 (1− s)

)1/2
−

1
2

(

2− 1−γ
2 (1− s)

)3/2

)

ds. (9.35)

The integrand is a strictly decreasing function of ζ, hence f ′(ζ) is a decreasing

function. f(−1) and f(1) can be obtained from Lemmas 8.1 and 9.1. Next
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we have

f(0) = 2

∫ 1

−1

ds√
1− s2

(

√

2− 1

2
(1− s)− 1

√

2− 1
2(1− s)

)

− 1

2

∫ 1

−1

√

1− s

1 + s

√

2− 1

2
(1− s)ds

=

√
2

4

∫ 1

−1

ds√
1− s2

(3 + s)2 − 8√
3 + s

=

√
2

4

(

∫ −(3−2
√
2)

−1
+

∫ 3−2
√
2

−(3−2
√
2)
+

∫ 1

3−2
√
2

)

ds√
1− s2

(3 + s)2 − 8√
3 + s

. (9.36)

The integrand is a strictly increasing function of s ∈ (−1, 1), it is negative if

s < −(3− 2
√
2) and positive when s > −(3− 2

√
2). To prove that f(0) > 0,

it suffices to show that

(

∫ −(3−2
√
2)

−1
+

∫ 1

3−2
√
2

) ds√
1− s2

(3 + s)2 − 8√
3 + s

=

∫ 1

3−2
√
2

ds√
1− s2

(

(3 + s)2 − 8√
3 + s

− (3− s)2 − 8√
3− s

)

> 0. (9.37)

This is true, because the integrand in the third integral of (9.37) is positive.

Therefore f(0) > 0, and there is a unique ζ0 ∈ (0, 1) with f(ζ0) = 0. As for

(9.34), we note that

d

dζ

f(ζ)√
ζ + 1

=
2f ′(ζ)(ζ + 1)− f(ζ)

2(ζ + 1)3/2
,

and this is negative if

f ′(ζ)

f(ζ)
>

1

2(ζ + 1)
, ζ > ζ0. (9.38)

Set F (ζ) = −f(ζ). Then F (ζ0) = 0, and F and F ′ both are strictly

increasing functions. Consequently

F ′(ζ) >
F (ζ)

ζ − ζ0
, (9.39)
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which implies

f ′(ζ)

f(ζ)
=
F ′(ζ)

F (ζ)
>

1

ζ − ζ0
>

1

2(ζ + 1)
, (9.40)

and we have derived (9.38), and therefore (9.34). �

Remark 9.9. From (9.35) one has

f ′(−1) =
d

dζ

(

J
(

A(ζ), ζ
)

− I
(

A(ζ), ζ
)

ζ + 1

)
∣

∣

∣

∣

∣

ζ=−1

= −1

2

∫ 1

−1

√

1− s

1 + s

(

1− 1
4 (1− s)√
2

+
1

2
√
2

)

ds

= − 1

8
√
2

∫ 1

−1

√

1− s

1 + s
(5 + s)ds

= − 1

8
√
2

∫ 1

−1

(

4

√

1− s

1 + s
+
√

1− s2

)

ds

= − 9π

16
√
2
, (9.41)

so

f ′(−1) < −1, (9.42)

and f(ζ) starts decreasing at ζ = −1 quite rapidly.

Lemma 9.7 implies

min
α0,ζ

I
(

A(ζ), ζ
)

(ζ + sinα0)3/2
= min

ζ

I
(

A(ζ), ζ
)

(ζ + 1)3/2
=

2

3
, (9.43)

and since Ψ(α0, ζ) > 0, we have

Corollary 9.10. For sufficiently large n there are no geodesics of the

form (9.26), (9.27) joining (x, y0, t) and (0, y0, 0).

This refutes possibility (i) in Remark 6.2 and we are left with eliminating

the second possibility which will prove Proposition 9.6.

Lemma 9.11. Given a fixed positive integer q, it is not possible to join

(x, y0, t) and (0, y0, 0) by an infinite number of distinct geodesics which can
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be represented by

(x̂, t̂) =
(

Φ(q)(α0, ζ),Ψ
(q)(α0, ζ)

)

, (9.44)

ζ ∈ (−1, 1), α0 ∈
[

A(ζ), π/2
]

.

Proof. For a given ζ ∈ (−1, 1), Ψ(q)(α0, ζ) is a decreasing function of

α0 ∈
[

A(ζ), π/2
]

, Ψ(q)(α0, ζ) decreases from Ψ(q)
(

A(ζ), ζ
)

= ∞ to

min
α0

Ψ(q)(α0, ζ) = Ψ(q)
(π

2
, ζ
)

= 2q
I
(

A(ζ), ζ
)

(ζ + 1)3/2
. (9.45)

Consequently,

t̂ = Ψ(q)(α0, ζ) (9.46)

has a solution α0(t̂, ζ) if and only if

t̂ ≥ 2q
I
(

A(ζ), ζ
)

(ζ + 1)3/2
. (9.47)

If the solution α0(t̂, ζ) exists, it is unique. According to the proof of the first

statement of Lemma 9.7

I
(

A(ζ), ζ
)

(ζ + 1)3/2

is a strictly decreasing function of ζ. So to have any ζ ∈ (−1, 1) for which

(9.46) has a solution α0(t̂, ζ), we must have

t̂ ≥ 2q
I
(

− π
2 , 1
)

23/2
=

4q

3
. (9.48)

In this case for each ζ ∈ [ζt̂, 1] (9.46) has a solution α0(t̂, ζ), where ζt̂ is

uniquely defined by

t̂ = 2q
I
(

A(ζt̂), ζt̂
)

(ζt̂ + 1)3/2
. (9.49)

Given α0(t̂, ζ), ζ ∈ [ζt̂, 1], we shall show that

x̂ = Φ(q)
(

α0(t̂, ζ), ζ
)

(9.50)
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can have, at most, a finite number of solutions ζ, ζ ∈ [ζt̂, 1]. As in Lemma

6.4, in view of the analyticity of Φ(q)
(

α0(t̂, ζ), ζ
)

in the ζ variable, it suffices

to show that the end points of the interval [ζt̂, 1] cannot be limit points of

the set of solutions of (9.50). We note that

α0(t̂, ζt̂) =
π

2
. (9.51)

Also, α0(t̂, 1) is the solution of

t̂ = Ψ(q)
(

α0(t̂, 1), 1
)

, (9.52)

so, −π/2 = A(1) < α0(t̂, 1) ≤ π/2. Since

Φ(q)
(

α0(t̂, 1), 1
)

= −∞, (9.53)

the upper end point of [ζt̂, 1] cannot be a limit point of solutions of (9.50).

As for the lower end point ζt̂, we shall show that

d

dζ
Φ(q)

(

α0(t̂, ζ), ζ
)

∣

∣

∣

ζ=ζt̂

6= 0, (9.54)

and therefore ζt̂ cannot be a limit point of solutions of (9.50). This will prove

Lemma 9.11. First we need the ζ derivative of Ψ(q)
(

α0(t̂, ζ), ζ
)

at ζ = ζt̂ to

obtain α′
0(ζt̂), where we set α0(ζ) = α0(t̂, ζ). Recall that α0(t̂, ζt̂) = π/2, so

0 =
d

dζ

(

Ψ
(

α0(ζ), ζ
)

+ 2q
I
(

A(ζ), ζ
)

(

ζ + sinα0(ζ)
)3/2

)
∣

∣

∣

∣

∣

α0(ζ)=
π
2

=

(

∂Ψ

∂α0

(

α0(ζ), ζ
)

∣

∣

∣

α0(ζ)=
π
2

)

α′
0(ζ) + 2q

d

dζ

I
(

A(ζ), ζ
)

(ζ + 1)3/2
,

or,

0 = − 2

ζt̂ + 1
α′
0(ζt̂) + 2q

d

dζ

I
(

A(ζ), ζ
)

(ζ + 1)3/2

∣

∣

∣

ζ=ζt̂

.
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Next we find (9.54):

d

dζ

(

Φ
(

α0(ζ), ζ
)

+ 2q
J
(

A(ζ), ζ
)

(

ζ + sinα0(ζ)
)1/2

)
∣

∣

∣

∣

∣

α0(ζ)=
π
2

=

(

∂Φ

∂α0

(

α0(ζ), ζ
)

∣

∣

∣

∣

∣

α0(ζ)=
π
2

)

α′
0(ζ) + 2q

d

dζ

J
(

A(ζ), ζ
)

(ζ + 1)1/2

= − 2

ζ + 1
α′
0(ζ) + 2q

d

dζ

J
(

A(ζ), ζ
)

(ζ + 1)1/2
,

and therefore one has

d

dζ
Φ(q)

(

α0(t̂, ζ), ζ
)

∣

∣

∣

ζ=ζt̂

= 2q
d

dζ

[

J
(

A(ζ), ζ
)

(ζ + 1)1/2
− I

(

A(ζ), ζ
)

(ζ + 1)3/2

]

ζ=ζt̂

< 0,

see (9.34). This proves Lemma 9.11 and we have completed the proof of

Proposition 9.6. �

Geodesics with αend = π − α0 after n+ 1

2
periods, ẏ(0) < 0.

These are the type (iii) curves of the introduction to chapter 9. To obtain

their formulas we use (2.63) and (2.64) again while carefully following the

motion of α ∈
[

A(ζ), π − A(ζ)
]

as described in the paragraph after (2.48).

Since α0 ∈
[

π/2, π −A(ζ)
]

, after one-half period (9.1) yields

x(π − α0) =
1

2τ1/2

(

∫ π−A(ζ)

α0

−
∫ A(ζ)

π−A(ζ)
+

∫ π−α0

A(ζ)

)

sinαdα

(ζ + sinα)1/2

=
1

2τ1/2

(

2

∫ π−α0

A(ζ)

sinαdα

(ζ + sinα)1/2
+

∫ π−A(ζ)

A(ζ)

sinαdα

(ζ + sinα)1/2

)

.

(9.55)

One full period is

2

2τ1/2

∫ π−A(ζ)

A(ζ)

sinαdα

(ζ + sinα)1/2
=
J
(

A(ζ), ζ
)

τ1/2
,
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so adding n full periods one finds

x(π − α0) =
1

τ1/2

(

∫ π−α0

A(ζ)

sinαdα

(ζ + sinα)1/2
+
(

n+
1

2

)

J
(

A(ζ), ζ
)

)

.

We change α0 to α′
0 = π − α0, so α

′
0 ∈

[

A(ζ), π/2
)

, and

x(α′
0) =

1

τ1/2

(

∫ α′

0

A(ζ)

sinαdα

(ζ + sinα)1/2
+
(

n+
1

2

)

J
(

A(ζ), ζ
)

)

,

which leads to

x̂ =
2

(ζ + sinα0)1/2

(

∫ α0

A(ζ)

sinαdα

(ζ + sinα)1/2
+
(

n+
1

2

)

J
(

A(ζ), ζ
)

)

, (9.56)

and, similarly,

t̂ =
2

(ζ + sinα0)3/2

(

∫ α0

A(ζ)
(ζ+sinα)1/2 sinαdα+

(

n+
1

2

)

I
(

A(ζ), ζ
)

)

, (9.57)

where we dropped the ′ from α′
0. Note that for a fixed α0 ∈ [−π/2, π/2] we

have

− sinα0 ≤ ζ < 1. (9.58)

x̂ and t̂ represent fixed numbers, but we shall use x̂(n)(α0, ζ) and t̂
(n)(α0, ζ)

to represent the right hand sides of (9.56) and (9.57), respectively.

Proposition 9.12. (x, y0, t) cannot be joined to (0, y0, 0) by an infinite

number of distinct geodesics represented by (9.56), (9.57).

The proof again consists of refuting the 2 possibilities of Remark 6.2.

Lemma 9.13. t̂(n)(α0, ζ) is a decreasing function of ζ. It decreases

from t̂(n)(α0,− sinα0) = ∞ to t̂(n)(α0, 1) > 0 in the interval (9.58), ζ ∈
[− sinα0, 1). More precisely one has

t̂(n)(α0, ζ) ≥ t̂(n)(α0, 1) >
2(2−

√
2)

3
+

4n

3
. (9.59)
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Proof. We start with

∂

∂ζ

∫ α0

A(ζ)(ζ + sinα)1/2 sinαdα

(ζ + sinα0)3/2

=

1
2

∫ α0

A(ζ)
sinαdα

(ζ+sinα)1/2

(ζ + sinα0)3/2
− 3

2

∫ α0

A(ζ)(ζ + sinα)1/2 sinαdα

(ζ + sinα0)5/2

=
1

2(ζ + sinα0)5/2

∫ α0

A(ζ)

(

ζ + sinα0 − 3(ζ + sinα)
) sinαdα

(ζ + sinα)1/2

=
1

2(ζ + sinα0)5/2

∫ α0

A(ζ)

(

sinα0 − sinα

(ζ + sinα)1/2
− 2(ζ + sinα)1/2

)

sinαdα.

We integrate by parts:

∫ α0

A(ζ)

sinα0 − sinα

(ζ + sinα)1/2
sinαdα

= 2

∫ α0

A(ζ)
(sinα0 − sinα) tan αd(ζ + sinα)1/2

= −2

∫ α0

A(ζ)

(

− sinα+ (sinα0 − sinα)
1

cos2 α

)

(ζ + sinα)1/2dα

= 2

∫ α0

A(ζ)
(ζ + sinα)1/2 sinαdα− 2

∫ α0

A(ζ)
(sinα0 − sinα)

(ζ + sinα)1/2dα

cos2 α
,

so one has

∂

∂ζ

∫ α0

A(ζ)(ζ + sinα) sinαdα

(ζ + sinα0)3/2
= −

∫ α0

A(ζ)(sinα0 − sinα)(ζ + sinα)1/2 dα
cos2 α

(ζ + sinα0)5/2

< 0. (9.60)

According to Lemma 9.7

I
(

A(ζ), ζ
)

(ζ + sinα0)3/2

is a decreasing function of ζ, so we have the first statement of Lemma 9.13.

In view of (9.60)

min
α0,ζ

t̂(0)(α0, ζ) = min
α0

t̂(0)(α0, 1) = min
α0

2
∫ α0

−π/2(1 + sinα)1/2 sinαdα+ 4
√
2

3

(1 + sinα0)3/2
,

where we used (9.18). The numerator is always positive. Indeed, it is small-
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est at α0 = 0, where

∫ 0

−π/2
(1 + sinα)1/2 sinαdα =

∫ 0

−1

√
1 + x

xdx√
1− x2

=
2

3
(
√
2− 2),

and therefore

∫ 0

−π/2
(1 + sinα)1/2 sinαdα+

2
√
2

3
=

4

3
(
√
2− 1) > 0. (9.61)

Consequently,

min
α0,ζ

t̂(0)(α0, ζ) >
8
3(
√
2− 1)

23/2
=

2(2−
√
2)

3
> 0,

and,

min
α0,ζ

t̂(n)(α0, ζ) >
2(2−

√
2)

3
+
n8

√
2

3

2
√
2

=
2(2−

√
2)

3
+

4n

3

which is (9.59). Finally, (ζ + sinα0)
3/2t̂(n)(α0, ζ) is positive and bounded

away from zero, so t̂(n)(α0,− sinα0) = ∞, and we have completed the proof

of Lemma 9.13. �

Clearly, (9.59) yields

Corollary 9.14. For sufficiently large n, there are no geodesics of the

form (9.56), (9.57) which join a fixed (x, y0, t) to (0, y0, 0).

We still need to prove that the second possibility of Remark 6.2 cannot

occur; that will prove Proposition 9.12.

Lemma 9.15. ∂t̂(n)(α0, ζ)/∂α0 has a unique zero α
(n)
0,ζ in the interval

[

A(ζ), π/2
]

. Indeed,

0 < α
(n)
0,ζ <

π

2
. (9.62)

For each fixed ζ, t̂(n)(α0, ζ) decreases from t̂(n)
(

A(ζ), ζ
)

= ∞ to t̂(n)(α
(n)
0,ζ , ζ)

> 0, then increases to

t̂(n)
(π

2
, ζ
)

= 2(n + 1)
I
(

A(ζ), ζ
)

(ζ + 1)3/2
. (9.63)
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Proof. We have

∂t̂(n)(α0, ζ)

∂α0
=

cosα0

ζ + sinα0

(

2 tanα0 − 3t̂(n)(α0, ζ)
)

. (9.64)

We note that

∂t̂(n)(α0, ζ)

∂α0
< 0, α0 ≤ 0. (9.65)

Also, (9.64) yields

∂t̂(n)

∂α0

(

A(ζ), ζ
)

= −∞,
∂t̂(n)

∂α0

(π

2
, ζ
)

=
2

ζ + 1
> 0. (9.66)

Consequently, ∂t̂(n)/∂α0 has at least one zero. To see that it has no more

than one zero, we note that

∂

∂α0

(ζ + sinα0)
1/2

cosα0

∂t̂(n)

∂α0
=

2

cos2 α0
(ζ + sinα0)

3/2 > 0. (9.67)

Therefore ∂t̂(n)/∂α0 has exactly one zero, and it is in (0, π/2) according to

(9.65). This completes the proof of Lemma 9.15. �

We need Lemma 9.15 only when ζ = 1. The next result is not needed

in the argument but it helps to clarify the structure.

Lemma 9.16. α
(n)
0,ζ is a decreasing function of ζ,

d

dζ
α
(n)
0,ζ < 0. (9.68)

Proof. We drop the “n” in α
(n)
0,ζ , and use

α′
0,ζ =

dα0,ζ

dζ
, (9.69)

and note that α0 = α0,ζ is the unique solution of

2 tanα0 − 3t̂(n)(α0, ζ) = 0. (9.70)
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Therefore,

0 =
d

dζ

(

2 tanα0,ζ − 3t̂(n)(α0,ζ , ζ)
)

=
∂

∂α0

(

2 tanα0−3t̂(n)(α0, ζ)
)

∣

∣

∣

α0=α0,ζ

· α′
0,ζ+

∂

∂ζ

(

2 tanα0,ζ−3t̂(n)(α0,ζ , ζ)
)

,

thus

∂

∂α0

(

2 tanα0 − 3t̂(n)(α0, ζ)
)

∣

∣

∣

α0=α0,ζ

· α′
0,ζ = 3

∂t̂(n)

∂ζ
(α0,ζ , ζ) < 0,

or,
( 2

cos2 α0,ζ
− 3

∂t̂(n)

∂α0
(α0,ζ , ζ)

)

α′
0,ζ < 0. (9.71)

Integration by parts yields

∫ α0

A(ζ)
sinα

(

(ζ + sinα)1/2dα
)

=
2

3
tanα0(ζ + sinα0)

3/2 − 2

3

∫ α0

A(ζ)
(ζ + sinα)3/2

dα

cos2 α
,

and therefore,

∂t̂(n)

∂α0
=

2cosα0

(ζ + sinα0)5/2

(

∫ α0

A(ζ)
(ζ + sinα)3/2

dα

cos2 α
− 3

2

(

n+
1

2

)

I
(

A(ζ), ζ
)

)

.

We integrate by parts again,

∫ α0

A(ζ)

ζ + sinα

cos2 α

(

(ζ + sinα)1/2dα
)

=
2

3

∫ α0

A(ζ)

ζ + sinα

cos3 α
d(ζ + sinα)3/2

=
2

3

(ζ + sinα0)
5/2

cos3 α0
−
∫ α0

A(ζ)
(ζ + sinα)3/2

(

1

cos2 α
+

3 sinα(ζ + sinα)

cos4 α

)

dα.

Therefore,

∂t̂(n)

∂α0
=

2cosα0

(ζ + sinα0)5/2

(

2

3

(ζ + sinα0)
5/2

cos3 α0

−
∫ α0

A(ζ)
(1 + 3ζ sinα+ 2 sin2 α)

(ζ + sinα)3/2

cos4 α
dα− 3

2

(

n+
1

2

)

I
(

A(ζ), ζ
)

)

,
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and

2

cos2 α0
− 3

∂t̂(n)

∂α0
(α0, ζ)

=
3 cosα0

(ζ + sinα0)5/2

(

∫ α0

A(ζ)
(1 + 3ζ sinα+ 2 sin2 α)

(ζ + sinα)3/2

cos2 α
dα

+
3

2

(

n+
1

2

)

I
(

A(ζ), ζ
)

)

> 0.

Indeed, with −ζ < sinα,

1 + 3ζ sinα+ 2 sin2 α > 1− 3 sin2 α+ 2 sin2 α > 0.

In view of (9.71) we have (9.68) and Lemma 9.16. �

Definition 9.17. Fix an α0 ∈ [−π/2, π/2] and a t̂ > t̂(n)(α0, 1). We

shall denote by ζ(n)(α0, t̂) the unique solution of

t̂ = t̂(n)(α0, ζ). (9.72)

Our results on t̂(n) imply the following results on ζ(n).

Lemma 9.18. (i) Let

t̂(n)(α
(n)
0,1 , 1) ≤ t̂ ≤ t̂(n)

(π

2
, 1
)

. (9.73)

Then ζ(n) exists when α0 is in the interval

α
(1)
0 ≤ α0 ≤ α

(2)
0 , (9.74)

where

t̂ = t̂(n)(α
(j)
0 , 1), j = 1, 2. (9.75)

We note that

α
(1)
0 ≤ α

(n)
0,1 ≤ α

(2)
0 . (9.76)
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(ii) Let

t̂ > t̂(n)
(π

2
, 1
)

. (9.77)

Then ζ(n)(α0, t̂) exists for all α0 in the interval

α
(1)
0 ≤ α0 ≤

π

2
, (9.78)

where α
(1)
0 is the solution of (9.75).

(iii) No solution ζ(n)(α0, t̂) exists when

t̂ < t̂(n)(α
(n)
0,1 , 1). (9.79)

Lemma 9.19. Given a fixed positive integer q, (x, y0, t) cannot be joined

to (0, y0, 0) by an infinite number of distinct geodesics which have represen-

tations in the following form:

(x̂, t̂) =
(

x̂(q)(α0, ζ), t̂
(q)(α0, ζ)

)

, (9.80)

α0 ∈ [−π/2, π/2], ζ ∈ (− sinα0, 1).

Proof. As x̂(q)
(

α0, ζ(α0)
)

is an analytic function of α0 in its interval

of existence, it suffices to show that the end points of that interval are not

limit points of solutions α0 of

x̂ = x̂(q)
(

α0, ζ(α0)
)

; (9.81)

here we used ζ(α0) = ζ(n)(α0, t̂). Note that

lim
α0→α

(j)
0

ζ(α0) = 1, j = 1, 2, (9.82)

and therefore

lim
α0→α

(j)
0

x̂(q)
(

α0, ζ(α0)
)

= −∞, j = 1, 2. (9.83)

So α
(j)
0 , j = 1, 2 cannot be limit points of solutions of (9.81). This leaves us
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with the end point α0 = π/2. Here (9.77) implies that

−1 < ζ
(π

2

)

< 1. (9.84)

We shall show that

dx̂(q)

dα0

(π

2
, ζ
(π

2

))

6= 0, (9.85)

which proves that the end point α0 = π/2 cannot be a limit point of solutions

of (9.81). Differentiating t̂ = t̂(q)
(

α0, ζ(α0)
)

we have

0 =
dt̂(q)

dα0

(π

2
, ζ
(π

2

))

=
∂t̂(q)

∂α0

(π

2
, ζ
(π

2

))

+
∂t̂(q)

∂ζ

(π

2
, ζ
(π

2

))

· ζ ′
(π

2

)

,

=
2

ζ
(

π
2

)

+ 1
+ 2(q + 1)

d

dζ

I
(

A(ζ), ζ
)

(ζ + 1)3/2

∣

∣

∣

∣

∣

ζ=ζ

(

π
2

)

· ζ ′
(π

2

)

,

which gives us ζ ′(π/2); note that ζ ′(π/2) > 0. Next, we differentiate

x̂(q)
(

α0, ζ(α0)
)

at α0 = π/2:

dx̂(q)

dα0

(π

2
, ζ
(π

2

))

=
2

ζ
(

π
2

)

+ 1
+ 2(q + 1)

d

dζ

J
(

A(ζ), ζ
)

(ζ + 1)1/2

∣

∣

∣

∣

∣

ζ=ζ
(

π
2

)

· ζ ′
(π

2

)

=
2

ζ
(

π
2

)

+ 1
+ 2(q + 1)

d

dζ

J
(

A(ζ), ζ
)

(ζ + 1)1/2

∣

∣

∣

∣

∣

ζ=ζ
(

π
2

)

− 1

ζ
(

π
2

)

+1

(q + 1) d
dζ

I
(

A(ζ),ζ
)

(ζ+1)3/2

∣

∣

∣

ζ=ζ
(

π
2

)

=

2 d
dζ

(

I
(

A(ζ),ζ
)

(ζ+1)3/2
− J

(

A(ζ),ζ
)

(ζ+1)1/2

)

∣

∣

∣

∣

∣

ζ=ζ
(

π
2

)

(

ζ
(

π
2

)

+ 1
)

d
dζ

I
(

A(ζ),ζ
)

(ζ+1)3/2

∣

∣

∣

∣

∣

ζ=ζ
(

π
2

)

> 0

in view of (9.34) and the proof of Lemma 9.7. Note that ζ(π/2)=ζ(q)(π/2, t̂),
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so the derivative does depend on q. This gives (9.85), and we have completed

the proof of Lemma 9.19, and established Proposition 9.12. �

y0 = 0.

For geodesics that leave the origin one always has

−1 ≤ ζ ≤ 1, (9.86)

and (2.61) implies that

α0 = A(ζ) = Arcsin(−ζ). (9.87)

Formulas (2.62)−(2.64) hold with

A(ζ) ≤ α ≤ π −A(ζ). (9.88)

A given geodesic with parameters (ζ, τ) returns to the plane y = 0 at

α = π −A(ζ) after n periods, n = 0, 1, 2, . . . (9.89)

α = A(ζ) after n periods, n = 1, 2, . . . . (9.90)

We may assume that ẏ(α0) > 0.

(i) α = π −A(ζ) after n periods, n = 0, 1, 2, . . .. Here

x =
1

2τ1/2

∫ π−A(ζ)

A(ζ)

sinαdα

(ζ + sinα)1/2
+

2n

2τ1/2

∫ π−A(ζ)

A(ζ)

sinαdα

(ζ + sinα)1/2
,

t =
1

2τ3/2

∫ π−A(ζ)

A(ζ)
(ζ + sinα)1/2 sinαdα

+
2n

2τ3/2

∫ π−A(ζ)

A(ζ)
(ζ + sinα)1/2 sinαdα,

or,

x = (2n+ 1)
J
(

A(ζ), ζ
)

2τ1/2
, (9.91)

t = (2n + 1)
I
(

A(ζ), ζ
)

2τ3/2
. (9.92)
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(ii) α = A(ζ) after n periods, n = 1, 2, . . .. Here

x =
2n

2τ1/2

∫ π−A(ζ)

A(ζ)

sinαdα

(ζ + sinα)1/2
= 2n

J
(

A(ζ), ζ
)

2τ1/2
, (9.93)

t =
2n

2τ3/2

∫ π−A(ζ)

A(ζ)
(ζ + sinα)1/2 sinαdα = 2n

I
(

A(ζ), ζ
)

2τ3/2
. (9.94)

Combining (9.91)−(9.94) we have

x =p
J
(

A(ζ), ζ
)

2τ1/2
, (9.95)

t =p
I
(

A(ζ), ζ
)

2τ3/2
, (9.96)

p = 1, 2, . . .. Formally this mapping agrees with (9.3), (9.4), and Proposition

9.2 yields

Proposition 9.20. (i) For each p = 1, 2, . . ., the mapping

(α0, τ) −→ (x, t) = p

(

J
(

A(ζ), ζ
)

2τ1/2
,
I
(

A(ζ), ζ
)

2τ3/2

)

(9.97)

sends the domain (−π/2, π/2)× (0,∞) onto the half plane (x, 0, t), t > 0 in

a 1–1 manner; α0 = A(ζ) replaces the parameter ζ.

(ii) When A(ζ) = π/2, i.e. ζ = −1, we have the 1–1 mapping

τ −→ (x, 0, 0) = p

(

J
(

π
2 ,−1

)

2τ1/2
, 0, 0

)

= p
(

√
2π

2τ1/2
, 0, 0

)

(9.98)

of (0,∞) onto the half line x ∈ (0,∞) for each p = 1, 2, . . ..

(iii) When ξ = 1 (ζ = −1) and τ > 0, Hamilton’s equations give us

another set of geodesics

x(s) = s, y = 0, t = 0, (9.99)

see (2.51), with x(x) = x > 0; recall that s is arclength. For each fixed

x ∈ (0,∞) this geodesic may be looked upon as a continuous set of geodesics

joining (x, 0, 0) to (0, 0, 0), one for each τ ∈ (0,∞).
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