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GREEN’S FUNCTION OF BOLTZMANN EQUATION,

3-D WAVES

BY

TAI-PING LIU AND SHIH-HSIEN YU

Abstract

We study the Green’s function for the linearized Boltz-

mann equation. For the short-time period, the Green’s function

is dominated by the particle-like waves; and for large-time, by the

fluid-like waves exhibiting the weak Huygens principle. The fluid-

like waves are constructed by the spectral analysis and complex

analytic techniques, making uses of the rotational symmetry of the

equation in the space variables. The particle-like waves are con-

structed by a Picard iteration, making uses of the exchange of reg-

ularity in the microscopic velocity with the regularity in the space

variables through a Mixture Lemma. We obtain the pointwise es-

timates in the space and time variables of the Green’s function

through a long-short waves and particle-wave decompositions.

1. Introduction

Consider the Boltzmann equation for the hard sphere model

ft + ξ · ∇xf = B(f, f), (x, t, ξ) ∈ R
3 × R

+ × R
3, (1.1)
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B(f, g) ≡ 1

2

∫

R3×S2

(ξ−ξ∗)·Ω>0

[
−f(ξ)g(ξ∗)− f(ξ∗)g(ξ) + f(ξ′)g(ξ′∗) + f(ξ′∗)g(ξ

′)
]

× |(ξ − ξ∗) · Ω|dξ∗dΩ,



ξ′ =
ξ + ξ∗

2
− {Ω · (ξ − ξ∗)}Ω,

ξ′∗ =
ξ + ξ∗

2
+ {Ω · (ξ − ξ∗)}Ω.

We consider the perturbation of the Boltzmann solution around a Max-

wellian M: {
f = M+

√
Mu,

∂tu+ ξ · ∇xu = Lu+ Γ(u).
(1.2)

The Maxwellian is global and, for simplicity, its mean velocity is assumed

to be zero, and the Boltzmann constant, its density and temperature are

assumed to be one:

M ≡ e−
|ξ|2
2

(2π)3/2
. (1.3)

L is the linearized collision operator:

Lh ≡
2B
(
M,

√
Mh
)

√
M

, (1.4)

and Γ is the nonlinear term

Γ(h) ≡ B(
√
Mh,

√
Mh)√

M
. (1.5)

The main goal of the present paper is to study the wave structure of

the solutions of the Boltzmann equation, (1.1), or, equivalently, (1.2). We

are interested in the precise, pointwise structure of the solutions around a

Maxwellian state. There are particle-like, entropy, rotational, and Huygens

waves. For the study of the basic structure of these waves, it suffices to

consider the linearized Boltzmann equation

{
∂tg + ξ · ∇xg = Lg,

g(x, 0, ξ) = g0(x, ξ),
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and study its Green’s function:

{
∂tG+ ξ · ∇xG = LG,

G(x, 0, ξ, ξ0) = δ(x)δ(ξ − ξ0).
(1.6)

There are two main reasons for studying the Green’s function. The first

is that the general solution can be expressed as the convolution of the initial

data and the source with the Green’s function. In fact, one may solve (1.2)

by this approach. The second reason is particular to Boltzmann equation,

namely to study its particle-fluid dual property. In fact, Boltzmann equa-

tion occupies the middle ground between the interacting particles system and

the continuum equations of fluid dynamics. It is well-known that the fluid

dynamics equations can be derived from the Boltzmann equation through

various limits of zero Knudsen number, see [15, 39] and references therein.

On the other hand, the particle-like behavior of the Boltzmann equation al-

lows for its description of phenomena such as the ghost effects and thermal

creep that the fluid dynamics equations cannot, [31]. The Green’s func-

tion describes the dispersion and dissipation around a thermo-equilibrium

state M of the particles that initially concentrate at the origin x = 0 with

uniform microscopic velocity ξ0. The short-time behavior is dominated by

the particle-like waves. For large-time, the dissipative fluid-like behavior

emerges. It is the transition from particle-like behavior to fluid-like be-

havior that the Green’s function describes. Thus we aim at the pointwise

description of the Green’s function. With sufficient understanding of the

Green’s function, it is possible to study the wave structure of solutions to

the full Boltzmann equation.

The linearized collision operator (1.4) consists of a multiplicative oper-

ator ν(ξ) and an integral operator K , (2.1),

Lg(ξ) = −ν(ξ)g(ξ) + Kg(ξ).

For the hard sphere model,

ν(ξ) ∼ 1 + |ξ|.

The integral operator K is compact and its kernel K(ξ, ξ∗) has singularity at

ξ = ξ∗, (2.1). the hyperbolic nature of the Boltzmann equation, the kernel
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is written as the sum of K(ξ, ξ∗) = K0(ξ, ξ∗) + K1(ξ, ξ∗), with K1 the regular

part without the singularity at ξ = ξ∗, and K0 the hyperbolic part, (4.1).

The particle-like waves are constructed based on the solution operators St

for the damped transport equation

ht + ξ · ∇xh+ ν(ξ)h = 0, h(x, t, ξ) ≡ S
th(x, 0, ξ)

and the operator Ot
D for the truncated linearized Boltzmann equation:

jt + ξ · ∇xj+ ν(ξ)j = K0j, j(x, t) ≡ O
t
Dj0(x).

A Picard iteration based on these two operators is designed to extract the

particle-like waves. The remaining part of the solution is regular. These are

explained in Section 4.

For the construction of fluid-like waves, we use the Fourier transform

and concentrate on the low frequency, the long waves. The reason for this

is that the fluid-like waves are the result of the equilibrating mechanism of

the collisions. Since the Boltzmann equation is dissipative, as evidence of

the H-Theorem, long waves survive and represent the large-time behavior of

the solutions. By Fourier transform we have, symbolically, the expression of

the Green’s function

G(x, t, ξ) ≡ 1

(2π)3

∫

R3

eix·η+(−iξ·η+L)tdη. (1.7)

The analysis of long waves is done by studying the spectrum of −iξ · η + L

near origin, Section 5. There is a long tradition of the study of the spectrum

and the relation of the Boltzmann equation and the Navier-Stokes equations

for gas dynamics, [11, 20]. For our study of the wave structure in the later

sections, we need to study the analyticity property of the point spectrum

near origin. For this we start with the one space dimensional case and make

essential uses of the rotational symmetry of the Boltzmann equation for the

three dimensional case. This allows us to use the complex analytic techniques

in the study of Huygens waves, Section 6, and contact and rotational waves,

Section 7.

By simple scaling, one sees that, for Boltzmann solutions, the large-time

behavior corresponds to the small Knudsen number. In the zero Knudsen

number limit, the solutions of the Boltzmann equation would approach the
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solutions of the Euler equations. Thus we briefly review the waves for the

linearized Euler equations in gas dynamics in Section 3. The Huygens waves

are the solutions of the linear wave equation for the density. Other waves

correspond to momentum and entropy. The explicit expression of invscid

waves gives us the basic information from which we design the wave pairings

on the level of the Boltzmann equation in Section 5. Such pairings are

physically correct and therefore have the desired analyticity properties that

are needed for the study of wave structure in Sections 6 and 7.

The Green’s function has been studied for planar waves, x ∈ R1, [27],

and shown to have the dual particle-fluid property. The present paper is

concerned with the three dimensional case, x ∈ R3, which has richer geo-

metric features for the waves. On the other hand, it should be pointed out

that nonlinearity plays a stronger role in the one-dimensional case. Thus

in [27], the asymptotic state of the solutions contains the nonlinear kinetic

Burgers waves. For three dimensional case, there is the stronger dispersion

of waves and therefore the solutions to the full Boltzmann equation behave

closer to the Green’s function than in the one dimensional case. For brevity,

we will not study the full Boltzmann equation in the present paper.

The particle-like waves are constructed along the same line as [27] with

the help of the Mixture Lemma straightforwardly generalized here. However,

the particle-like waves for the three dimensional waves contain δ-waves of

lower dimensions, Section 9. The analyticity properties that are needed for

the study of the fluid-like waves here are analytically and geometrically more

intricate and interesting than for the one-dimensional case. We expect our

general techniques in Section 5 to be applicable to other systems endowed

with the natural rotational symmetry as the Boltzmann equation.

With the particle-like waves and fluid-like waves constructed, the re-

maining term is regular and small time-asymptotically. This allows us to

apply the calculus and use the weighted energy method for the complete

study of wave structure, first for rough initial values at Section 8 and then

for the Green’s function at Section 9.

There is the macro-micro decomposition, [28] that decompose a function

u = u(ξ) into macro, fluid part P0u and micro, non-fluid part P1u. The

projection P0u maps into the kernel space {
√
M, ξ1

√
M, ξ2

√
M, ξ3

√
M,

|ξ|2
√
M} of the linearized collision operator L. The fluid part P0u is further

decomposed here into isotropic part Piso
0 u, projection into {

√
M, |ξ|2

√
M}



6 TAI-PING LIU AND SHIH-HSIEN YU [March

and the momentum part Pm
0 , projection into {ξ1

√
M, ξ2

√
M, ξ3

√
M}, (2.6).

For the underlying Mawellian state, (1.3), the one-dimensional fluid waves

have speed λ1 = −c, λ2 = 0, λ3 = c, where c =
√

5/3 is the sound speed for

the monatomic gases that the Boltzmann equation models, Section 3. The

Boltzmann equation is dissipative as the result of the H-Theorem. Thus it

is related to the Navier-Stokes equations in gas dynamics. The dissipation

parameters Ai, i = 1, . . . , 5 for the Boltzmann equation are related to the

viscosities µ, µ′ and heat conductivity κ for the Navier-Stokes equations as

follows:





A2 =
1
6(P1ξ

1|ξ|2
√
M, (−L)−1P1ξ

1|ξ|2
√
M) ≡ κ,

A4 = A5 = (P1ξ
1ξ2

√
M, (−L)−1P1ξ

1ξ2
√
M) ≡ µ,

5
2(P1ξ

1ξ1
√
M, (−L)−1P1ξ

1ξ1
√
M) ≡ µ′,

A1 = A3 = κ+ µ′.

In our main results below, we see that the macroscopic part and microscopic

part have different behavior.

Theorem 1.1.(Main Theorem I) The Green’s function G(x, t) as an L2
ξ

operator-valued function satisfies, for some constant C > 0,

‖G(x, t)‖L2
ξ
≤ C

(
e
− |x|2

C(1+t)

(1 + t)3/2
+
e
− (|x|−ct)2

C(1+t)

(1 + t)2
+ e−(|x|+t)/C

)

+ C





1

(1 + t)(
√
1 + t+ |x|)

for |x| ≤ ct+
√
1 + t,

0 for |x| ≥ ct+
√
t,

(1.8)

‖Piso
0 G(x, t)‖L2

ξ
≤ C

(
e
− |x|2

C(1+t)

(1 + t)3/2
+
e
− (|x|−ct)2

C(1+t)

(1 + t)2
+ e−(|x|+t)/C

)
, (1.9)

‖G(x, t)P1‖L2
ξ
≤ C

(
e
− |x|2

C(1+t)

(1 + t)2
+
e
− (|x|−ct)2

C(1+t)

(1 + t)5/2
+ e−(|x|+t)/C

)
, (1.10)

‖P1G(x, t)P1‖L2
ξ
≤ C

(
e
− |x|2

C(1+t)

(1 + t)5/2
+
e
− (|x|−ct)2

C(1+t)

(1 + t)3
+ e−(|x|+t)/C

)
. (1.11)
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In fact, it is possible to describe the leading particle-like and fluid waves

as in the next theorem. We will use the notation α(ξ)
√
M ⊗

〈
β(ξ)

√
M

∣∣∣ to
denote the projection operator of mapping a given function g = g(ξ) into:

α
√
M⊗

〈
β
√
M

∣∣∣ g(ξ) = α(ξ)
√
M(ξ)

∫

R3

β(ξ∗)
√
M(ξ∗)g(ξ∗)dξ∗.

Theorem 1.2.(Main Theorem II) The Green’s function G(x, t; ξ, ξ0) can

be written as the sum:

G(x, t; ξ, ξ0) = [h0+h1+h2+G
0
1+G

0
2+G

0
3+G

0
4+G

0
5+Ḡ](x, t; ξ, ξ0). (1.12)

Here the particle-like waves are giving as:





h0(x, t, ξ) = e−ν(ξ0)tδ(x − ξ0t)δ(ξ − ξ0),

h1(x, t, ξ) =

∫ t

0
K(ξ, ξ0)e

−ν(ξ)(t−s)−ν(ξ0)sδ(x− (t− s)ξ − sξ0)ds,

h2(x, t, ξ) =

∫ t

0

∫

R3

∫ s1

0
e−ν(ξ)(t−s1)−ν(ξ1)(s1−s)−ν(ξ0)sK(ξ, ξ1)K(ξ1, ξ0)

×δ(x− (t− s1)ξ − (s1 − s)ξ1 − sξ0)dsdξ1ds1.

(1.13)

The leading fluid waves are:





G
0
1 +G

0
3 =

ct

4π

∫∫

|y|=1
H1(x+ cty)dSy +

1

4π

∫∫

|y|=1
H2(x+ cty)dSy

+
ct

4π

∫∫

|y|=1
∇H2(x+ cty) · ydSy,

Huygens waves ,

G
0
2 =

1

6
(4πA2t)

−3/2e
− |x|2

4A2t |ξ|2
√
M⊗

〈
|ξ|2

√
M

∣∣∣ , entropy waves,

G
0
4 +G

0
5 = (4πA4t)

−3/2e
− |x|2

4A4t

3∑

j=1

ξj
√
M⊗

〈
ξj
√
M

∣∣∣

−∑3
j,k=1

[∫ t
0 A4(4πA4τ)

−3/2e
− |x|2

4A4τ dτ

]

xjxk

ξj
√
M⊗

〈
ξk
√
M
∣∣∣ ,

rotational waves .

(1.14)
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Here





H1 =

√
10

6

3∑

j=1

((4πA1t)
−3/2e

− |x|2
4A1t )xj

×
(
ξj
√
M⊗

〈
|ξ|2

√
M

∣∣∣+ |ξ|2
√
M⊗

〈
ξj
√
M

∣∣∣
)
,

H2 = 5A1

3∑

j,k=1

(∫ t

0
(4πA1τ)

−3/2e
− |x|2

4A1τ dτ

)

xjxk

ξj
√
M⊗

〈
ξk
√
M

∣∣∣

+
1

18
(4πA1t)

−3/2e
− |x|2

4A1t |ξ|2
√
M⊗

〈
|ξ|2

√
M
∣∣∣ .

The particle-like waves h0 and h1 are generalized functions and h2 is a regular

function. The remaining term is continuous and decays faster than the fluid

waves:





[∫

R3

|Ḡ(x, t; ξ, ξ0)|2dξ
]1/2

≤ C(t+ 1)−1/2

(
e
− |x|2

C(1+t)

(1+t)3/2
+ e

− (|x|−ct)2

C(1+t)

(1+t)2
+ e−(|x|+t)/C

)

+C





1

(1 + t)(
√
1 + t+ |x|)

for |x| ≤ ct+
√
1 + t,

0 for |x| ≥ ct+
√
t,

(1.15)

Remark 1.3. The particle-like waves, as an operator in L2
ξ decay expo-

nentially in |x| and t, Section 9. From Theorem 3.1, Lemma 3.2 and Lemma

3.3, the leading fluid waves have the same decay properties as stated in

Main Theorem I. Thus, Main Theorem II is a more precise description of

waves than Main Theorem I. We will, however, prove Main Theorem I first

in Section 9 and present the leading fulid waves in Section 10.

There are two general types of existence theory for the Boltzmann equa-

tion: For existence theory of smooth solution based on energy method, see

[16, 24, 30, 33, 34, 36] For existence of weak solution using upper-lower solu-

tions approach, see [1, 18] and renormalized weak solution see [10], and also

[38].

The study of pointwise estimates of nonlinear waves for general dissipa-

tive system is an interesting subject because it offers explicit expression of

the coupling of nonlinear waves. For viscous conservation laws, it is initi-

ated by [21]. The study of Green’s function for viscous conservation laws was
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done first by [40] and later in [17, 22, 23] For the study of dissipative finite

differences, see [25, 26]. Although there are the common features between

our present study for the Boltzmann equation and other dissipative partial

differential equations, there is also the major differences, chiefly because the

Boltzmann equation is, essentially, differential equations of infinite dimen-

sions. This accounts for the rich wave structure and demands the elaborate

combinations of analytical and physical considerations of long-short waves,

particle-wave, and short-long times decompositions. For the study of Green’s

function for stationary Boltzmann equation, see [8].

The pointwise study of the Green’s function is the basic and necessary

starting point for more general quantitative analysis of the Boltzmann equa-

tion. Such an analysis is needed for the physical understanding of the crucial

initial, shock, and particularly the boundary layer behavior of the solutions

of the Boltzmann equation. It would be very interesting and important to

study the Green’s function for the Boltzmann equation with the boundary

effects, c.f. [31, 32]. Such a study would rely on the knowledge of the Green’s

function for the initial value problem. This and other issues, however, are

left to the future.

2. Preliminaries

The contents in this section are mostly standard and can be found in or

easily derived from [7].

For a hard sphere model, the collision operator L can expressed explic-

itly, [14]:





Lg(ξ) = −ν(ξ)g(ξ) + Kg(ξ),

Kg(ξ) ≡
∫
R3 K(ξ, ξ∗)g(ξ∗) dξ∗,

K(ξ, ξ∗) ≡ 2√
2π|ξ − ξ∗|

exp
(
− (|ξ|2 − |ξ∗|2)2

8|ξ − ξ∗|2
− |ξ − ξ∗|2

8

)

−|ξ − ξ∗|
2

exp
(
− (|ξ|2 + |ξ∗|2)

4

)
,

ν(ξ) ≡ 1√
2π

(
2e−

|ξ|2
2 + 2

(
|ξ|+ 1

|ξ|
)∫ |ξ|

0
e−

u2

2 du
)
,

ν(ξ) ∼ 1 + |ξ|.

(2.1)
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Consider the space L2
ξ with inner product

(g, h) ≡
∫

R3

g(ξ)h(ξ)dξ.

The weighted norm space L∞
ξ,β, also in the ξ variables , is

‖g(x, t)‖L∞
ξ,β

≡ sup
ξ∈R3

(1 + |ξ|)β |g(x, t, ξ)|. (2.2)

We will also need the Sobolev spaces:

‖f‖
Hj

x(L2
ξ)

≡
( ∑

|α|≤j

∫

R3

(∂αx f, ∂
α
x f)dx

) 1
2

(2.3)

Lemma 2.1. The operator K is a compact operator and Kξ and Kξ∗ are

bounded operators in L2
ξ , where





Kξg(ξ) ≡
∫

R3

Kξ(ξ, ξ∗)g(ξ∗) dξ∗,

Kξ∗g(ξ) ≡
∫

R3

Kξ∗(ξ, ξ∗)g(ξ∗) dξ∗.

The boundedness properties are due to that both Kξ(ξ, ξ∗) and Kξ∗

(ξ, ξ∗) are integrable in ξ∗ variable.

Lemma 2.2. For any β ≥ 0 there exist positive constants C(β) and C1

such that 



‖K j‖L∞
ξ,β+1

≤ C(β)‖j‖L∞
ξ,β
,

‖Kj‖L∞
ξ,0

≤ C1‖j‖L2
ξ
.

Lemma 2.3. For any β ≥ 1 there exists a positive constant C(β) such

that the nonlinear term Γ(g), (1.5), satisfies

‖Γ(g)‖L∞
ξ,β−1

≤ C(β)‖g‖2L∞
ξ,β
.
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The kernel of L is spanned by the orthogonal basis:

B ≡ {χ0, χ1, χ2, χ3, χ4},
ker(L) ≡ span(B),




χ0 ≡
√
M

χi ≡ ξi
√
M for i = 1, 2, 3,

χ4 ≡ 1√
6
(|ξ|2 − 3)

√
M.

(χi, χj) = δji .

(2.4)

L is negative definite on ker(L)⊥ ≡ {g ∈ L2
ξ |(g, χj) = 0, j = 0, 1, . . . , 4}.

Lemma 2.4.([5]) The operator L is symmetric and non-positive definite:

(Lg, h) = (g, Lh), (Lg, g) ≤ 0

Moreover, there exists ν0 > 0 such that

(g, g) ≤ −ν0(g, Lg) for any g ∈ ker(L)⊥.

From the expression (1.7) of the Green’s function, there is a need to

generalize the above to the consideration of the eigenvalues λ of the operator

−iη · ξ + L in functional space L2
ξ for each given fixed η ∈ R3:

(−iη · ξ + L)ψ = λψ, (λ, ψ) ∈ C× L2
ξ .

σ(η) ≡ {λ ∈ C| there exists non-trivial e ∈ L2
ξ such that (−iη·ξ+L)e = λe}.

From Lemma 2.4, σ(0) consists of zero of multiplicity five. The following

lemma, [11], says that around the imaginary axis the spectrum consists of

only the curves bifurcating from the origin.

Lemma 2.5.([11])

(1) σ(η) ⊂ {z ∈ C|Re(z) ≤ 0} .
(2) There exist κ0 > 0 and κ1 > 0 such that for |η| > κ0

σ(η) ⊂ {z ∈ C|Re(z) ≤ −κ1};
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and for |η| ≤ κ0, in the region {z ∈ C|0 ≥ Re(z) ≥ −κ1}, the set σ(η)

consists of five smooth curves σ1(|η|), σ2(|η|), σ3(|η|), σ4(|η|), σ5(|η|) through
the origin.

We will study the fluid-like waves, which are the long, low frequency

waves. For this, we make the following long wave-short wave decomposition

of the Green’s function:




G
t
Lg(x) ≡

∫

R3

GL(x− y, t)g(y)dy,

G
t
Sg(x) ≡

∫

R3

GS(x− y, t)g(y)dy,

GL(x, t) ≡
1

(2π)3

∫

|η|<κ0/2
eix·η+(−iξ·η+L)tdη,

GS(x, t) ≡
1

(2π)3

∫

|η|≥κ0/2
eix·η+(−iξ·η+L)tdη.

The solution h(x, t) of linearized Boltzmann equation can be represented

by

h(x, t) =
1

(2π)3

[ ∫

|η|<κ0/2
eix·η+(−iη·ξ+L)tĥ(η, 0) dη

+

∫

|η|≥κ0/2
eix·η+(−iη·ξ+L)tĥ(η, 0) dη

]

≡ G
t
Lh(x, 0) +G

t
Sh(x, 0).

From the spectral property of Lemma 2.5 one has the following:

Lemma 2.6. The exists ν1 > 0, C > 0, and Cj such that





‖(Gt
L +Gt

S)h‖L2
x(L

2
ξ)

≤ C‖h‖L2
x(L

2
ξ)
,

‖GLh‖Hj
x(L2

ξ)
≤ Cj‖h‖L2

x(L
2
ξ)
,

‖Gt
Sh‖L2

x(L
2
ξ)

≤ Ce−ν1t‖h‖L2
x(L

2
ξ)
,

(2.5)

where ‖ · ‖
Hj

x(L
2
ξ)

is given in (2.3).

A macro-micro decomposition (P0,P1) on L
2
ξ was introduced in [28] The
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kernel of the operator L is the fluid, macro part, which is now further sepa-

rated into the isotropic pressure and entropy waves, Piso
0 , and the momentum

waves, Pm
0 :





g ≡ P0g + P1g, (macro-micro decomposition)

P1g ≡ g − P0g. (micro components),

P0g ≡ Piso
0 g + Pm

0 g, (isotropic-non isotropic decomposition for

macroscopic components)

Piso
0 g ≡ (χ0, g)χ0 + (χ4, g)χ4, (isotropic components)

Pm
0 g ≡

3∑

j=1

(χj , g)χj . (momentum components)

(2.6)

The orthogonal complement of the fluid, macro part in L2
ξ is called the non-

fluid, micro part. From Lemma 2.4, the linear collision operator is negative

on the non-fluid part.

3. Euler Waves

The linear convection ξ · ∇x has a matrix representation in the macro-

scopic component with respect to the basis B of (2.4):

[P0ξ · ∇xP0]B =

3∑

j=1

[P 0ξ
jP0]B∂xj .

Due to the rotational symmetry, in our later analysis we only need the matrix

representation of the one-dimensional [P0ξ
1P0]B:

[P0ξ
1P0]B ≡

(
(χi, ξ

1χj)
)
5×5

=




0 1 0 0 0

1 0 0 0
√

2
3

0 0 0 0 0

0 0 0 0 0

0
√

2
3 0 0 0



.
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This matrix can be diagonalized:

[P0ξ
1P0]B =




√
3
2 −

√
2
3

√
3
2 0 0

−
√

5
2 0

√
5
2 0 0

0 0 0 1 0

0 0 0 0 1

1 1 1 0 0







−c 0 0 0 0

0 0 0 0 0

0 0 c 0 0

0 0 0 0 0

0 0 0 0 0




×




√
3
2 −

√
2
3

√
3
2 0 0

−
√

5
2 0

√
5
2 0 0

0 0 0 1 0

0 0 0 0 1

1 1 1 0 0




−1

,

where c is the speed of the acoustic wave around the state ρ = θ = 1 with

velocity zero, (1.2), (1.3),

c =

√
5

3
.

The eigenvectors of P0ξ
1P0 are:





E1 =
√

3
2χ0 −

√
5
2χ1 + χ4,

E2 = −
√

2
3χ0 + χ4,

E3 =
√

3
2χ0 +

√
5
2χ1 + χ4,

E4 = χ2,

E5 = χ3;

(3.1)





P0ξ
1E1 = −c E1,

P0ξ
1E2 = 0,

P0ξ
1E3 = c E3,

P0ξ
1E4 = 0,

P0ξ
1E5 = 0.
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Here, E1 and E3 are related to the vector components of sound waves prop-

agating forwards and backwards; E2 is related to the vector components of

local fluid velocity; and both E4 and E5 are orthogonal to x-direction, which

is the direction of wave propagation. These are the eigen modes for the lin-

earized Euler equations, obtained from the linearized Boltzmann equation

(1.6) by assuming that the solutions consist of only fluid part. We now de-

rive the linearized Euler equations by assuming that a solution h(x, t, ξ) of

the linearized Boltzmann equation is of the form

h(x, t) =

4∑

j=0

hj(x, t)χj ,

then substitute this into the conservation laws





(M
1
2 , ht + ξ · ∇xh− Lh) = 0,

(ξjM
1
2 , ht + ξ · ∇xh− Lh) = 0 for j = 1, 2, 3,

( |ξ|
2

2 M
1
2 , ht + ξ · ∇xh− Lh) = 0.

(3.2)

By straightforward computations, the system (3.2) is the linearized Euler

equations for the conservative quantities ρ = (
√
M, h), m = (ξ

√
M, h), E =

( |ξ|
2

2

√
M, h):





ρt +∇x ·m = 0,

mt +
2
3∇xE = 0,

Et +
5
2∇x ·m = 0.

(3.3)

Here, in consistent with the Boltzmann equation, the above Euler equations

are polytropic and for Mon-atomic gases. The eigenvalues and eigenvectors

for the Euler flux have been given in (3.1). In the above form (3.3), we have

ρtt = −∇x ·mt = ∇x ·
(
2

3
∇xE

)
,

(
5

2
ρ− E

)

t

= 0. (3.4)
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This yields the wave equation:

(
∂2t − c

2∆x

)
ρt = 0, where c =

√
5

3
. (3.5)

The wave equation for ρt(x, t) is solved by Kirchhoff’s formula. This yields

the formulas for ρ(x, t) and E(x, t) in terms of the density ρ(x, t) from (3.4):





ρ(x, t) = ρ(x, 0) +

∫ t

0
ρt(x, s)ds,

E(x, t) = E(x, 0) +
5

2

∫ t

0
ρt(x, s)ds.

(3.6)

This in turn yields, from (3.3), the momentum:

m(x, t) = m(x, 0) +
2

3

∫ t

0
∇xE(x, s)ds. (3.7)

The above procedure yields explicit solution formula for the linearized Euler

solutions. For the much more complex Boltzmann equation, we will use the

Fourier transformation. For this, we will now recast the above procedure for

the Euler equations in the Fourier variables. The Fourier transform of the

system (3.3) is


ρ̂

m̂

Ê




t

+ i



0 ηt 0

0 0 2
3η

0 5
2η

t 0






ρ̂

m̂

Ê


 = 0

One can represent the solution (ρ̂, m̂, Ê) as follows:



ρ̂(η, t)

m̂(η, t)

Ê(η, t)


 =




1 i
c

sin(c|η|t)
|η| ηt 2

3c2 (−1 + cos(c|η|t))

0 cos(c|η|t)
|η|2 η ⊗ ηt 2i

3c
sin(c|η|t)

|η| η

0 i3c
2

sin(c|η|t)
|η| ηt cos(c|η|t)






ρ̂(η, 0)

m̂(η, 0)

Ê(η, 0)


 .

Here, the tensor product η ⊗ ηt represents a 3 × 3 sub-matrix (ηjηk)jk for

j, k = 1, 2, 3. Thus the solution operator involves the Riesz transform of a

particular form. As the system is invscid, Dirac-δ functions are involved also.

The resolution of the wave equation, the exhibition of Huygens principle, by

the Kirchhoff method through the Fourier transform method is based on the

following:
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Theorem 3.1.(Kirchhoff) Let w(x, t) be a function given by its 3-D

Fourier transformation:




ŵ =

sin(c|η|t)
c|η| ,

ŵt = cos(c|η|t).

Then, for any functions g(x) and h(x) one has that

w ∗ g(x) = t

4π

∫∫

|y|=1
g(x + cty)dSy, (3.8)

wt ∗ h(x) =
1

4π

∫∫

|y|=1
h(x+ cty)dSy +

ct

4π

∫∫

|y|=1
∇h(x+ cty) · ydSy.

(3.9)

To study the dissipation of the Huygens waves in the Boltzmann solu-

tions, we will need the following viscous version.

Lemma 3.2. Let w(x, t) be the inverse Fourier transformation of sin

(c|η|t) given in Theorem 3.1. For any positive integer l ≥ 0, one has that

∣∣∣∣∣w ∗ e
− |x|2

C(t+1)

(t+ 1)
l
2

∣∣∣∣∣ ≤ O(1)
e
− (|x|−ct)2

2C(t+1)

(t+ 1)
l
2

, (3.10)

∣∣∣∣∣wt ∗
e
− |x|2

C(t+1)

(t+ 1)
l
2

∣∣∣∣∣ ≤ O(1)
e
− (|x|−ct)2

2C(t+1)

(t+ 1)
l+1
2

. (3.11)

Proof. By the Kirchhoff formula (3.8), we have

J1 ≡ w ∗ e
− |x|2

C(t+1)

(t+ 1)
l
2

= a0t

∫∫

|y|=1

e
− |x−cty|2

C(t+1)

(t+ 1)
l
2

dy.

Now, we consider this integration in two cases.
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Case 1. ||x| − ct| ≤ O(1)
√
1 + t.

J1 = O(1)(t + 1)

∫∫

|y|=1

e−O(1)t|y|2

(t+ 1)
l
2

= O(1)(t + 1)
1

(t + 1)
l
2

(
1√
1 + t

)2

= O(1)
1

(1 + t)
l
2

. (3.12)

Case 2. ||x| − ct| ≥ O(1)
√
1 + t.

Since

min
|y|=1

|x− cty| = ||x| − ct|,

we have

e
− |x−cty|2

C(t+1) ≤ e
− |x−cty|2

2C(t+1)
− (|x|−ct)2

2C(t+1) ; (3.13)

and

J1 = (t+ 1)

∫∫

|y|=1

e
− |x−cty|2

2C(t+1)
− |x−cty|2

2C(t+1)

(t+ 1)
l
2

dy

≤ (t+ 1)e
− (|x|−ct)2

2C(t+1)

∫∫

|y|=1

e
− |x−cty|2

2C(t+1)

(t+ 1)
l
2

dy ≤ e
− (|x|−ct)2

C(t+1)

(t+ 1)
l
2

. (3.14)

From (3.12) and (3.14) we conclude (3.10). (3.11) is shown similarly. �

In carrying out the viscous version of the procedure (3.6) and (3.7) we

will need the following:

Lemma 3.3. For |x| < ct

∣∣∣∣∣

∫ t

0

{
τ

∫∫

|y|=1

e−
|x−cτy|2

Ct

(1 + t)5/2
dSy

}
dτ

∣∣∣∣∣ ≤
C

(1 + t)(|x|+
√
t+ 1)

;

and for |x| > ct

∣∣∣∣∣

∫ t

0

{
τ

∫∫

|y|=1

e−
|x−cτy|2

Ct

(1 + t)5/2
dSy

}
dτ

∣∣∣∣∣ ≤
Ce−

(|x|−ct)2

2Ct

(1 + t)2
.
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Proof. From (3.13), we have that

∣∣∣∣∣

∫ t

0

{
τ

∫∫

|y|=1

e−
|x−cτy|2

Ct

(1 + t)5/2
dSy

}
dτ

∣∣∣∣∣ ≤
∣∣∣∣∣

∫ t

0

{
τ

∫∫

|y|=1

e−
|x−cτy|2

2Ct e−
(|x|−cτ)2

2Ct

(1 + t)5/2
dSy

}
dτ

∣∣∣∣∣
(3.15)

The proof of the lemma using (3.15) is separated into three cases.

Case 1. |x| ≤ O(1)
√
1 + t.

∣∣∣∣∣

∫ t

0

{
τ

∫∫

|y|=1

e−
|x−cτy|2

Ct

(1 + t)5/2
dSy

}
dτ

∣∣∣∣∣

≤
∣∣∣∣∣

( ∫ √
1+t

0
+

∫ t

√
1+t

){
τ

∫∫

|y|=1

e−
|x−cτy|2

2Ct e−
(|x|−cτ)2

2Ct

(1 + t)5/2
dSy

}
dτ

∣∣∣∣∣

≤
∫ √

1+t

0

τ

(1 + t)5/2
dτ +O(1)

∫ t

√
1+t

τ

(t+ 1)
5
2

te−
(|x|−cτ)2

2Ct

τ2
dτ =

O(1)

(1 + t)
3
2

.

Case 2.
√
1 + t ≤ |x| ≤ ct+

√
1 + t.

∣∣∣∣∣

∫ t

0

{
τ

∫∫

|y|=1

e−
|x−cτy|2

Ct

(1 + t)5/2
dSy

}
dτ

∣∣∣∣∣

≤
∣∣∣∣∣

(∫ √
1+t

0
+

∫ t

√
1+t

){
τ

∫∫

|y|=1

e−
|x−cτy|2

2Ct e−
(|x|−cτ)2

2Ct

(1 + t)5/2
dSy

}
dτ

∣∣∣∣∣

≤
∫ √

1+t

0

τe−
(|x|−cτ)2

2Ct

(1 + t)5/2
dτ +O(1)

∫ t

√
1+t

τ

(t+ 1)
5
2

te−
(|x|−cτ)2

2Ct

τ2
dτ =

O(1)

(1 + t)|x| .
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Case 3. |x| ≥ ct+
√
1 + t.

∣∣∣∣∣

∫ t

0

{
τ

∫∫

|y|=1

e−
|x−cτy|2

Ct

(1 + t)5/2
dSy

}
dτ

∣∣∣∣∣

≤
∣∣∣∣∣

( ∫ t
2

0
+

∫ t

t
2

){
τ

∫∫

|y|=1

e−
|x−cτy|2

2Ct e−
(|x|−cτ)2

2Ct

(1 + t)5/2
dSy

}
dτ

∣∣∣∣∣

≤
∫ t

2

0

τe−
c
2t

4C e−
(|x|−cτ)2

2Ct

(1 + t)5/2
dτ +O(1)

∫ t

t
2

τ

(t+ 1)
5
2

te−
(|x|−cτ)2

2Ct

τ2
dτ

=
O(1)e−

(|x|−cτ)2

2Ct

(1 + t)2
.

These complete the proof of the lemma. �

Lemma 3.4. For any given positive integer l, k ≥ 3, one has

∫∫∫

R3

e
− |x−y|2

C(t+1)
− |y|2

C(s+1)

(t− s+ 1)
l
2 (s+ 1)

k
2

dy ≤ O(1)

(t− s+ 1)
l−3
2 (s + 1)

k−3
2

e
− |x|2

C(t+1)

(t+ 1)
3
2

.

This lemma is a simple consequence of semi-group property of heat

kernel. We omit its proof.

4. Particle-like Waves

Boltzmann equation for hard spheres is basically semi-linear hyperbolic

and thus the roughness of the initial data will propagate into the later time.

To apply calculus, we need to extract waves of increasing regularity so that

the remaining part is sufficiently smooth. This is done as follows: First, we

extract an essential kinetic wave from the solution to the initial value prob-

lem for the linearized Boltzmann equation. Then we apply Picard’s itera-

tion to yield particle-like waves with increasing regularities. The procedure

is a slight generalization of that introduced in [27] for one space dimension.

Rewrite the linearized Boltzmann equation as follows:

∂th+ ξ · ∇xh+ ν(ξ)h = (K0 + K1)h.
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The operator K is decomposed into K0 ≡ K0,D and K1 ≡ K1,D:





Kiz(ξ) ≡
∫

R

Ki(ξ, ξ∗)z(ξ∗) dξ∗ for i = 0, 1,

K0(ξ, ξ∗) = ch0

(
|ξ−ξ∗|
Dν0

)
K(ξ, ξ∗),

K1(ξ, ξ∗) =
(
1− ch0

(
|ξ−ξ∗|
Dν0

))
K(ξ, ξ∗),

ch0(r) ≡ 1 for r ∈ [−1, 1],

supp(ch0) ⊂ [−2, 2], ch0 ∈ C∞
c (R), χ0 ≥ 0.

(4.1)

Here the cutoff parameter D will be chosen to be small. The operator K1 is

a smoothing operator because it does not inherit the singular nature of the

kernel K(ξ, ξ∗) at ξ = ξ∗.

Lemma 4.1. For any h ∈ L2
ξ and any given i ≥ 0,

‖∇i
ξK1h‖L2

ξ
= O(1)‖h‖L2

ξ
.

Proof. From the definition of K1 in (4.1),

∂αξ K1h(ξ) ≡
∫

R3

h(ξ∗)∂
α
ξ

((
1− ch0

( |ξ − ξ∗|
Dν0

))
K(ξ, ξ∗)

)
dξ∗.

The function K(ξ, ξ∗) is smooth for |ξ − ξ∗| > Dν0. Thus, ((1− ch0(
|ξ−ξ∗|
Dν0

))

K(ξ, ξ∗)) is a globally smooth function. It is easy to see that for any i ≥ 0

the function ∂iξ((1 − ch0(
|ξ−ξ∗|
Dν0

))K(ξ, ξ∗)) ∈ L1
ξ and so defines a bounded

operator from L2
ξ to L2

ξ , and the lemma is proved. �

Definition 4.2. Denote by St and Ot
D the solution operators of the

following two initial value problems:

{
gt + ξ · ∇xg + ν(ξ)g = 0,

g(x, 0) = g0(x) ∈ L∞
ξ,β for x ∈ R3,

g(x, t) ≡ S
tg0(x),

{
jt + ξ · ∇xj+ ν(ξ)j = K0j,

j(x, 0) = j0(x) ∈ L∞
ξ,β for x ∈ R3,

j(x, t) ≡ O
t
Dj0(x).
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where β > 5/2 and 0 < D ≪ 1.

The function Ot
Dh0(x) is called the “essential kinetic wave” of solution

of the linear Boltzmann equation with initial value h0.

Lemma 4.3. For any β ≥ 0, there exists positive constants C and Cβ

such that the operator St satisfies




‖St‖L∞

x (L∞
ξ,β)

≤ Cβe
−ν0t,

‖St‖L2
x(L

2
ξ)

≤ Ce−ν0t.

Proof. The first estimate is a direct consequence of the following solution

formula of hyperbolic equation with damping.

S
tg0(x, ξ) = e−ν(ξ)tg0(x− ξt, ξ). (4.2)

The second estimate is proved by the energy method as in the proof of the

next lemma. We omit the proof. �

Lemma 4.4. There exist positive constants C0 and C1 such that for

any D ∈ (0, C0) the operator Ot
D satisfies

‖Ot
D‖L2

x(L
2
ξ)

≤ C1e
−ν0t/2.

Proof. First, we regard Ot
D as an operator on L2

x(L
2
ξ), and consider the

initial value problem

{
jt + ξ · ∇xj+ ν(ξ)j− K0j = 0

j(x, 0) ≡ g0(x).

Consider the energy estimate

∫

R3

(j, jt + ξ · ∇xj+ ν(ξ)j− K0J) dx = 0.

Since the L2
ξ norm of |K0| is O(1)D, this results in

1

2

d

dt

∫

R3

(j, j)dx < (−ν0 +O(1)D)

∫

R3

(j, j)dx.
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Thus we may choose D sufficiently small so that −ν0+O(1)D < 0. This

implies that there exist positive constants C1, C0 such that, for D ∈ (0, C0)

d

dt

∫

R3

(j, j)dx ≤ −ν0
2

∫

R3

(j, j)dx,

whence the lemma follows:

‖j‖L2
x(L

2
ξ)

≤ e−
ν0t
2 ‖g0‖L2

x(L
2
ξ)
. �

This lemma results in the existence of the operator Ot
D in the functional

space L2
x(L

2
ξ) and the global decaying rate in time. We next use the Picard’s

iteration to analyze the operator Ot
D in the sup norm.

Lemma 4.5. The operator Ot
D is also a bounded operator on L∞

x (L∞
ξ,β)

for any β ≥ 0, that is, there exist positive constants C0 and C1 such that,

for any D ∈ (0, C0),

‖Ot
Dg0‖L∞

x (L∞
ξ,β)

≤ C1e
−ν0t/2‖g0‖L∞

x (L∞
ξ,β)

.

Proof. From Lemma 2.2,

‖K0h‖L∞
ξ,β+1

≤ CβD‖h‖L∞
ξ,β

for β ≥ 0. (4.3)

From this and Lemma 4.3,

∥∥∥
∫ t

0
· · ·
∫ sk

0
S
t−s1K0S

s1−s2K0S
s2−s3K0 · · · Ssk−sk+1K0S

sk+1dsk+1 · · · ds1
∥∥∥
L∞
x (L∞

ξ,β)

≤ (Cβ)
k+1Dk+1e−ν0t/2.

Thus, Picard’s iteration gives a convergent geometric sequence in L∞
x (L∞

ξ,β)

for sufficiently small D > 0:

O
t
D = S

t +

∫ t

0
S
t−s1K0S

s1ds1 +

∫ t

0

∫ s1

0
S
t−s1K0S

s1−s2K0S
s2ds2ds1 + · · ·

+

∫ t

0
· · ·
∫ sk

0
S
t−s1K0S

s1−s2K0S
s2−s3K0 · · · Ssk−sk+1K0S

sk+1dsk+1 · · · ds1
+· · · , (4.4)
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and the lemma follows. �

The following lemma yields the significant hyperbolic property of the

operator St and Ot
D. Note that the property ν(ξ) 1 + |ξ| for hard sphere

model is crucially used in its proof.

Lemma 4.6. For any given β ≥ 0, there exists sufficiently small D > 0

such that

‖Stg0(x)‖L∞
ξ,β

≤O(1)e
−2ν0t

3

[
max
|y−x|<t

‖g0(y)‖L∞
ξ,β

+ max
|y−x|>t

e
−ν1|y−x|

3 ‖g0(y)‖L∞
ξ,β

]
.

(4.5)

‖Ot
Dg0(x)‖L∞

ξ,β
≤O(1)e

−ν0t
2

[
max
|y−x|<t

‖g0(y)‖L∞
ξ,β

+ max
|y−x|>t

e
−ν1|y−x|

4 ‖g0(y)‖L∞
ξ,β

]
,

(4.6)

where ν1 are relate to the function ν(ξ) given in (2.1), see (4.8) below; and

ν0 is given in Lemma 2.4.

Proof. We use the representation (4.2) for St. For |ξ| ≤ 1,

|Stg0(x, ξ)| ≤ e−ν(ξ)t(1 + |ξ|)−β‖g0(x− ξt, ·)‖L∞
ξ,β

≤ e−2ν0t/3(1 + |ξ|)−β max
|y−x|<t

‖g0(y)‖L∞
ξ,β
. (4.7)

For |ξ| > 1, we use the basic property of hard sphere collision model

1

2
ν(ξ) ∼ ν1|ξ| as |ξ| → ∞, (4.8)

ν1|ξ|t ≤ ν(ξ)t for ξ ∈ R
3.

Thus, for |ξ| > 1

|Stg0(x, ξ)| ≤ e−ν(ξ)t/3−2ν0t/3(1 + |ξ|)−β‖g0(x− ξt, ·)‖L∞
ξ,β

≤ e−ν1|ξt|/3−2ν0t/3(1 + |ξ|)−β‖g0(x− ξt, ·)‖L∞
ξ,β

≤ max
|y−x|>t

e−ν1|x−y|/3−2ν0t/3(1 + |ξ|)−β‖g0(y)‖L∞
ξ,β
. (4.9)

The estimate (4.5) follows from (4.7) and (4.9). From the construction of

Ot
D in Lemma 4.5, one can view Ot

D as a small perturbation of St. From
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(4.3) and (4.5), one has that

∥∥∥
∫ t

0
· · ·
∫ sk

0
S
t−s1K0S

s1−s2K0S
s2−s3K0 · · · Ssk−sk+1K0S

sk+1g0dsk+1 · · · ds1
∥∥∥
L∞
ξ,β

≤ (CβD)k+1e−ν0t/2
[

max
|y−x|<t

‖g0(y)‖L∞
ξ,β

+ max
|y−x|>t

e−ν1|y−x|/4‖g0(y)‖L∞
ξ,β

]
.

(4.10)

Thus, the Picard’s iteration in (4.4) converges for sufficiently small D > 0

and (4.6) follows. �

The iteration (4.4) gives rise to the operator of alternating the operations

K and S that has increasing regularizing effects that we now study.

Definition 4.7. For any g0 ∈ L2
x(L

2
ξ), k-th degree Mixture operator Mt

k

is given as follows:

M
t
kg0≡

∫ t

0

∫ s1

0
· · ·
∫ s2k−1

0
S
t−s1KSs1−s2KSs2−s3K · · · Ssk−sk+1KSs2kg0 ds2k · · · ds1.

Lemma 4.8.(Mixture Lemma) For each given k ≥ 0, there exists posi-

tive constant Ck such that

‖∇k
xM

t
kg0‖L2

x(L
2
ξ)

≤ Ck e
−ν0t/2

(
‖g0‖L2

x(L
2
ξ)
+ ‖∇k

ξg0‖L2
x(L

2
ξ)

)
.

Proof. This proof is a modification of the 1-D version given in [27] and

is proved by induction in k. For the case k = 1, it is to show that there

exists C1 > 0 such that for any g0 ∈ L2
x(L

2
ξ) the following inequality holds:

∥∥∥∥∇x

∫ t

0

∫ s1

0
S
t−s1KSs1−sKSsg0dsds1

∥∥∥∥
L2
x(L

2
ξ)

≤ C1 e
−ν0t

(
‖g0‖L2

x(L
2
ξ)
+ ‖∇ξg0‖L2

x(L
2
ξ)

)
.

We consider the derivative with respect to x1 and decompose it into two

parts:

∂x1

∫ t

0

( ∫ s1/2

0
+

∫ s1

s1/2

)
S
t−s1KSs1−sKSsg0dsds1 ≡ I1 + I2.
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Here I1 and I2 represent “large time scale versus short time scale in a time

scale s1 − s”. For large time scale, we use Fourier analysis; for short time

scale, the direct characteristic method for PDE is used. Consider the Fourier

transformation of I1 with respect to x1:

1√
(2π)3

∫

R3

e−ix·η
I1(x, ξ)dx

= F
(
∂x1

∫ t

0

∫ s1/2

0
S
t−s1KSs1−sKSsg0dsds1

)
(η, ξ)

= iη1
∫ t

0

∫

R3

∫ s1/2

0

∫

R3

e−[iη·ξ+ν(ξ)](t−s1)−[iη·ξ1+ν(ξ1)](s1−s)−[iη·ξ2+ν(ξ2)]s

K(ξ, ξ1)K(ξ1, ξ2)ĝ0(η, ξ2)dξ2dsdξ1ds1. (4.11)

Substitute the identity

iη1e−iξ1·η(s1−s) = − 1

s1 − s
∂ξ11e

−iξ1·η(s1−s)

into (4.11) to result in

1√
(2π)3

∫

R3

e−ix·η
I1(x, ξ)dx

= −
∫ t

0

∫

R3

∫ s1/2

0

∫

R3

e−[iη·ξ+ν(ξ)](t−s1)−[iη·ξ1+ν(ξ1)](s1−s)−[iη·ξ2+ν(ξ2)]s

×∂ν(ξ1)
∂ξ11

K(ξ, ξ1)K(ξ1, ξ2)ĝ0(η, ξ2)dξ2dsdξ1ds1

+

∫ t

0

∫

R3

∫ s1/2

0

∫

R3

e−[iη·ξ+ν(ξ)](t−s1)−[iη·ξ1+ν(ξ1)](s1−s)−[iη·ξ2+ν(ξ2)]s

× 1

s1 − s

∂(K(ξ, ξ1)K(ξ1, ξ2))

∂ξ11
ĝ0(η, ξ2)dξ2dsdξ1ds1

≡ Î
1
1(η, t, ξ) + Î

2
1(η, t, ξ). (4.12)

From Lemma 2.1 and (4.12), there exists C such that

‖Î2
1(η, t, ·)‖L2

ξ
≤ C e−ν0t‖ĝ0(η, ·)‖L2

ξ
for all η ∈ R

3. (4.13)

For Î
1
1, we have from the smoothness of ν(ξ), (2.1), that there exists a
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positive constant C such that

‖Î1
1(η, t, ·)‖L2

ξ
≤ C e−ν0t‖ĝ0(η, ·)‖L2

ξ
for all η ∈ R

3. (4.14)

From (4.13), (4.14), and the Parseval’s identity, there exists C such that

‖I1(·, t, ·)‖L2
x(L

2
ξ)

≤ Ce−ν0t‖g0‖L2
x(L

2
ξ)
.

For the term I2, we use characteristic curves to analyze as follows:

I2(x, t, ξ) =

∫ t

0

∫ s1

s1/2

∫

R3

∫

R3

e−ν(ξ)(t−s1)−ν(ξ1)(s1−s)−ν(ξ3)sK(ξ, ξ1)K(ξ1, ξ2)

∂x1g0(x− ξ(t− s1)− ξ1(s1 − s2)− ξ2s2, ξ2)dξ2dξ1ds2ds1.

This is rewritten in a new set of variables V1 and V2:

{
V1 ≡ ξ − ξ1,

V2 ≡ ξ1 − ξ2,

I2(x, t, ξ)

=

∫ t

0

∫ s1

s1/2

∫

R3

∫

R3

e−ν(ξ)(t−s1)−ν(ξ1)(s1−s)−ν(ξ3)sK(ξ, ξ1)K(ξ1, ξ2)

× 1

s2

[
∂V 1

2
g0(x− ξt+ s1V1 + s2V2, ξ2)− g0;1(x− ξt+ s1V1 + s2V2, ξ2)

]

dV2dV1ds2ds1,

where

f0;j(x, ξ) ≡
∂f0(x, ξ)

∂ξj
where j = 1, 2, 3.

By integration by parts,

I2(x, t, ξ) = −
∫ t

0

∫ s1

s1/2

∫

R3

∫

R3

1

s2
e−ν(ξ)(t−s1)−ν(ξ1)(s1−s)−ν(ξ3)s

×
[ ∂

∂V 1
2

[K(ξ, ξ1)K(ξ1, ξ2)]g0(x− ξt+ s1V1 + s2V2, ξ2)

+K(ξ, ξ1)K(ξ1, ξ2)g0;1(x− ξt+ s1V1 + s2V2, ξ2)
]
dV2dV1ds2ds1. (4.15)
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From the boundedness of the operator (K(ξ, ξ1)K(ξ1, ξ2))V 1
2
we have

‖I2(·, t, ·)‖L2
x(L

2
ξ)

≤ O(1)e−ν0t
(
‖g0‖L2

x(L
2
ξ)
+ ‖∂ξ1g0‖L2

x(L
2
ξ)

)
.

Hence, for i = 1,

‖∂xi

∫ t

0

∫ s1

0
S
t−s1KSs1−sKSsg0dsds1‖L2

x(L
2
ξ)

≤ O(1)e−ν0t(‖g0‖L2
x(L

2
ξ)
+ ‖∇ξg0‖L2

x(L
2
ξ)
). (4.16)

Similarly, (4.16) is also valid for i = 2, 3 and the lemma is proved for k = 1.

Next, suppose that the lemma holds for k = l. We have

∂l+1
x1 M

t
l+1 = ∂l+1

x1

∫ t

0

∫ t1

0
S
t−t1KSt1−t2KMt2

l dt2dt1

=

∫ t

0

∫ t1

0
∂x1S

t−t1KSt1−t2K∂lx1M
t2
l dt2dt1.

We may use the same proof for the case k = 1 to yield

‖∂l+1
x1 M

t
l+1g0‖L2

x(L
2
ξ)

= O(1)

∫ t

0
e−ν0(t−s)

(
‖∂lx1M

s
l g0‖L2

x(L
2
ξ)
+ ‖∂ξ∂lx1M

s
l g0‖L2

x(L
2
ξ)

)
ds.

This and induction hypothesis will imply the lemma for k = l + 1. �

Remark 4.9. Note that in the above proof, we need two operations

of K to make the change of variables, (4.12) to work. In other words, to

gain one degree of regularity we need two operations of K. This accounts

for the definition of the mixture operator. Note also that, as in the overall

behavior of the Boltzmann solutions we have been discussing, the large-time

part I1describes long waves and is effectively studied by Fourier transform,

c.f. Section 5. On the other hand, for the short-time part I2, it is the

particle-like behavior and so characteristic method is used.

Consider the initial value problem for the linearized Boltzmann equation

{
∂tg + ξ · ∇xg = Lg,

g(x, 0) = gin(x).
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Here, the initial value gin has compact support





gin(x) ∈ L2
x(L

2
ξ),

sup
|x|<1

‖gin(x)‖L∞
ξ,3

≤ 1,

but with no assumption on its regularity.

First, we extract the essential kinetic wave from the solution as follows

ḡ ≡ g−O
tgin.

The equation for ḡ is




∂tḡ + ξ · ∇xḡ − Lḡ = K1O

tgin,

ḡ(x, 0) ≡ 0.
(4.17)

Remark 4.10. That we define the essential kinetic waves with the

operator Ot instead of the damped transport operator St is so that the

equation for the remainder ḡ, (4.17), has the source K1O
tgin, which is smooth

in the ξ variables by Lemma 4.1. This allows us to carry the next step of

constructing increasingly regular, in the x variables, waves using the Mixture

Lemma.

Next we define a finite Picard’s iteration to produce particle-like waves

Ak :

Rk(x, t) ≡ ḡ(x, t) − Ak,

Ak ≡
∫ t

0
S
t−sK1O

sginds+

∫ t

0

∫ s

0
S
t−sKSs−s1K1O

s1ginds1ds

+

k∑

j=1

(∫ t

0
M

t−s
j K1O

sginds+

∫ t

0

∫ s

0
M

t−s1
j KSs1−sK1O

sgindsds1

)
,

Bk ≡
∫ t

0

∫ s

0
M

t−s1
k KSs1−sK1O

sgindsds1. (4.18)
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From Lemmas 4.4 and 4.5, 4.6 the kinetic waves Ak(x, t) satisfy




‖Ak‖L∞

x (L2
ξ)

≤ Ck e
−ν0t/2,

‖Ak‖L2
x(L

2
ξ)

≤ O(1) e−ν0t/2.
(4.19)

and, by the Mixture Lemma and Lemma 4.1,

‖∇k
xBk‖L2

x(L
2
ξ)

≤ O(1)e−ν0t/2. (4.20)

The remainder Rk solves




∂tRk + ξ · ∇xRk − LRk = KBk,

Rk(x, 0) ≡ 0.
(4.21)

Since Gt is a bounded operator on L2
x(L

2
ξ), we have from (4.21) and (4.20)

that the remainder is smooth, that is, there exists C > 0 such that

‖∇k
xRk‖L2

x(L
2
ξ)

≤ C for t ≥ 0. (4.22)

Thus we have the decomposition of the solution

g = O
tgin + Ak + Rk,

with the first and second terms decay exponentially and the third term

smooth.

5. Discrete Spectrum near Origin

The Boltzmann equation is independent of any reference inertial coordi-

nates. Thus, there exists a rotational symmetry for the velocity variables. In

this section, we will make uses of this basic property to reduce the spectral

properties for three dimensional operator from those for the one-dimensional

operator, the planar wave case. In particular, we will study the analytic

property of the spectral data. This is the first step in studying the long

waves that will be carried out in the next two sections.
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5.1. SO(3) transformations

Define a SO(3)-action on L2
ξ as follows

ι : (g, f) ∈ SO(3)× L2
ξ 7−→ L2

ξ ,

ι(g, f) 7−→ gf,

gf(ξ) ≡ f(gξ),

where gξ is the image of the linear isometric transformation, g : ξ ∈ R3 7−→
gξ ∈ R3. Thus, each g ∈ SO(3) defines an operator on L2

ξ :

g : f ∈ L2
ξ 7−→ gf ∈ L2

ξ .

Lemma 5.1. The collision operator Q is invariant under the SO(3)

transformation:

Qg = gQ for any g ∈ SO(3), i.e.

L2
ξ

Q−−−−→ L2
ξyg

yg

L2
ξ

Q−−−−→ L2
ξ

Proof. For any g ∈ SO(3) and Ω ∈ S2,





(gξ)′=
gξ+gξ∗

2
−(gΩ · (gξ−gξ∗))gΩ=g

(ξ + ξ∗
2

−(Ω · (ξ−ξ∗))Ω
)
=gξ′,

(gξ∗)
′=

gξ+gξ∗
2

+(gΩ · (gξ−gξ∗))gΩ=g
(ξ + ξ∗

2
+(Ω · (ξ−ξ∗))Ω

)
=gξ′∗.

(5.1)

For any f ∈ L2
ξ ,

gQ(f)(ξ) = Q(f)(gξ)

=

∫

(gξ−ξ̄∗)·Ω̄>0
Ω̄∈S2

ξ̄∗∈R3

(
−f(gξ)f(ξ̄∗) + f((gξ)′)f(ξ̄′∗)

)
C(gξ − ξ̄∗, Ω̄)dΩ̄dξ̄∗. (5.2)
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Let Ω̄ = gΩ and ξ̄∗ = gξ∗. Then, from (5.1) we have

{
(gξ)′ = gξ′,

ξ̄′∗ = gξ′∗.
(5.3)

From (5.2) and (5.3),

gQ(f)(ξ) = Q(f)(gξ)=

∫

(ξ−ξ∗)·Ω>0
Ω∈S2

ξ∗∈R3

(
−f(gξ)f(gξ∗)+f(gξ′)f(gξ′∗)

)
C(ξ−ξ∗,Ω)dΩdξ∗

= Q(gf)(ξ). �

Corollary 5.2. The linearized collision operator L is invariant under

SO(3), i.e. for any g ∈ SO(3)

gL = Lg.

Lemma 5.3. Let g ∈ SO(3) be any transformation which maps η/|η| ≡
(ω1, ω2, ω3) to (1, 0, 0). Then,





gχ0 = χ0,

gχ1 =
3∑

j=1

ωjχj ,

gχ4 = χ4.

(5.4)

This lemma is a direct consequence of SO(3) action. The proof is omit-

ted. Here, gχ2 and gχ3 are not specified, as the element g ∈ SO(3) mapping

η/|η| to (1, 0, 0) is not unique.

5.2. 1-D problem spectrum

First, we consider a special eigenvalue-eigenvector, (ρ, e), problem:

(−iη1ξ1 + L)e = ρe for η1 ∈ C. (5.5)
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Denote by ρ(ζ) the point spectrum of the operator −iζξ1 + L:

ρ(ζ)≡{σ ∈ R| the problem (−iζξ1+L−σ)e=0 has a nontrivial solution

e ∈ L2
ξ}

Lemma 5.4. There exist κ0 > 0 such that for any |ζ| ≤ κ0 (1)

ρ(ζ) ⊂ {z ∈ C|Re(z) ≤ 0} . (5.6)

(2) the functions

ρ(ζ) = {ρ1(ζ), ρ2(ζ), ρ3(ζ), ρ4(ζ), ρ5(ζ)}

are real analytic functions in ǫ ≡ iζ around ǫ = 0:

ρj(ζ) = iζ
∞∑

k=0

(iζ)kρj,k, ρj,k ∈ R, (5.7)

i.e.

{
ρj(ζ) = iζA1

j(ζ
2) + A2

j(ζ
2);

Ak
j (x) : real analytic functions in x for j = 1, . . . , 5 and k = 1, 2

(5.8)

and there exist normalized eigenfunctions ej(ζ) ∈ L2
ξ which are analytic in

ζ:




ej(0) = Ej , j = 1, 2, 3, 4, 5,

ej(ζ) =

∞∑

k=0

(iζ)kej,k,

ej,k ∈ L2
ξ ,

(ej(ζ), ek(ζ)) = δkj , j, k ∈ {1, 2, 3, 4, 5}.

(5.9)

Furthermore, these normalized eigenfunctions ej(ζ) can be written in the

form:

ej(ζ) = e0j (ζ
2) + iζe1j(ζ

2), e0j (0) = Ej ,

where e0j (x) and e1j (x) are L
2
ξ-valued analytic functions in x ∈ R.
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Proof. (5.6) is already given in Lemma 2.5. We now prove that ρj(ζ)

are real analytic function in ǫ = iζ and (5.9).

Replace ρ(ζ) by ǫγ(ζ) = iζγ(ζ). We rewrite the eigenvalue problem

(5.5) in the following form

(−ǫξ1 + L)e = ǫγe, (5.10)

and solve γ(ζ).

Apply Macro-Micro decomposition to (5.10) and e:

− P0ξ
1(P0e+ P1e) = γP0e, (5.11)

P1(−ǫξ1(P0e+ P1e) + LP1e) = ǫγP1e. (5.12)

From (5.12), one can express P1e as

P1e = (L− ǫP1ξ
1 − ǫγ)−1(ǫP1ξ

1P0e). (5.13)

Then substitute (5.13) into (5.11) to yield

[
−P0ξ

1(1 + (L− ǫP1ξ
1 − ǫγ)−1(ǫP1ξ

1))− γ
]
P0e = 0. (5.14)

Since dim(P0L
2
ξ) = 5, one can represent P0e in (5.14) as a vector in R5

and
[
−P0ξ

1(1 + (L− ǫP1ξ
1 − ǫγ)−1(ǫP1ξ

1))− γ
]
can be identified as a 5×5

analytic matrix in both η and ρ. Thus, in order to have a nontrivial solution

P0e to (5.14) one needs to impose that

det
[
−P0ξ

1(1 + (L− ǫP1ξ
1 − ǫγ)−1(ǫP1ξ

1))− γ
]
5×5

= 0. (5.15)

Since L is a symmetric operator, both (L− ǫP1ξ
1 − ǫγ) and P1(L− ǫP1ξ

1 −
ǫγ)−1P1 are symmetric operators. Now, we consider

(
χj,−P0ξ

1(1 + (L− ǫP1ξ
1 − ǫγ)−1(ǫP1ξ

1))χk

)

=
(
χj,−P0ξ

1χk

)
+
(
χj ,−P0ξ

1(L− ǫP1ξ
1 − ǫγ)−1(ǫP1ξ

1)χk

)

= −
(
P0ξ

1χj, χk

)
−
(
P1ξ

1χj , (L− ǫP1ξ
1 − ǫγ)−1(ǫP1ξ

1)χk

)

= −
(
P0ξ

1χj, χk

)
−
(
(L− ǫP1ξ

1 − ǫγ)−1P1ξ
1χj , (ǫP1ξ

1)χk

)

= −
(
P0ξ

1χj, χk

)
− ǫ
(
P0ξ

1(L− ǫP1ξ
1 − ǫγ)−1P1ξ

1χj , χk

)

=
(
χk,−P0ξ

1(1 + (L− ǫP1ξ
1 − ǫγ)−1(ǫP1ξ

1))χj

)
(5.16)
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Hence [−P0ξ
1(1 + (L− ǫP1ξ

1 − ǫγ)−1(ǫP1ξ
1))]5×5 is a symmetric matrix.

Next, we denote by Λj(ǫ, γ), j = 1, . . . , 5, the five eigenvalues of the

matrix [−P0ξ
1(1 + (L− ǫP1ξ

1 − ǫγ)−1(ǫP1ξ
1))]5×5:




det
([

−P0ξ
1(1 + (L− ǫP1ξ

1 − ǫγ)−1(ǫP1ξ
1))
]
5×5

− Λj(ǫ, γ)id
)
= 0,([

−P0ξ
1(1 + (L− ǫP1ξ

1 − ǫγ)−1(ǫP1ξ
1))
]
5×5

− Λj(ǫ, γ)id
)∣∣∣

ǫ=0
Ej = 0,

(5.17)

where id is a 5× 5 identity matrix.

Thus

Π5
j=1Λj(ǫ, λ) = det

([
−P0ξ

1(1 + (L− ǫP1ξ
1 − ǫγ)−1(ǫP1ξ

1))
]
5×5

)

is analytic in η and ǫ. Note that there is the five multiplicity of zero eigen-

values at η = 0 for the operator L. Even as we factor out ǫ = iζ, there is still

the three multiplicity. Thus one cannot conclude directly the analyticity of

each of the eigenvalues as claimed in the lemma. Our procedure below is to

design a cascading of reducing the problem to a 3 × 3 matrix with distinct

eigenvalues corresponding to a one-dimensional waves.

By symmetry, (5.17), we have

Λ4 ≡ Λ5. (5.18)

Now, we introduce 1-D and 2-D macro-micro decomposition (P1D
0 ,P1D

1 ) and

(P2D
0 ,P2D

1 ) for functions g satisfying (χ2, g) = (χ3, g) = 0:

{
P1D
0 g = (χ0, g)χ0 + (χ1, g)χ1 + (χ4, g)χ4

P1D
1 g = g− P1D

0 g;

and for (χ3, g) = 0,

{
P2D
0 g = (χ0, g)χ0 + (χ1, g)χ1 + (χ2, g)χ2 + (χ4, g)χ4

P2D
1 g = g − P2D

0 g.

Through the above two macro-micro decompositions, one sees that Λ1(ǫ, γ),

Λ2(ǫ, γ), Λ3(ǫ, ǫ) are the eigenvalues of a 3× 3 matrix:

[
−P1D

0 ξ1(1 + (L− ǫP1D
1 ξ1 − ǫγ)−1(ǫP1D

1 ξ1))
]
3×3

.
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From (5.16), we conclude that the above the matrix is real and symmetric in

(ǫ, γ). This 3 × 3 matrix has 3 distinct eigenvalues for (ǫ, γ) around origin.

Thus the three eigenvalues are analytic in (ǫ, γ) around origin. Hence,

Λj(ǫ, γ) are analytic function in (ǫ, γ) around origin for j = 1, 2, 3. (5.19)

Similarly, Λ1, · · · , Λ4 are eigenvalues of the 4× 4 matrix

[
−P2D

0 ξ1(1 + (L− ǫP2D
1 ξ1 − ǫγ)−1(ǫP2D

1 ξ1))
]
4×4

,

and so

Π4
j=1Λj(ǫ, γ) = det

([
−P2D

0 ξ1(1 + (L− ǫP2D
1 ξ1 − ǫγ)−1(ǫP2D

1 ξ1))
]
4×4

)

(5.20)

is analytic in (ǫ, γ). Thus, from (5.20) and (5.19)

Λ4(ǫ, γ) =
det(

[
−P2D

0 ξ1(1 + (L− ǫP2D
1 ξ1 − ǫγ)−1(ǫP2D

1 ξ1))
]
4×4

)

det(
[
−P1D

0 ξ1(1 + (L− ǫP1D
1 ξ1 − ǫγ)−1(ǫP1D

1 ξ1))
]
3×3

)

is analytic in (ǫ, γ). From (5.18) we have

Λj(ǫ, γ) are real analytic in (ǫ, γ) around origin for j = 1, . . . , 5.

With the five eigenvalues Λj(ǫ, γ), j = 1, . . . , 5,, the problem (5.15) have

solutions given by the implicit relations

Λj(ǫ, γj) = γj , for j = 1, . . . , 5.

Thus the real analyticity of Λj(ǫ, γj) yields that γj(ζ) ≡ ρj(ζ)
iζ is a real ana-

lytic function in ǫ ≡ iζ. This proves (5.7) and (5.8).

The proof of (5.9) is a simple consequence of the eigenvector vj(ǫ, γ) of

the operator −P0ξ
1(1 + (L − ǫP1ξ

1 − ǫγ)−1(ǫP1ξ
1P0)) being normalized as

(vj,Ej) = 1 and its analyticity in the variables (ǫ, γ), (ǫ ≡ iζ). Then, the

eigenvector ej(ζ) is given by





ēj(ζ) ≡ (1 + (L− iζP1ξ
1 − iζγj(ζ))

−1(iζP1ξ
1P0))vj(iζ, γj(ζ)),

ej(ζ) ≡
ēj(ζ)

(ēj(ζ), ēj(ζ))1/2
.
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Finally the orthogonal property is a simple consequence of a symmetry of

the operator −iζξ1 + L. �

5.3. 3-D spectrum

The eigenvalues and the eigenvectors given in Lemma 5.4 can be related

by the following lemmas.

Lemma 5.5. For |ζ| sufficiently small and ζ ∈ R,

{
ρ3(ζ) = ρ1(−ζ),
Ie3(−ζ) = e1(ζ),

where I ∈ SO(3),

I(ξ1, ξ2, ξ3) ≡ (−ξ1, ξ2, ξ3), I2 = Identity.

Proof. Consider the identity

I(−iζξ1 + L)IIe1 = ρ1(ζ)Ie1.

From Corollary 5.2 and that Iξ1I = −ξ1,

(iζξ1 + L)Ie1 = ρ1Ie1.

From the property Ie1(0) = E3, this concludes that

{
ρ1(ζ) = ρ3(−ζ),
Ie1(ζ) = e3(−ζ).

The second identity of the lemma then follows from that J2 = Identity. �

Lemma 5.6. For ζ ∈ R, the eigenvalues ρ2(ζ), ρ4(ζ), and ρ5(ζ) satisfy





ρ2(ζ) = A2ζ
2(1 + J2(ζ

2)) ∈ R,

ρ4(ζ) = ρ5(ζ) = A4ζ
2(1 + J4(ζ

2)) ∈ R,

J2(0) = J4(0) = 0,
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where J2(z) and J4(z) are real analytic functions in z.

Proof. The proof for the above two identities are similar, we only prove

the first one.

First, we take the complex conjugate of the equation for e2(ζ):

[iζ̄ξ1 + L]ē2(ζ) = ρ̄2(ζ)ē2(ζ).

Since ē2(0) = E2, this yields that ē2(ζ) is the second eigenvector for the

iζ̄ξ1 + L. Thus, its eigenvalue is ρ̄2(ζ); and it follows that

ρ2(−ζ̄) = ρ̄2(ζ). (5.21)

Now, substitute (5.21) into the expansion series (5.7) to result in

i(−ζ̄)
∞∑

k=0

(−iζ̄)kρ2,k =
(
iζ

∞∑

k=0

(iζ)kρ2,k

)
.

With the property that ρ2,k ∈ R for all k, one concludes that

0 = iζ

∞∑

j=0

(iζ)2jρ2,2j for |ζ| ≪ 1.

Thus,

ρ2,2j = 0 for all j,

ρ2(ζ) = iζ
∑

k=0

(iζ)2k+1ρ2,2k+1 = ζ2
∑

k=0

ρ2,2k+1(−1)k+1ζ2k

≡ A2ζ
2(1 + J2(ζ

2)) ∈ R for ζ ∈ R. �

Corollary 5.7. For ζ ∈ R, the spectrum property of ρj(η) in (5.8) can

be expressed as 



ρ1(ζ) = iζA1
1(ζ

2)− A2
1(ζ

2),

ρ2(ζ) = −A2
2(ζ

2),

ρ3(ζ) = −iζA1
1(ζ

2)− A2
1(ζ

2),

ρ4(ζ) = ρ5(ζ) = −A2
4(ζ

2),

(5.22)
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where Ak
j (x) are real analytic functions and satisfy





A1
1(0) = c, A2

1(0) = A2
4(0) = 0,

d

dx
A2
1(0) = A1 > 0, A2

1(x) = A1x(1 + J1(x))

d

dx
A2
2(0) = A2 > 0, A2

2(x) = A2x(1 + J2(x));

d

dx
A2
4(0) = A4 > 0, A2

4(x) = A4x(1 + J4(x)),

(5.23)

where Jj(0) = 0 for j = 1, 2, 4. Furthermore,

Aj = −(P1ξ
1Ej , L

−1P1ξ
1Ej) for j = 1, . . . , 5.

Let ej(ζ) be the j-th eigenvector of the operator −iζξ1 + L, (−iζξ1 +
L)ej(ζ) = ρj(ζ)ej(ζ). Set





ej(ζ) = aj(ζ) + bj(ζ),

aj(ζ) ≡ P0ej(ζ), bj(ζ) ≡ P1ej(ζ),

aj(ζ) ≡ a1j(ζ)χ0 + a2jχ1(ζ) + a3j(ζ)χ4,

akj (ζ) = akj,0(ζ
2) + iζakj,1(ζ

2).

(5.24)

Here, the functions akj,l(x) are real-valued analytic function in ζ ∈ R.

Corollary 5.8. The macroscopic components e1(ζ) and e3(ζ) satisfy





a1(ζ) =
(
a11,0(ζ

2) + iζa11,1(ζ
2)
)
χ0 +

(
a21,0(ζ

2) + iζa21,1(ζ
2)
)
χ1

+
(
a31,0(ζ

2) + iζa31,1(ζ
2)
)
χ4,

a2(ζ) = a12,0(ζ
2)χ0 + iζa22,1(ζ

2)χ1 + a32,0(ζ
2)χ4,

a3(ζ) =
(
a11,0(ζ

2)− iζa11,1(ζ
2)
)
χ0 +

(
−a21,0(ζ

2) + iζa21,1(ζ
2)
)
χ1

+
(
a31,0(ζ

2)− iζa31,1(ζ
2)
)
χ4.

(5.25)

We finally consider the eigenvalue-eigenvector (λ(η), ψ(η)) problem for

the general three dimensional waves:

(−iη · ξ + L)ψ = λψ for η ∈ R
3. (5.26)
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For a given η ∈ R3, let g ∈ SO(3) be a transformation which maps η/|η| to
(1, 0, 0). We then have

g−1(−iη · ξ + L)g = −i|η|ξ1 + L. (5.27)

Thus, from Lemmas 5.4 and 5.5, and (5.27) we have the following eigenvalues

and eigenvectors for (5.26):

(−iη · ξ + L)ψj = ρj(|η|)ψj ,




σj(η) = ρj(|η|) for j = 1, . . . , 5,

ψ1(η) = ge1(|η|),
ψ2(η) = ge2(|η|),
ψ3(η) = gIe1(−|η|),
ψ4(η) = ge4(|η|),
ψ5(η) = ge5(|η|).

(5.28)

Apply the macro-micro decomposition to ψj :

{
ψj(η) = αj(η) + βj(η),

αj ≡ P0ψj , βj ≡ P1ψj.

The above expressions relate the eigenvalues and eigenfunctions of 3-D

problem to those of 1-D problem. We still need to clarify some analytic

property of ψj(η) since the group action g does give the analytic property

explicitly.

In (5.28), we have a basic relation between 1-D eigenfunctions ej(|ζ|)
and 3-D eigenfunctions ψj(η). The following lemma make use further details

structure of the 1-D eigenfunctions to obtain a closed form expression of the

eigenfunction ψj(η).

Lemma 5.9. For η ∈ R3 with |η| ≪ 1, the eigenvector ψj(η) of −iη·ξ+L
satisfies, for j = 1, 2, 3,

ψj(η) =
(
1 + [L− iP1η · ξ − ρj(|η|)]−1 iP1η · ξ

)

×
(
a1j(|η|)χ0 + a2j(|η|)

3∑

l=1

ηlχl

|η| + a3j(|η|)χ4

)
. (5.29)
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Proof. First, we apply the macro-micro decomposition to (−iη · ξ +

L)ψj = ρj(|η|)φj :

− iP0η · ξ (αj + βj) = ρj(|η|)αj ,

− iP1η · ξ(αj + βj) + Lβj = ρj(|η|)βj . (5.30)

From (5.30), we have

βj = [L− iP1η · ξ − ρ(|η|)]−1P1i(η · ξ)αj . (5.31)

Next, from (5.28) we have

ψj(η) = gej(|η|) = g(aj(|η|) + bj(|η|) = gaj(|η|) + gbj(|η|). (5.32)

Since the SO(3) group action preserves the macro-micro structure, we have

from (5.32),

αj(η) = P0ψj(η) = gaj(|η|). (5.33)

From Corollary 5.4, we have from the expressions in (5.24) and (5.33) that

αj(η) = a1j (|η|)χ0 + a2j(|η|)
3∑

j=1

ηjχj

|η| + aj(|η|)χ4. (5.34)

Then, we substitute (5.34) into (5.31) to obtain βj ; and combine the result

with (5.34) to yield ψj(η). This completes the proof of the lemma. �

Corollary 5.10.





α1(η)=
(
a11,0(|η|2)+i|η|a11,0(|η|2)

)
χ0+

(
a21,0(|η|2)+i|η|a21,0(|η|2)

) 3∑

j=1

ηjχj

|η|

+
(
a31,0(|η|2) + i|η|a31,0(|η|2)

)
χ4,

α3(η)=
(
a11,0(|η|2)−i|η|a11,0(|η|2)

)
χ0+

(
−a21,0(|η|2)+i|η|a21,0(|η|2)

) 3∑

j=1

ηjχj

|η|

+
(
a31,0(|η|2)−i|η|a31,0(|η|2)

)
χ4.

(5.35)
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This corollary is a consequence of (5.34), and (5.28), (5.4).

5.4. Pairings

We will encounter different types of integrations such as contour integral,

two dimensional double integral, and three dimensional triple integral. We

will explicitly specify them by
∮
,
∫∫

, and
∫∫∫

to avoid confusion. For each

given η ∈ R3, one can define an eigen-projections Πη to the space spanned

by {ψj(η)}5j=1 and its complement Π⊥
η as follows:

C

R
e

g
io

n
C

o
n

ta
in

in
g

th
e

e
ss

e
n

ti
a

ls
p

e
c

tr
u

m

Im(z) = −c

Im(z) = c

Γ : The path for the contour integral

Γ

Γ

c → ∞

∪
|η |<

κ 0

2

σ (η)

Re(z) = −2κ1 Re(z)→ ∞

c → ∞




Πηh ≡ 1

2πi

∮

Γ
[z + iξ · η − L]−1h dz,

Π⊥
η ≡ 1−Πη.

(5.36)

Figure A

Here the path Γ encloses the point spectrum curves σ(η), |η| ≤ κ0
2 , as

illustrated in Figure A. Thus, the operator [z + iη · ξ −L] is invertible when

z ∈ Γ and |η| ≤ κ0
2 . With this, the operator GL(x, t) is decomposed into:

GL(x, t) =
1

(2π)3

∫∫∫

|η|<κ0
2

eixη+(−iξ·η+L)t(Πη +Π⊥
η )dη

≡ GL;0(x, t) +GL;⊥(x, t),

where the triple integral is over {|η| ≤ κ0
2 } ⊂ R3. When |η| ≤ κ0

2 , the project
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operator Πη can be represented explicitly by the eigenvectors of −iξ1η + L.

Πηh =

5∑

j=1

ψj(η) ⊗ 〈ψj(η)| h, (5.37)

where the notation ψj(η) ⊗ 〈ψj(η)| is an operator on L2
ξ defined as follows:

For any j, k ∈ L2
ξ ,

{
j⊗ 〈k| : l ∈ L2

ξ 7−→ j⊗ 〈k| l ∈ L2
ξ ,

j⊗ 〈k| l ≡ (k, l) j.

From (5.37), one also has that

ψ4 ⊗ 〈ψ4(η)|+ ψ5 ⊗ 〈ψ4(η)| = Πη −
3∑

j=1

ψj ⊗ 〈ψj(η)| . (5.38)

With this eigen-projection Πη, one has a rather explicit expression for GL;0

(x, t) and GL;⊥(x, t):





GL;0(x, t) =
1

(2π)3

5∑

j=1

∫∫∫

|η|<κ0
2

eix·η+σj(η)tψj(η)⊗ 〈ψj(η)| dη

GL;⊥(x, t) =
1

(2π)3

∫∫∫

|η|<κ0
2

eix·η+(−iξ1η+L)tΠ⊥
η dη,

Gt
L;0h(x) ≡

∫∫∫

R3

GL;0(x− y, t)h(y)dy,

Gt
L;⊥h(x) ≡

∫∫∫

R3

GL;⊥(x− y, t)h(y)dy.

(5.39)

Applying the spectrum gap, Lemma 2.4, of the operator (−iξ · η + L)

when |η| ≪ 1, there exists κ2 > 0 and positive constant C such that, for

|η| ≤ κ2/2,

‖e(iη1η+L)tΠ⊥
η k‖L2

ξ
≤ Ce−κ2t‖k‖L2

ξ
for any k ∈ L2

ξ . (5.40)

Since the Fourier transform of the operator Gt
L;⊥ has compact support inside

|η| ≤ κ0/2, we have from (5.40) that there exists C > 0 such that for any



44 TAI-PING LIU AND SHIH-HSIEN YU [March

g ∈ L2
x(L

2
ξ),

‖Gt
L;⊥g‖L∞

x (L2
ξ)

≤ Ce−t/C‖g‖L2
x(L

2
ξ)
. (5.41)

From (5.28), Lemmas 5.5, and 5.6 we have the pairings of the eigenval-

ues σj(η). These pairings and (5.38) leads to the pairing structure in the

representation of GL;0(x, t) as follows

GL;0(x, t) =

∫∫∫

|η|<κ0/2

eix·η
[
eσ1(η)tψ1(η)⊗ 〈ψ1(η)|+eσ3(−η)tψ3(η) ⊗ 〈ψ3(η)|

]
dη

+

∫∫∫

|η|<κ0/2

eix·ηeσ2(η)tψ2(η)⊗ 〈ψ2(η)| dη

+

∫∫∫

|η|<κ0/2

eix·ηeσ4(η)t
[
Πη −

3∑

j=1

ψj(η)⊗ 〈ψj(η)|
]
dη. (5.42)

We rearrange the pairings in (5.42) to define the following pairings:

Huygens Pairing

Ĥ(η, t) ≡
∑

j∈{1,3}
eσj(η)tψj(η) ⊗ 〈ψj(η)|−

∑

j∈{1,3}
eσj(η)tPm

0 ψj(η)⊗ 〈Pm
0 ψj(η)|

Contact Pairing

Ĉ(η, t) ≡ eσ2(η)tψ2(η) ⊗ 〈ψ2(η)|
Rotational Pairing

R̂n(η, t) ≡ eσ4(η)t
(
Πη−

3∑

j=1

ψj(η) ⊗ 〈ψj(η)|+
∑

j∈{1,3}
Pm
0 ψj(η)⊗ 〈Pm

0 ψj(η)|
)

Riesz Pairings

P̂R(η, t) ≡
∑

j∈{1,3}
(eσj (η)t − eσ4(η)t)Pm

0 ψj(η) ⊗ 〈Pm
0 ψj(η)| ,

P̂R(η, t) = P̂R1(η, t) + P̂R2(η, t),

P̂R1(η, t) ≡
∑

j∈{1,3}
eσj(η)tPm

0 ψj(η)⊗ 〈Pm
0 ψj(η)|

−eA2
1(|η|2)t

∑
j∈{1,3} P

m
0 ψj(η)⊗ 〈Pm

0 ψj(η)| ,
P̂R2(η, t) ≡ (eA

2
1(|η|2)t − eσ4(η)t)

∑

j∈{1,3}
Pm
0 ψj(η)⊗ 〈Pm

0 ψj(η)| ,

(5.43)

Here, Pm
0 is the momentum component of macro projection, (2.6). Thus we
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have the decomposition of the long waves in the Green’s function into the

Huygens wave H, contact wave C and others:

GL;0 = H+ C+R+PR.

Here, as understood before, the Fourier inverse is defined for long waves part,

for instance,

H(x, t) ≡ 1

(2π)3

∫∫∫

|η|<κ0/2
eiη·xĤ(η, t)dη.

-800

H
C

Rn

R
3

O(1) 1+ | x | ct O(1) 1+ tt

t

R
3

R

y =
1
(x, )

PR(x, )
L
2 1

(x, )

ct

tt

t

Remark 5.11. The above pairings are designed with two things in

mind. On the one hand, waves of different physical nature are separated.

Thus, in the Huygens pairing the momentum component
∑

j∈{1,3} e
σj (η)tPm

0

ψj(η) ⊗ 〈Pm
0 ψj(η)| is excluded and only the pressure component is kept.

This physical consideration turns out to be natural analytically. In fact, the

pairings make it possible to study the crucial analyticity properties of each

of the pairings. This prepares us for the application of complex analytic

techniques and the Kirchhoff formulas as stated in Section 3. The long wave

structure of those pairings are illustrated in the figures above and will be

justified in the next two sections.

The inverse Fourier transformation H of Huygens Pairing Ĥ is an iso-

tropic wave. It is concentrated around the surface of the acoustic cone. Its

inviscid version is the Huygens principle in the wave equation. The other

two pairings Ĉ and R̂n carry waves along and perpendicular to macroscopic

velocity direction, respectively. Thus, they are concentrated around the
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center of the acoustic cone. They are realized as contact waves and shear

waves in acoustic equation. The Riesz pairing P̂R is due to the coupling

of isotropic waves and shear waves within a cone. Its disturbance fills the

cone with algebraic rates. It should be noted that in planar wave equation

there is no such pairing since there is no shear waves. The Riesz pairing is

so named because the pairing P̂R(η, t) contains the factors ηjηk/|η|2, which
are the Fourier transform of Riesz operators. For the corresponding invscid

waves see (3.5)−(3.7).

6. Huygens Waves

The Huygens pairing Ĥ gives rise to Huygens waves H corresponding to

the pressure waves for the wave equation (3.5) in the Euler equations. This

will be analyzed by making uses of the Kirchhoff’s formula, Theorem 3.1,

and the related subsequent Lemmas 3.2, 3.3 and 3.4. The essential element

is the analyticity property in the following lemma.

Lemma 6.1. The Huygens pairing Ĥ(η, t) can be written in the follow-

ing form

Ĥ(η, t) = e−A2
1(|η|2)t

[
cos(A1

1(|η|2)|η|t)E1(η) +
sin(A1

1(|η|2)|η|t)
|η| E2(η)

]
, (6.1)

where E1(η) and E2(η) are analytic functions in η with the properties

E1(0) 6= 0, E2(0) = 0. (6.2)

Proof. From (5.22) and (5.28),

{
σ1(η) = i|η|A1

1(|η|2)− A2
1(|η|2),

σ3(η) = − i|η|A1
1(|η|2)− A2

1(|η|2).
(6.3)

Then, from (6.3) and (5.35),

I1(η, t) ≡ eσ1(η)t (α1(η)⊗ 〈α1(η)| − Pm
0 α1(η)⊗ 〈Pm

0 α1(η)|)
+eσ3(η)t (α3(η) ⊗ 〈α3(η)| − Pm

0 α3(η) ⊗ 〈Pm
0 α3(η)|)
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= e−A2
1(|η|2)t[

(
cos(A1

1(|η|2)|η|t) + i sin(A1
1(|η|2)|η|t)

)

× (α1(η)⊗ 〈α1(η)| − Pm
0 α1(η)⊗ 〈Pm

0 α1(η)|)

+
(
cos(A1

1(|η|2)|η|t)− i sin(A1
1(|η|2)|η|t)

)

× (α3(η)⊗ 〈α3(η)| − Pm
0 α3(η)⊗ 〈Pm

0 α3(η)|)]. (6.4)

Now, from (5.35) there are analytic functions A , B, C , D in η ∈ R3 so

that α1(η) and α3(η) are related by





α1(η) = A (η) + |η|
(
B(η) +

C (η)

|η|2
)
,

α3(η) = A (η)− |η|
(
B(η) +

C (η)

|η|2
)
,

Pm
0 α1(η) = D(η) +

C (η)

|η| ,

Pm
0 α3(η) = D(η)− C (η)

|η| .

(6.5)

Here, the analytic function C (η) contains a factor η · ξ. Thus,

C (0) = 0. (6.6)

Then, we substitute (6.5) into (6.4) to result in

I1(η, t)=e
−A2

1(|η|2)t cos(A1
1(|η|2)|η|t)O1(η)+e

−A2
1(|η|2)t sin(A

1
1(|η|2)|η|t)
|η| O2(η),

(6.7)

where both O1(η) and O2(η) are analytic functions in η ∈ R3 determined by

the analytic functions A , B, C , and D :





O1(η) = 2A (η) ⊗ 〈A (η)|+ 2B(η)⊗ 〈C (η)| + 2C (η)⊗ 〈B(η)|
−2D(η)⊗ 〈D(η)| + |η|22B(η)⊗ 〈B(η)| ,

O2(η) = 2A (η) ⊗ 〈C (η)|+ 2C (η)⊗ 〈A (η)| − 2C (η)⊗ 〈D(η)|
−2D(η)⊗ 〈C (η)| + 2|η|2(A (η)⊗ 〈B(η)|+ 2B(η)⊗ 〈A (η)|).

From this and (6.6), we have

O2(0) = 0. (6.8)
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Next, we consider

I2(η, t) ≡ eσ1(η)t (α1(η)⊗ 〈β1(η)| + β1(η)⊗ 〈α1(η)|)
+eσ3(η)t (α3(η)⊗ 〈β3(η)| + β3(η) ⊗ 〈α3(η)|) . (6.9)

From (5.31) and (5.22), β1(η) and β3(η) are related by

{
β1(η) = (L− iP1η · ξ − i|η|A1

1(|η|2) + A2
1(|η|2))−1P1iη · ξ α1,

β3(η) = (L− iP1η · ξ + i|η|A1
1(|η|2) + A2

1(|η|2))−1P1iη · ξ α3.
(6.10)

Here, L−iP1η·ξ, i|η|A1
1(|η|2), and A2

1(|η|2) are commutative; and the operator

L is bounded from below; and A2
1(0) = 0. With these properties, we can

expand the operators (L− iP1η ·ξ− i|η|A1
1(|η|2)+A2

1(|η|2))−1 and (L− iP1η ·
ξ + i|η|A1

1(|η|2) + A2
1(|η|2))−1 when |η| ≪ 1 as follows

1

(L− iP1η · ξ ∓ i|η|A1
1(|η|2) + A2

1(|η|2))

=
1

(L− iP1η · ξ + A2
1(|η|2))(1 +

∓i|η|A1
1(|η|2)

(L−iP1η·ξ+A2
1(|η|2))

)

=
1

(L− iP1η · ξ + A2
1(|η|2))

∞∑

j=0

( ±i|η|A1
1(|η|2)

(L− iP1η · ξ + A2
1(|η|2))

)j

=
1± i|η|A1

1(|η|2)
(L−iP1η·ξ+A2

1(|η|2))
(L− iP1η · ξ + A2

1(|η|2))

∞∑

j=0

(−1)j
( |η|2A1

1(|η|2)2
(L− iP1η · ξ + A2

1(|η|2))2
)j

=
1± i|η|A1

1(|η|2)
(L−iP1η·ξ+A2

1(|η|2))

(L− iP1η · ξ + A2
1(|η|2))(1 +

|η|2A2
1(|η|2)2

(L−iP1η·ξ+A2
1(|η|2))2

)

≡ M1(η)± |η|M2(η). (6.11)

Both M1(η) and M2(η) are operators analytic in η ∈ R3.

Now, combine (6.10), (6.5), and (6.11) to conclude

{
β1(η) = A1(η) + |η|B1(η),

β3(η) = A1(η)− |η|B1(η),
(6.12)

where both A1(η) and B1(η) are analytic functions in η ∈ R3. Substitute
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(6.5) and (6.12) into (6.9) to yield that

I2(η, t)=e
−A2

1(|η|2)t cos(A1
1(|η|2)|η|t)O3(η)+e

−A2
1(|η|2)t sin(A

1
1(|η|2)|η|t)
|η| O4(η),

where both O3(η) and O4(η) are analytic functions in η ∈ R3.

Next, for

I3(η, t) ≡ eσ1(η)tβ1(η) ⊗ 〈β1(η)|+ eσ3(η)tβ3(η)⊗ 〈β3(η)| ,

use (6.12) and the argument leading to (6.7) to conclude that

I3(η, t)=e
−A2

1(|η|2)t cos(A1
1(|η|2)|η|t)O5(η)+e

−A2
1(|η|2)t sin(A

1
1(|η|2)|η|t)
|η| O6(η),

(6.13)

where O4 and O6 are analytic functions in η ∈ R3. (6.1) follows from (6.7),

(6.9), and (6.13).

Both pairings I2 and I3 contains microscopic components β1 and β3.

From (6.10), both β1 and β3 contain η · ξ factors. Thus,

I2(0, t) = I3(0, t) = 0.

This and (6.8) implies that E2(0) = 0, and (6.4) is proved. �

Before applying the inverse Fourier transformation to the pressure Huy-

gens pairing, we need to analyze the phase component eiIm(ρ1(|η|)t) in the

pairing. Expand

Im(ρ1(|η|)t) = |η|A1
1(|η|2)t = c|η|t+ |η|H (|η|2)t,

where H is an analytic function in |η|2 with

H (0) = 0.

We have the following identity to split wave with velocity c:

{
cos(|η|A1

1(|η|2)t)=cos(c|η|t) cos(|η|H (|η|2)t)−sin(c|η|t) sin(|η|H (|η|2)t),
sin(|η|A1

1(|η|2)t)=sin(c|η|t) cos(|η|H (|η|2)t)+cos(c|η|t) sin(|η|H (|η|2)t).
(6.14)
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Lemma 6.2. For any analytic functions H (ζ) in ζ ∈ R, both functions

cos(|η|H (|η|2)t) and sin(|η|H (|η|2)t)/|η| are analytic in η ∈ R3.

Proof. Consider the power series expansions of both cos(|η|H (|η|2)t)
and sin(|η|H (|η|2)t)/|η|:





cos(|η|H (|η|2)t) = 1− |η|2H (|η|2)2t2
2!

+
|η|4H (|η|2)4t4

4!

−|η|6H (|η|2)6t6
6!

+ · · · ,
sin(|η|H (|η|2)t)

|η| = 1− |η|2H (|η|2)2t2
3!

+
|η|4H (|η|2)4t4

5!

−|η|6H (|η|2)6t6
7!

+ · · · .

(6.15)

The RHS’s of (6.15) are analytic function in |η|2. Thus, they are analytic in

η ∈ R3. �

Lemma 6.3. For any given Mach constant M > 1, there exists C > 0

such that the Huygens wave H(x, t) satisfies

‖H(x, t)‖L2
ξ
=
∥∥∥ 1

(2π)3

∫∫∫

|η|≤κ0/2
eix·ηĤ(η, t)dη

∥∥∥
L2
ξ

≤ C
[e− (|x|−ct)2

Ct

(1 + t)2
+ e−t/C

]
for |x| ≤ M ct. (6.16)

Proof. With (6.14), one has the following

∫∫∫

|η|<κ0/2
eix·ηĤ(η, t)dη

=

∫∫∫

|η|<κ0/2
eix·ηe−A2

1(|η|2)t cos(c|η|t)

×
(
cos(|η|H (|η|2)t)E1(η) +

sin(|η|H (|η|2)t)
|η| E2(η)

)
dη

+

∫∫∫

|η|<κ0/2
eix·ηe−A2

1(|η|2)t sin(c|η|t)
|η|

×
(
− sin(|η|H (|η|2)t)|η|E1(η) + cos(|η|H (|η|2)t)E2(η)

)
dη

= wt ∗ I1 + w ∗ I2,
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where





I1(x, t) ≡
∫∫∫

|η|≤κ0/2

eix·ηe−A2
1(|η|2)t

×
(
cos(|η|H (|η|2)t)E1(η) +

sin(|η|H (|η|2)t)
|η| E2(η)

)
dη,

I2(x, t) ≡
∫∫∫

|η|≤κ0/2

eix·ηe−A2
1(|η|2)t

×
(
− sin(|η|H (|η|2)t)|η|E1(η) + cos(|η|H (|η|2)t)E2(η)

)
dη.

(6.17)

Thus, from the Kirchhoff formula one only needs the data of I1(x, t),

∇xI1(x, t), I2(x, t), and∇xI2(x, t) with |x| ≤ (M+1)ct in order to determine
∫∫∫

|η|<κ0/2
eix·ηH(η, t)dη for |x| ≤ M ct.

The analysis for I1(x, t) and I2(x, t) with |x| ≤ (M +1)ct are identical;

we estimate I1(x, t) only. For given x ∈ R3, we can find a element gx ∈ SO(3)

so that gx x
|x| = (1, 0, 0). We have (gx)−1(x · η)gx = |x|η1. With the change

of coordinates, the functions E1 and E2 remain analytic in η ∈ R3. Without

ambiguity, we still use Ei to denote (gx)−1Eig
x:

I1(x, t)=

∫∫∫

|η|<κ0/2

ei|x|η
1
e−A2

1(|η|2)t
[
cos(|η|H (|η|2)t)E1+

sin(|η|H (|η|2)t)
|η| E2

]
dη.

(6.18)

The integration is divided into two regions:

I1(x, t) =
( ∫∫∫

B

+

∫∫∫

{|η|≤κ0/2}∩Bc

)
ei|x|η

1−A2
1(|η|2)t

×
[
cos(|η|H (|η|2)t)E1 +

sin(|η|H (|η|2)t)
|η| E2

]
dη

≡ I11 (x, t) + I21 (x, t).

where

B ≡
[
− κ0

2
√
2
,
κ0

2
√
2

]
×
[
− κ0

2
√
2
,
κ0

2
√
2

]
×
[
− κ0

2
√
2
,
κ0

2
√
2

]
.

For η ∈ {|η| ≤ κ0/2} ∩ Bc, we have |η| ≥ κ0/
√
8, and so there exists C > 0
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such that

|I21 (x, t)| < Ce−t/C for x ∈ R
3. (6.19)

To analyze I11 (x, t) we use complex analytic technique for (x, t) in a finite

Mach number region. This can be done because, by Lemma 6.2, the function

e−A2
1(|η|2)t

[
cos(|η|H (|η|2)t)E1 +

sin(|η|H (|η|2)t)
|η| E2

]
is analytic in η. Use (5.23)

to write A2
1(|η|2) = A1|η|2(1 + J1(|η|2), and so

I11 (x, t) =

∫∫∫

B

e
− |x|2

4tA1 e
−A1(η1−i |x|

2A1t
)2t−A1((η2)2+(η3)2)t+o(1)|η|2t

×
[
cos(|η|H (|η|2)t)E1 +

sin(|η|H (|η|2)t)
|η| E2

]
dη

= e
− |x|2

4tA1

∫∫

B2

∫

Γ(− κ0
2
√

2
,

κ0
2
√

2
,

|x|
tM0

)

e
−A1(η1−i |x|

2A1t
)2t−A1((η2)2+(η3)2)t+o(1)|η|2t

×
[
cos(|η|H (|η|2)t)E1 +

sin(|η|H (|η|2)t)
|η| E2

]
dη1dη2dη3,

where

B2 ≡
{
(η2, η3) ∈ R

2 : |η2|, |η3| ≤ κ0

2
√
2

}

and the contour Γ(−κ0

2
√
2
, κ0

2
√
2
, c) is chosen with a parameter c, Figure B:

Γ(a,b,c)
Γ
2
(a,b,c)

Im(z) = c

Γ
3
(a,b,c)

Re(z) = b

R

Γ
1
(a,b,c)

Re(z) = a

Figure B

Γ(a, b, c) = Γ1(a, b, c) ∪ Γ2(a, b, c) ∪ Γ3(a, b, c),

Γ1(a, b, c) ≡ {η|Re(η) = a, Im(η) is from 0 to c },
Γ2(a, b, c) ≡ {η|Im(η) = c, Re(η) is from a to b },
Γ3(a, b, c) ≡ {η|Re(η) = b, Im(η) is from c to 0 }.
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On the contour Γ(− κ0

2
√
2
, κ0

2
√
2
, |x|
tM0

) one has the growth rate of

∣∣cos(|η|H (|η|2)t)
∣∣ ,
∣∣∣∣
sin(|η|H (|η|2)t)

|η|

∣∣∣∣ ≤ O(1)eo(1)|η|
2t.

Thus, for |x| < (M + 1)ct

I11 (x, t) ≤ C

(
1

t3/2
e−

|x|2
Ct + e−t/C

)
. (6.20)

Hence, from (6.19) and (6.20)

I1(x, t) ≤ C

(
1

t3/2
e−

|x|2
Ct + e−t/C

)
for |x| ≤ (M + 1)ct. (6.21)

With the Gaussian-like structure of I1(x, t) in (6.21), each differentiation

gives an additional decaying rate of (1 + t)−1/2. This can be shown by the

same procedure for obtaining (6.21):

|∇xI1(x, t)| ≤ C

(
1

t2
e−

|x|2
Ct + e−t/C

)
for |x| ≤ (M + 1)ct. (6.22)

From (6.2), E2 contains an η factor. Thus, the integrand for I2(x, t) in

(6.17) has one more η factor compared to that for I1(η, t) in (6.17). This

extra factor η results in I2(x, t) gaining an extra decaying factor (1+ t)−1/2:

I2(x, t) ≤ C
(e− |x|2

Ct

t2
+ e−t/C

)
for |x| ≤ (M + 1)ct. (6.23)

Since the estimates for I1(x, t) and I2(x, t) in (6.21), (6.22), and (6.23) are

valid in |x| ≤ (M +1)c, the Kirchhoff formula in (3.8) and (3.9) is valid for

|x| ≤ M ct. Thus, Lemma 3.2 yields, for some constant C > 0,

|wt ∗ I1(x, t)| ≤ C
[
(1 + t)−2e−

(|x|−ct)2

Ct + e−t/C
]
,

|w ∗ I2(x, t)| ≤ C
[
(1 + t)−2e−

(|x|−ct)2

Ct + e−t/C
]
.

This concludes the long wave structure (6.16) of the Huygens waves. �
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7. Contact and Rotational Waves

The study of contact and rotational waves follows that for the Huygens

waves. Thus we will not carry out again explicitly the complex analytic

techniques that has been used there. We start with showing the analytic

structure of the pairings.

Lemma 7.1. The contact pairing Ĉ(η, t) can be written in the form

Ĉ(η, t) = e−A2
2(|η|2)tE3(η), (7.1)

where E3(η) is an analytic function in η ∈ R3.

Proof. From (5.4), (5.25), and (5.33),

α2(η) = P1ga2(|η|) = a12,0(|η|2)χ0 + ia22,1(|η|2)
3∑

j=1

ηjχj + a32,0(|η|2)χ4. (7.2)

Thus, α2(η) is an analytic function of η ∈ R3. From (5.22), σ2(η) = ρ2(|η|) =
A2
2(|η|2) is an analytic function in η. Thus, (L − iP1η · ξ + A2

2(|η|2)) is an

analytic function in η ∈ R3. This, (7.2), and (5.29) yield that ψ2(η) is an

analytic function in η ∈ R3. This concludes the lemma:

e−A2
2(|η|2)tψ2(η)⊗ 〈ψ2(η)| analytic in η ∈ R

3. (7.3)

�

Lemma 7.2. The rotational pairing R̂n(η, t) can be rewritten in the

form

R̂n(η, t) = e−A2
4(|η|2)tE4(η), (7.4)

where E4(η) is an analytic function in η ∈ R3.

Proof. In this pairing, due to (5.36) and (7.3) the components Πη and

ψ2(η) ⊗ ψ2(η) are analytic. We just need to show that
∑

j∈{1,3}(ψj(η)⊗
〈ψj(η)| − Pm

0 ψj(η)⊗ 〈Pm
0 ψj(η)|) is analytic.
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Use (6.7), we have

I4(η, t) ≡ e−A2
4(|η|2)t(α1(η)⊗ 〈α1(η)| − Pm

0 α1(η)⊗ 〈Pm
0 α1(η)|

+α3(η)⊗ 〈α3(η)| − Pm
0 α3(η) ⊗ 〈Pm

0 α3(η)|)

= e−A2
4(|η|2)t(2A (η) ⊗ 〈A (η)|+2B(η)⊗ 〈C (η)|+2C (η)⊗ 〈B(η)|

−2D(η) ⊗ 〈D(η)|+ 2|η|2B(η)⊗ 〈B(η)|).

This shows that I4(η, t) is analytic in η ∈ R3.

Similarly, using (6.5) and (6.12), one can show that both I5(η, t) and I6(η, t)

are analytic, where





I5(η, t) ≡ e−A2
4(|η|2)t

( ∑

j∈{1,3}
αj(η) ⊗ 〈βj(η)| + βj(η) ⊗ 〈αj(η)|

)

I6(η, t) ≡ e−A2
4(|η|2)t

( ∑

j∈{1,3}
βj(η)⊗ 〈βj(η)|

)
.

This completes the proof of the lemma. �

Lemma 7.3. The first Riesz pairing can be written as

P̂R1(η, t) = e−A2
1(|η|2)t

∑

1≤j,k≤3

ηjηk

×
(

E 1
j,k

sin(A1
1(|η|2)|η|t)
|η| + E 2

j,k

∫ t

0

sin(A1
1(|η|2)|η|τ)
|η| dτ

)
, (7.5)

where E l
j,k, l = 1, 2, are analytic functions in η ∈ R3.

Proof. The lemma follows directly from (5.25) and (5.33):

P̂R1(η, t)

=
∑

j∈{1,3}
eσj(η)tPm

0 ψj(η)⊗ 〈Pm
0 ψj(η)|

−e−A2
1(|η|2)t

∑

j∈{1,3}
Pm
0 ψj(η)⊗ 〈Pm

0 ψj(η)|
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= 2e−A2
1(|η|2)t

∑

1≤j,k≤3

(
a21,0(|η|2)2

(1− cos(A1
1(|η|2)|η|t))

|η|2

−2a21,0(|η|2)a21,1(|η|2)
sin(A1

1(|η|2)|η|t)
|η|

)
ηjηkχj ⊗ 〈χk|

+2e−A2
1(|η|2)t

∑

1≤j,k≤3

a21,1(|η|2)2(1− cos(A1
1(|η|2)|η|t))ηjηkχj ⊗ 〈χk|

= 2e−A2
1(|η|2)t

∑

1≤j,k≤3

(
a21,0(|η|2)2

A1
1(|η|2)

∫ t

0
sin(A1

1(|η|2)|η|τ)dτ

|η|

−2a21,0(|η|2)a21,1(|η|2)
sin(A1

1(|η|2)|η|t)
|η|

)
ηjηkχj ⊗ 〈χk|

+2e−A2
1(|η|2)t

∑

1≤j,k≤3

a21,1(|η|2)2|η|2
∫ t

0

sin(A1
1(|η|2)|η|τ))
|η| ηjηkχj ⊗ 〈χk| .

�

Lemma 7.4. When |η| is sufficient small, then the second Riesz pairing

P̂R2(η, t) can be written as

if |A2
4(|η|)| ≤ |A2

1(|η|)|,

P̂R2(η, t) = e−
A
2
4(|η|

2)t

2

∑

1≤j,k≤3

ηjηk

∫ t

0

(
e−

A
2
4(|η|

2)τ

2 O1
j,k − e−

(2A21(|η|
2)−A

2
4(|η|

2))τ

2 O2
j,k

)
dτ ;

if |A2
1(|η|)| ≤ |A2

4(|η|)|,

P̂R2(η, t) = e−
A
2
1(|η|

2)t

2

∑

1≤j,k≤3

ηjηk

∫ t

0

(
e−

A
2
1(|η|

2)τ

2 O1
j,k − e−

(2A24(|η|
2)−A

2
1(|η|

2))τ

2 O2
j,k

)
dτ, (7.6)

where O l
j,k are analytic functions in η ∈ R3.

Proof. Without loss of generality, we consider the case |A2
4(|η|)| ≤

|A2
1(|η|)| only.
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This case is a consequence of (5.25) and (5.33):

PR2(η, t)

= (e−A2
4(|η|2)t − e−A2

1(|η|2)t)
∑

j∈{1,3}
Pm
0 ψj(η)⊗ 〈ψj(η)|

= e−
A
2
4(|η|

2)t

2

∫ t

0

(A2
4(|η|2)
2

e−
A
2
4(|η|

2)τ

2

−2A2
1(|η|2)− A2

4(|η|2)
2

e−
(2A21(|η|

2)−A
2
4(|η|

2))τ

2

)
dτ

·
∑

1≤j,k≤3

ηjηkχj ⊗ 〈χk|
(
− 2a21,1(|η|2)2 + 2

a21,0(|η|2)2
|η|2

)

= e−
A
2
4(|η|

2)t

2

∑

1≤j,k≤3

ηjηk
∫ t

0

(
e−

A
2
4(|η|

2)τ

2 O1
j,k − e−

(2A21(|η|
2)−A

2
4(|η|

2))τ

2 O2
j,k

)
dτ, (7.7)

where O l
j,k are analytic functions in η ∈ R3. �

Corollary 7.5. For the contact and rotational waves C(x, t) and Rn

(x, t), there exists C > 0 such that

‖C(x, t)‖L2
ξ
=
∥∥∥
∫∫∫

|η|≤κ0/2
eix·ηĈ(η, t)dη

∥∥∥
L2
ξ

,

‖Rn(x, t)‖L2
ξ
=
∥∥∥
∫∫∫

|η|≤κ0/2
eix·ηR̂n(η, t)dη

∥∥∥
L2
ξ

≤ C
[ e−

|x|2
Ct

(1 + t)3/2
+ e−t/C

]
for |x| ≤ (M + 1)ct. (7.8)

Proof. Due to (7.1) and (7.4), the procedure of using complex analysis

in (6.18)−(6.21) can be applied directly to yield this corollary. �

Lemma 7.6. For the second Riesz wave PR2(x, t), there exists C > 0

such that

‖PR2(x, t)‖L2
ξ
=
∥∥∥
∫∫∫

|η|≤κ0/a2

eix·ηP̂R2(η, t)dη
∥∥∥
L2
ξ

≤ C
[e−

|x|2
C(t+1)

(1 + t)
3
2

+ e−t/C
]
for |x| ≤ M ct. (7.9)
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Proof. From (7.6),

∫∫∫

|η|≤κ0/2

eix·ηP̂R2(η, t)dη

=

∫∫∫

|η|≤κ0/2

eix·ηe−A2
4(|η|2)t

∑

1≤j,k≤3

ηjηk
(∫ t

0
e(A

2
1(|η|2)−A2

4(|η|2))τdτOj,k

)
dη

=

∫ t

0

∑

1≤j,k≤3

( ∫∫∫

|η|≤κ0/2

(
eix·ηe−A2

4(|η|2)tηjηk
)
e(A

2
1(|η|2)−A2

4(|η|2))τOj,kdη
)
dτ. (7.10)

The lemma follows by applying the procedure in (6.18) - (6.21) to (7.10):

∥∥∥
∫∫∫

|η|≤κ0/2

eix·ηP̂R2(η, t)dη
∥∥∥
L2
ξ

≤ O(1)

∫ t

0

( e−
|x|2

C(t+1)

(1 + t)5/2
+ e−2t/C

)
dτ

≤ O(1)
( e

− |x|2
C(t+1)

(1 + t)3/2
+ e−t/C

)
for |x| ≤ (M + 1)ct. �

Lemma 7.7. For the first Riesz wave PR1(x, t), there exists C > 0 and

M > 1 such that

‖PR1(x, t)‖L2
ξ
≤ C





e
− (|x|−ct)2

C(t+1)

(1 + t)2
+ e−t/C for |x| ∈ [ct,M ct],

1

t(|x|+
√
t+ 1)

for |x| ≤ ct.

(7.11)

Proof. From (7.5),

∫∫∫

|η|≤κ0/2

eix·ηP̂R1(η, t)dη

=

∫∫∫

|η|≤κ0/2

eix·ηe−A2
4(|η|2)t

∑

1≤j,k≤3

ηjηk
(
E 1
j,k

sin(A1
1(|η|2)|η|t)
|η|

+

∫ t

0
E 2
j,k

sin(A1
1(|η|2)|η|τ)
|η| dτ

)
dη. (7.12)



2006] GREEN’S FUNCTION OF BOLTZMANN EQUATION, 3-D WAVES 59

By (6.14) and Kirchhoff formula (3.8), (7.12) becomes

∫∫∫

|η|≤κ0/2
eix·ηP̂R1(η, t)dη

=
∑

1≤j,k≤3

w(x, t) ∗ I1j,k(x, t) + wt(x, t) ∗ I2j,k(x, t)

+

∫ t

0
w(x, τ) ∗ J1

j,k(x, τ ; t) + wτ (x, τ) ∗ J2
j,k(x, τ ; t)dτ, (7.13)

where




I1j,k(x, t) ≡
∫∫∫

|η|≤κ0/2
eiη·x−A2

1(|η|2)tηjηkE 1
j,k(η) cos(H (|η|2)|η|t)dη,

I2j,k(x, t) ≡
∫∫∫

|η|≤κ0/2
eiη·x−A2

1(|η|2)tηjηkE 1
j,k(η)

sin(H (|η|2)|η|t)
|η| dη,

J1
j,k(x, τ ; t) ≡

∫∫∫

|η|≤κ0/2
eiη·x−A2

1(|η|2)tηjηkE 2
j,k(η) cos(H (|η|2)|η|τ)dη,

J2
j,k(x, τ ; , t) ≡

∫∫∫

|η|≤κ0/2
eiη·x−A2

1(|η|2)tηjηkE 2
j,k(η)

sin(H (|η|2)|η|τ)
|η| dη.

Again, by the procedure in (6.18)-(6.21) we conclude that there exists C > 0

such that for |x| ≤ (M + 1)ct

‖Dγ
xI

l
j,k(x, t)‖L2

ξ
, ‖Dγ

xJ
l
j,k(x, τ ; t)‖L2

ξ
≤ C

( e−
|x|2
Ct

(t+ 1)(5+|γ|)/2 + e−t/C
)

for 1 ≤ j, k ≤ 3, l = 1, 2, τ ∈ [0, t].

Substitute this into (7.13) and use the Kirchhoff formula, Theorem 3.1, and

Lemma 3.4 to conclude this lemma. �

8. Global Wave Structure

The purpose of this section is study the wave structure of solutions to

the linearized Boltzmann equation when the initial value is concentrated

around x = 0. This gives us a clear picture of the propagation of waves.

Thus we consider the following initial value problem:

{
∂tg + ξ · ∇xg = Lg,

g(x, 0) = gin(x).
(8.1)
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Here, the function gin has compact support and is in the weighted norm,

(2.2),



gin(x) ≡ 0 for |x| ≥ 1,

sup
|x|<1

‖gin(x)‖L∞
ξ,3

≤ 1,
(8.2)

and there is no assumption on the regularity of gin(x).

We will need to make uses of the analysis of long waves in finite Mach

region in the previous sections. We summarize it in the first two lemmas.

Lemma 8.1. For a given M > 1 there exists C > 0 such that for

|x| ≤ M ct,

‖GL;0(x, t)‖L2
ξ
≤ C

[ e−
|x|2
Ct

(1 + t)3/2
+
e−

(|x|−ct)2

Ct

(1 + t)2
+ e−t/C

]

+C





1

(1 + t)−1(|x|+
√
t+ 1)

for |x| ≤ ct,

0 for |x| ≥ ct.
(8.3)

Proof. The lemma follows directly from (6.16), (7.8), (7.9) and (7.11). �

The Green’s function applied to non-fluid part, GL;0(x, t)P1, has faster

decaying rates:

Lemma 8.2. For a given M > 1 there exists C > 0 such that for

|x| ≤ M ct it holds

‖Piso
0 GL;0(x, t)‖L2

ξ
≤ C

( e−
|x|2

C(1+t)

(1 + t)3/2
+
e
− (|x|−ct)2

C(1+t)

(1 + t)2
+ e−(|x|+t)/C

)
, (8.4)

‖GL;0P1‖L2
ξ
≤ C

[e−
|x|2

C(t+1)

(1 + t)2
+
e
− (|x|−ct)2

C(t+1)

(1 + t)5/2
+ e−(|x|+t)/C

]
, (8.5)

‖P1GL;0P1‖L2
ξ
≤ C

[ e−
|x|2

C(t+1)

(1 + t)5/2
+
e
− (|x|−ct)2

C(t+1)

(1 + t)3
+ e−(|x|+t)/C

]
. (8.6)

Proof. First, note that the pairing P̂R1, (5.43), contains macroscopic
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factors in momentum components only. Thus,

{
Piso
0 P̂R1 ≡ 0,

P̂R1P1 ≡ 0.
(8.7)

The factor 1
(1+t)(|x|+

√
1+t)

in (8.3) is due toP̂R1. Thus, from (8.7), the com-

ponent 1
(1+t)(|x|+

√
1+t)

does not show up in the estimates, (8.4), (8.5), and

(8.6) for ‖Piso
0 GL;0‖L2

ξ
, ‖GL;0P1‖L2

ξ
, and ‖P1GL;0P1‖L2

ξ
.

The product GL;0P1 forces all pairings in GL;0P1 to contain only micro-

scopic components. From (5.31), every microscopic component contains an

η · ξ factor. This yields a gain of extra factors η and O(1)|η|2 in the pair-

ing GL;0P1 and P1GL;0P1 as compared to the pairings Ĥ, Ĉ, and R̂n. Thus

GL;0P1 gains an extra derivative in the space variable x, which, for the long

waves GL;0, results in the gain of a (1 + t)−1/2 decaying factor in time; and

P1GL;0P1 gains a factor (1 + t)−1. This concludes the lemma. �

Now we start with the study of the initial value problem (8.1), (8.2).

The initial value gin ∈ L2
x(L

2
ξ).

The Long Wave-Short Wave decomposition can be applied to yield that

‖Gt
Sgin‖L2

x(L
2
ξ)

≤ O(1) e−ν0t‖gin‖L2
x(L

2
ξ)
.

We now follow the procedure in Section 4 and write the solution as

g = O
tgin + Ak + Rk.

These terms satisfy (4.17)∼(4.22). Now, we consider the following identity

G
t
Lgin +G

t
Sgin = O

tgin + h̄ = O
tgin + Ak + Rk.

This, (4.22), and ‖Gt
Lgin‖Hk

x (L
2
ξ)

= O(1), (2.5), result in

‖∇k
x(G

t
Sgin −O

tgin − Ak)‖L2
x(L

2
ξ)

= ‖∇k
x(Rk − Gt

Lgin)‖L2
x(L

2
ξ)

= O(1). (8.8)

From Lemma 2.6 and (4.19), one has that for some ν2 > 0

‖Gt
Sgin −O

tgin − Ak‖L2
x(L

2
ξ)

≤ O(1) e−ν2t. (8.9)
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Then, by (8.8) and (8.9) combined with Sobolev’s inequality one has that

there exists ν2 > 0 such that

‖Gt
Sgin −O

tgin − Ak‖L∞
x (L2

ξ)
≤ O(1) e−ν2t.

Again, with (4.19) one has that there exists ν2 > 0 such that

‖Gt
Sgin‖L∞

x (L2
ξ)

≤ O(1) e−ν2t. (8.10)

Now, combining (5.41), Lemma 8.1, and (8.10) we have the following theo-

rem:

Theorem 8.3.(Finite Mach Number Region) For |x| ≤ M ct there exists

C > 0 such that

‖Gtgin(x, t)‖L2
ξ

≤ C
[ e−

|x|2
Ct

(1 + t)3/2
+
e−

(|x|−ct)2

Ct

(1 + t)2
+

∫ t

0

{
τ

∫∫

|y|=1

e−
|x−cτy|2

Ct

(1 + t)5/2
dSy

}
dτ + e−t/C

]

for any gin satisfying (8.2).

Next we consider wave structure outside finite Mach Number region

|x| ≥ M ct. The structure is obtained by the energy estimates which origi-

nated from [27] for 1-D problem. Here, we modify it for this 3-D problem.

In order to obtain pointwise estimates from the energy estimates by

Sobolev theory, we need some regularity property. Thus, we consider the

variable Rk defined in (4.18) with k ≥ 6. The condition k ≥ 6 is for the use

of the Sobolev’s embedding theorem in R3.

Lemma 8.4. For each given k ≥ 0 there exists Ck > 0 such that

‖Otgin(x)‖L2
ξ
, ‖Ak(x, t)‖L2

ξ
, ‖Bk(x, t)‖L2

ξ
≤ Cke

−(|x|+t)/Ck .

Remark 8.5. This is a consequence of hard sphere collision model that

the collision frequency ν(ξ) = O(1)|ξ|; and D ≪ 1 which is the parameter

for K1 given in (4.1).
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Consider the weight function

W (x, t; Ω, ǫ) = eǫ(x·Ω−M ct)

in terms of a non-negative parameter ǫ and a direction Ω ∈ S2. Here, the

number ǫ is chosen to relate to the constant in Lemma 8.4:

ǫ ≤ 1

2Ck
.

Under this condition

‖
√
WO

tgin‖L2
x(L

2
ξ)
, ‖
√
WAk(·, t)‖L2

x(L
2
ξ)
, , ‖

√
WBk(·, t)‖L2

x(L
2
ξ)
,≤O(1)e−ǫM ct.

(8.11)

Now, choose g ∈ SO(3) with gΩ = (1, 0, 0)t and consider the following

new coordinate system:





x̄ = g (x− M ctΩ) ,

t̄ = t,

ξ̄ = gξ.

Under this new coordinate system,

{
W = eǫx̄

1
,

∂t̄Rk − M c∂x̄1Rk + ξ̄ · ∇x̄Rk − LRk = KBk.

Now, consider the weighted energy estimate

∫

R3

W (x̄1)(Rk,KBk)dx̄

=

∫

R3

W (x̄1) (Rk, ∂t̄Rk − M c∂x̄1Rk − LRk) dx̄

=
1

2

d

dt̄

∫

R3

W (x̄1)(Rk,Rk)dx̄

+

∫

R3

W (x̄1)
[
ǫ(Rk, (M c− ξ̄1)Rk)− (P1Rk, LP1Rk)

]
dx̄.

Since M > 2,

(P0Rk, (M c− ξ̄1)P0Rk) ≥ (M − 1)c(P0Rk,P0Rk) ≥ c(P0Rk,P0Rk).
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By choosing ǫ sufficiently small, we have from this and Lemma 2.4 that

1

2

∫

R3

W (x̄1)(Rk,Rk)dx̄+
ǫ

2

∫

R3

(Rk,Rk)dx̄ ≤ O(1)
1

ǫ
‖
√
WBk‖2L2

x(L
2
ξ)
.

From this and (8.11), there exists C > 0 such that

‖
√
WRk‖L2

x(L
2
ξ)

≤ Ce−t̄/C . (8.12)

From (4.22)

‖∇j
x̄Rk(·, t)‖L2

x(L
2
ξ)

≤ C for t ≥ 0, j ∈ {1, . . . , k}. (8.13)

From (8.12) and (8.13), we have, for even number k,

‖∇j
x̄(W

1/4Rk)‖L2
x(L

2
ξ)

≤ O(1)e−
t̄

2C for 1 ≤ j ≤ k/2. (8.14)

On the other hand, the proof for showing (8.12) can be also used to show

that (8.14) is true for j = 0.

By letting k = 4 one can use Sobolev’s embedding theorem to show that

sup
x̄∈R3

‖W 1/4Rk(x̄, t̄)‖L2
ξ
≤ O(1)e−

t̄
2C .

We thus conclude that there exists C > 0 such that

‖Rk(x̄, t̄)‖L2
ξ
≤ Ce−

t̄
C e−x̄1/C ,

or

‖Rk‖L2
ξ
≤ Ce−t/Ce−[Ω·x−M ct]/C .

Here, the coefficient C is independent of the direction Ω and so, for |x| ≥
M ct,

‖Rk‖L2
ξ
≤ Ce−t/Ce[−|x|+M ct]/C .

From this we can conclude that there exists C > 0 such that for |x| > M ct

‖Rk‖L2
ξ
≤ Ce−(t+|x|)/C . (8.15)

From (8.15) and Lemma 8.4, we have the following theorem for wave struc-
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ture outside the finite Mach number region:

Theorem 8.6.(Outside Finite Mach Region) For |x| > M ct (with M ≥
2) there exists C > 0 such that the solution of (8.1) satisfies

‖g(x, t)‖L2
ξ
≤ Ce−(t+|x|)/C .

9. Green’s Function.

Consider the initial-value problem for the Green’s function

{
∂tG+ ξ · ∇xG = LG,

G(x, 0, ξ, ξ0) = δ(x)δ(ξ − ξ0).

To study the wave structure of the Green’s function, we reduce the situation

to the case of the general initial-value problem as in Section 8. For this we

construct the kinetic-like waves. The first term is particle wave:

h0(x, t) ≡ S
tδ(x)δ(ξ − ξ0).

hk(x, t) ≡
∫ t

0
S
t−sKhk−1(x, s)ds for k ≥ 1. (9.1)

From direct calculations,





h0(x, t, ξ) = e−ν(ξ0)tδ(x− ξ0t)δ(ξ − ξ0),

h1(x, t, ξ) =

∫ t

0
K(ξ, ξ0)e

−ν(ξ)(t−s)−ν(ξ0)sδ(x− (t− s)ξ − sξ0)ds,

h2(x, t, ξ) =

∫ t

0

∫

R3

∫ s1

0
e−ν(ξ)(t−s1)−ν(ξ1)(s1−s)−ν(ξ0)sK(ξ, ξ1)K(ξ1, ξ0)

δ(x − (t− s1)ξ − (s1 − s)ξ1 − sξ0)dsdξ1ds1.

(9.2)

Both h0 and h1 are generalized functions. However, h2 is regular function

due to the extra mixing in the space and as well as in the velocity variables.

To analyze these, we start with a definition of scattering path:

Definition 9.1.(Scattering Path) Let (ξ, ξ0, τ0) ∈ R3 × R3 × R+. We
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denote Ξξ,ξ0,τ0 is a scattering path of a particle with velocity ξ0 which scatters

into the velocity ξ at time τ0:

Ξξ,ξ0,τ0 ≡ {(ξ(τ − τ0) + ξ0τ0, τ) ∈ R
3 × R

+ : τ ∈ [τ0,∞)}.

R
3

(
0
, )

(
0 0
,
0
)

(x, ) = ( (
0
) +

0 0
, )

(x, )

, 0 , 0

t

ttt

Figure C

With ξ and ξ0 ∈ R3, the path Ξξ,ξ0,τ0 is represented in four dimensional

space R3 × R+ in Figure C. With this, we denote regular point by R:

R ≡ R
3 × R

3 × R
+/ ∪τ0≥0

ξ∈R3

{(x, t, ξ) : (x, t) ∈ Ξξ,ξ0,τ0}.

Lemma 9.2. If (x, t, ξ) ∈ R, then

x− (t− τ)ξ − ξ0τ 6= 0 for all τ ∈ R. (9.3)

Proof.

(x, )

R
3

0

1

0

t

Figure D
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This lemma is clear from geometric consideration, Figure D. �

Lemma 9.3. If (x, t, ξ) ∈ R, then

|h2(x, t, ξ)| <∞.

Proof. From the representation (9.2), we can integrate the δ function

with respect to ξ1 variable to result in

h2(x, t, ξ)

=

∫ t

0

∫ s1

0

e−ν(ξ)(t−s1)−ν(ξ1)(s1−s)−ν(ξ0)sK(ξ, ξ1)K(ξ1, ξ0)

(s1 − s)3

∣∣∣∣∣
ξ1=

x−(t−s1)ξ−sξ0
s1−s

dsds1.

From (9.3),

min
s1∈[0,t]

|x− (t− s1)ξ − s1ξ0| > 0.

Thus there exists C > 0 and δ > 0 such that

|x− (t− s1)ξ − sξ0|
|s1 − s| >

C

|s− s1|
whenever |s1 − s| < δ.

This and the expression for the collision kernel (2.1) yield

lim
(s1−s)→0

K(ξ, ξ1)K(ξ1, ξ0)

(s1 − s)3
= 0,

whence we have

h2(x, t, ξ) <∞ for (x, t, ξ) ∈ R. �

Remark 9.4. By a proper decomposition of δ function, one can show

that ∪ξ∈R3,
τ∈R+

Ξξ,ξ0,τ are removable singularity.

Lemma 9.5. For each l ≥ 3, there exists Cl > 0 such that

‖hl(x, t)‖L∞
ξ,l−3

< Cle
−(|x|+t)/C .

Proof. From (9.1), this lemma can be proved by induction on the index
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l ≥ 3 of hl.

The above two lemmas and the operator St are sufficient to obtain that there

exist C > 0 and C2 such that

‖h2(x, t)‖L2
ξ
< C2e

−(|x|+t)/C . (9.4)

Then, from (9.4) and Lemma 2.2, one has that

‖Kh2‖L∞
ξ,0

≤ O(1)e−(|x|+t)/C .

Substitute this into (9.1) and from (4.5) one can conclude this lemma for

l = 3. We assume that this lemma is true for l ≤ k. This assumption

combined with Lemma 2.2 yields

‖Khk‖L∞
k−2

≤ Cke
−(|x|+t)/C .

Then, from (9.1) and (4.5), we can conclude that this lemma is true for

l = k + 1. �

Theorem 9.6.(Main Theorem I) Green’s function G(x, t) as an L2
ξ

operator-valued function satisfies that there exists C > 0 such that

‖G(x, t)‖L2
ξ
≤ C


 e

− |x|2
C(1+t)

(1 + t)3/2
+
e
− (|x|−ct)2

C(1+t)

(1 + t)2
+ e−(|x|+t)/C




+C





1

(1+t)(
√
1+t+|x|) for |x| ≤ ct+

√
1 + t,

0 for |x| ≥ ct+
√
t,

(9.5)

‖Piso
0 G(x, t)‖L2

ξ
≤ C


 e

− |x|2
C(1+t)

(1 + t)3/2
+
e
− (|x|−ct)2

C(1+t)

(1 + t)2
+ e−(|x|+t)/C


 , (9.6)

‖G(x, t)P1‖L2
ξ
≤ C


e

− |x|2
C(1+t)

(1 + t)2
+
e
− (|x|−ct)2

C(1+t)

(1 + t)5/2
+ e−(|x|+t)/C


 , (9.7)

‖P1G(x, t)P1‖L2
ξ
≤ C


 e

− |x|2
C(1+t)

(1 + t)5/2
+
e
− (|x|−ct)2

C(1+t)

(1 + t)3
+ e−(|x|+t)/C


 . (9.8)
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Proof. Decompose the Green’s function G(x, t, ξ; ξ0) into

G(x, t, ξ; ξ0) ≡
6∑

l=0

hl(x, t, ξ) + r(x, t, ξ).

Treat
∑6

l=0 hl as an L2
ξ operator-valued function. Then, from Lemma 9.5,

there exists C > 0 ∥∥∥∥∥
6∑

l=0

hl

∥∥∥∥∥
L2
ξ

≤ Ce−(|x|+t)/C . (9.9)

The equation for r is

∂tr + ξ · ∇xr − Lr = Kh6. (9.10)

From Lemmas 2.2 and 9.5, we have

‖Kh6‖L∞
ξ,4

≤ Ce−(|x|+t)/C for some C > 0. (9.11)

With this condition, (9.11), the analysis for the solution of (8.1) can be

applied. Thus, from Theorems 8.3 and 8.6, the solution r of (9.10) satisfies

‖r(x, t)‖L2
ξ
≤ C

( e−
|x|2

C(1+t)

(1 + t)3/2
+
e
− (|x|−ct)2

C(1+t)

(1 + t)2
+ e−(|x|+t)/C

)

+ C





1

(1 + t)(
√
1 + t+ |x|)

for |x| ≤ ct+
√
1 + t,

0 for |x| ≥ ct+
√
t.

(9.12)

Then, follow the argument in Section 7 of [27] for obtaining estimates in

‖ · ‖L∞
ξ,4

from estimates in ‖ · ‖L2
ξ
to yield that

‖r(x, t)‖L∞
ξ,4

≤ C
( e−

|x|2
C(1+t)

(1 + t)3/2
+
e
− (|x|−ct)2

C(1+t)

(1 + t)2
+ e−(|x|+t)/C

)

+ C





1

(1 + t)(
√
1 + t+ |x|)

for |x| ≤ ct+
√
1 + t,

0 for |x| ≥ ct+
√
t.

(9.13)

With this estimate for ‖r‖L∞
ξ,4
, one can treat the function r as an L2

ξ operator-

valued function. Thus, (9.9) and (9.13) result in (9.5).
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The procedure for obtaining (9.6), (9.7), and (9.8) are similar. It is

omitted. This completes the proof of Main Theorem I. �

10. Leading Fluid Waves

We finally prove the Main Theorem II. The main remaining step is to

study the leading fluid waves. We have from, (5.39), c.f., (5.9), (5.22), (5.28),

that the leading fluid waves are

˜̂G0 ≡ e−i|η|ct−A1|η|2tgE1 ⊗ 〈gE1|+ e−A2|η|2tgE2 ⊗ 〈gE2|

+ei|η|ct−A1|η|2tgE3 ⊗ 〈gE3|+e−A4|η|2tgE4 ⊗ 〈gE4|+e−A5|η|2tgE5 ⊗ 〈gE5|

= e−i|η|ct−A1|η|2tg(−
√

5

2
ξ1 +

1

6
|ξ|2)

√
M⊗ 〈g(−

√
5

2
ξ1 +

1

6
|ξ|2)

√
M|

+ei|η|ct−A1|η|2tg(

√
5

2
ξ1 +

1

6
|ξ|2)

√
M⊗ 〈g(

√
5

2
ξ1 +

1

6
|ξ|2)

√
M|

+e−A2|η|2tg
|ξ|2√
6
|
√
M⊗ 〈g |ξ|

2

√
6

√
M|+ e−A4|η|2tgξ2|

√
M⊗ 〈gξ2

√
M|

+e−A4|η|2tgξ3|
√
M⊗ 〈gξ3

√
M|

≡ Ĝ
0
1 + Ĝ

0
3 + Ĝ

0
2 + Ĝ

0
4 + Ĝ

0
5. (10.1)

Direct computations yield

Ĝ
0
1 + Ĝ

0
3

= e−A1|η|2t
{
(e−i|η|ct+ei|η|ct)

(5
2
gξ1

√
M⊗〈gξ1

√
M|+ 1

36
|ξ|2

√
M⊗〈|ξ|2

√
M|
)

+

√
5

2

1

6
(e−i|η|ct − ei|η|ct)(gξ1

√
M⊗ 〈|ξ|2

√
M|+〈|ξ|2

√
M⊗ gξ1

√
M|)
}

= e−A1|η|2t cos(|η|ct)
{
5

3∑

j,k=1

ηjηk

|η|2 ξ
j
√
M⊗ 〈ξk

√
M|+ 1

18
|ξ|2

√
M⊗ 〈|ξ|2

√
M|
}

+e−A1|η|2ti
sin(|η|ct)

|η|
{1
3

√
5

2

3∑

j=1

ηjξj
√
M⊗ 〈|ξ|2

√
M|+|ξ|2

√
M⊗〈ξj

√
M|
}

(10.2)
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Set 



Ξ̂jk ≡ e−A1|η|2t η
jηk

|η|2 ,

Ω̂j ≡ e−A1|η|2tηj ,

∂tΞ̂jk = −A1e
−A1|η|2tηjηk,

Λ ≡
∫
e−A1|η|2teiη·xdη = βt−3/2e

− |x|2
4A1t .

We have

Λxjxk
= −

∫
e−A1|η|2tηjηke

iη·xdη, Λ̂xjxk
= −e−A1|η|2tηjηk,

∂tΞ̂jk = A1Λ̂xjxk
,

and so

∂tΞ̂jk = A1Λ̂xjxk
=

(
A1(4πA1t)

−3/2e
− |x|2

4A1t

)

xjxk

.

Ξjk =

(∫ t

0
A1(4πA4τ)

−3/2e
− |x|2

4A1τ dτ

)

xjxk

.

Λ̂xj = iΩ̂j , Ωj = (−i(4πA1t)
−3/2e

− |x|2
4A1t )xj .

Thus

G
0
1 +G

0
3 = w ∗H1 + wt ∗H2,

where





H2 = 5A1

3∑

j,k=1

(∫ t

0
(4πA1τ)

−3/2e
− |x|2

4A1τ dτ
)
xjxk

ξj
√
M⊗ 〈ξk

√
M|

+
1

18
(4πA1t)

−3/2e
− |x|2

4A1t |ξ|2
√
M⊗ 〈|ξ|2

√
M|,

H1 =

√
5

2

1

3

3∑

j=1

((4πA1t)
−3/2e

− |x|2
4A1t )xj

(
ξj
√
M⊗ 〈|ξ|2

√
M|+ |ξ|2

√
M⊗ 〈ξj

√
M|
)
.
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From (3.8), we conclude that

G
0
1 +G

0
3 =

ct

4π

∫∫

|y|=1
H1(x+ cty)dSy +

1

4π

∫∫

|y|=1
H2(x+ cty)dSy

+
ct

4π

∫∫

|y|=1
∇H2(x+ cty) · ydSy.

Next we consider

Ĝ
0
2 = e−A2|η|2tgE2 ⊗ 〈gE2|

The inverse Fourier transform can be computed directly and we have

G
0
2 =

1

6
(4πA2t)

−3/2e
− |x|2

4A2t |ξ|2
√
M⊗ 〈|ξ|2

√
M|

Finally we study

G
0
4 +G

0
5 = (4πA4t)

−3/2e
− |x|2

4A4t (gξ2
√
M⊗ 〈gξ2

√
M|+ gξ3

√
M⊗ 〈gξ3

√
M|).

Take an orthogonal basis α, β of the space orthogonal to the vector η.

In the coordinate system with basis {η/|η|, α, β}, we have gξi = g(ξ)i,

gξ = (ξ · η
|η| , ξ · α, ξ · β), ξ = (ξ · η

|η|)
η
|η| + (ξ · α)α + (ξ · β)β, and ξ∗ =

(ξ∗ · η
|η|)

η
|η| + (ξ∗ · α)α + (ξ∗ · β)β. Thus

(Ĝ0
4 + Ĝ

0
5)h

= e−A4|η|2t
(
ξ · α

√
M

∫
ξ∗ · α

√
M∗h(ξ∗)dξ∗ + ξ · β

√
M

∫
ξ∗ · β

√
M∗dξ∗

)

= e−A4|η|2t
√
Mξ ·

(∫
{(ξ∗ · α)α + (ξ∗ · β)β}

√
M∗h(ξ∗)dξ∗

)

= e−A4|η|2t
√
Mξ ·

(∫ {
ξ∗ − (ξ∗ ·

η

|η| )
η

|η|

}√
M∗h(ξ∗)dξ∗

)
. (10.3)

Thus we have

Ĝ
0
4 + Ĝ

0
5 = (4πA4t)

−3/2e−A4|η|2t

( 3∑

j=1

ξj
√
M⊗ 〈ξj

√
M| −

3∑

j,k=1

ξj
√
M
ηjηk

|η|2 ⊗ 〈ξk
√
M|
)
,
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and

G
0
4 +G

0
5 = (4πA4t)

−3/2e
− |x|2

4A4t

3∑

j=1

ξj
√
M⊗ 〈ξj

√
M|

−
3∑

j,k=1

[∫ t

0
A4(4πA4τ)

−3/2e
− |x|2

4A4τ dτ

]

xjxk

ξj
√
M⊗ 〈ξk

√
M|.

This completes the study of the leading fluid waves and we have
∑5

j=1G
0
j

is of the form (1.14), as stated in Main Theorem II as stated in the Intro-

duction. The leading particle-like waves have been studied and estimated in

Section 9. It remains to show that the remainding long waves decay faster

in the fluid wave region |x| = O(1)ct. We will only consider the following

eσ1(η)tψ1(η)⊗ 〈ψ1(η)|+ eσ3(η)tψ3(η) ⊗ 〈ψ3(η)| − Ĝ
0
1 + Ĝ

0
3

= ei|η|ct−A1|η|2t
(
eO1(|η|2)|η|2t+i|η|O2(|η|2)t − 1

)
ψ1(0)⊗ 〈ψ1(0)|

+e−i|η|ct−A1|η|2t
(
eO1(|η|2)|η|2t−i|η|O2(|η|2)t − 1

)
ψ3(0) ⊗ 〈ψ3(0)|

+eσ1(η)t (ψ1(η)⊗ 〈ψ1(η)| − ψ1(0)⊗ 〈ψ1(0)|)

+eσ3(η)t (ψ3(η)⊗ 〈ψ3(η)| − ψ3(0)⊗ 〈ψ3(0)|)

≡ Ê 1
1,3 + Ê 2

1,3 + Ê 3
1,3 + Ê 4

1,3. (10.4)

The first two error terms

(Ê 1
1,3)

0 + (Ê 2
1,3)

0

= e−A1|η|2t [O1(|η|2)|η|2t cos(|η|ct) − sin(|η|ct)O2(|η|2)|η|t
]

· (ψ1(0)⊗ 〈ψ1(0)| + ψ3(0) ⊗ 〈ψ3(0)|)

+e−A1|η|2t [iO1(|η|2)|η|2t sin(|η|ct) + cos(|η|ct)O2(|η|2)|η|t
]

· (ψ1(0)⊗ 〈ψ1(0)| − ψ3(0) ⊗ 〈ψ3(0)|)

= e−A1|η|2t
(
O1(|η|2)|η|2t cos(|η|ct) −O2(|η|2)|η|2t

sin(|η|ct)
|η|

)

·
(
5

3∑

j,k=1

ηjηk

|η|2 ξ
j
√
M⊗ 〈ξk

√
M|+ 1

3
|ξ|2

√
M⊗ 〈|ξ|2

√
M|
)
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−e−A1|η|2t
(
iO1(|η|2)|η|2t

sin(|η|ct)
|η| +O2(|η|2)t cos(|η|ct)

)
1

3

√
5

2

·1
3

√
5

2

( 3∑

j=1

ηjξj
√
M⊗ 〈|ξ|2

√
M|+ |ξ|2

√
M⊗ 〈ξj

√
M|
)
. (10.5)

When compared to Ĝ0
1 + Ĝ0

3, the term II ≡ (Ê 1
1,3)

0 + (Ê 2
1,3)

0 has extra fac-

tor of O(1)|η|2tηj or O(1)|η|4t. Moreover, P0II = IIP0 = 0. The gain

of |η|2t and ηjηk

|η|2 translates to a gain of t−1 decay. Similarly, replacing

cos(|η|ct) with ηj cos(|η|ct) also translates to a gain of t−1 decay. In sum-

mary, (E 1
1,3)

0 + (E 2
1,3)

0 has extra decaying factor of t−1 when compared to

G0
1 + G0

3, though with slightly larger base of e−|x|2/(4A1+ǫ)t. For the expla-

nation fo these decaying properties see Remark below. For the next two

remaining terms, we have from

(Ĝ3
1,3)

0+(Ĝ4
1,3)

0 = e−i|η|ct−A1|η|2t (ψ1(η)⊗ 〈ψ1(η)| − ψ1(0) ⊗ 〈ψ1(0)|)
+ei|η|ct−A1|η|2t (ψ3(η)⊗ 〈ψ3(η)|−ψ3(0)⊗ 〈ψ3(0)|) (10.6)

ψ1(η) = a11(|η|)
√
M+ a21(|η|)

3∑

j=1

ηjξj

|η|
√
M+ a31(|η|)

1√
6
(|ξ|2 − 3)

√
M

= (a11,0(|η|2)+i|η|a11,1(|η|2)
√
M+(a21,0(|η|2)+i|η|a21,1(|η|2))

3∑

j=1

ηjξj

|η|
√
M

+(a31,0(|η|2) + i|η|a31,1(|η|2))
1√
6
(|ξ|2 − 3)

√
M+ gb1(|η|). (10.7)

ψ3(η) = (a11,0(|η|2)− i|η|a11,1(|η|2))
√
M

+(−a21,0(|η|2) + i|η|a21,1(|η|2))
3∑

j=1

ηjξj

|η|
√
M

+(a31,0(|η|2)− i|η|a31,1(|η|2))
1√
6
(|ξ|2 − 3)

√
M+ gIb1(−|η|), (10.8)




ψ1(0) = a11,0(0)

√
M+ a21,0(0)

∑3
j=1

ξjηj

|η|
√
M+ a31,0(0)

1√
6
(|ξ|2 − 3)

√
M,

ψ3(0) = a11,0(0)
√
M− a21,0(0)

∑3
j=1

ξjηj

|η|
√
M+ a31,0(0)

1√
6
(|ξ|2 − 3)

√
M,
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that, except for the microscopic terms gb1(|η|), gIb1(−|η|), and macroscopic

terms with extra factor of |η|2, the main terms are

(Ê 3
1,3)

00 + (Ê 4
1,3)

00

= 2e−A1|η|2ti cos(c|η|t)
[
− i

√
5

2

3∑

j=1

ηjξj
√
M⊗ 〈a111(0)

√
M

+a311(0)
1√
6
(|ξ|2 − 3)

√
M| − i(a11,1(0)

√
M+ a31,1(0)

1√
6
(|ξ|2 − 3)

√
M)

⊗〈
√

5

2

3∑

j=1

ηjξj
√
M|+ ia21,1(0)

3∑

j=1

ηjξj
√
M⊗ 〈1

6
|ξ|2

√
M|

+i
1

6
|ξ|2

√
M⊗ 〈a21,1(0)

3∑

j=1

ηjξj
√
M|
]

+2e−A1|η|2t sin(c|η|t)
|η|

[√
10a21,1(0)

3∑

j,k=1

ηjηkξj
√
M⊗ 〈ξk

√
M|

−|η|2(a11,1(0)
√
M+ a31,1(0)

1√
6
(|ξ|2 − 3)

√
M⊗ 〈1

6
|ξ|2

√
M|

+
|η|2
6

|ξ|2
√
M⊗ 〈a11,1(0)

√
M+ a31,1(0)

1√
6
(|ξ|2 − 3)

√
M|
]
. (10.9)

Thus the purely microscopic term in E 3
1,3 + E 4

1,3 has extra decay factor

of only t−1/2 when compared to G0
1 + G0

3. The terms gb1(|η|) ⊗ 〈gb(|η|)| +
gIb1(−|η|)⊗〈gIb1(−|η|)| have factor of |η|2 and so decays with extra factor

of t−1.

Thus P1(E
3
1,3 + E 4

1,3) and (E 3
1,3 + E 4

1,3)P1 have extra decay factor of t−1.

Remark 10.1. An extra factor of ηα term yields extra decay rate of

t−|α|/2 in the fluid region |x| ≤ O(1)t. This is seen by an example in the

following: Consider the integral paths in Section 6, Figure B: The main

contribution for integrating η1 is on {η1| Im η1 = |x|
2tA1

, |Re η1| ≤ κ0/2}.
Write η1 = α+βi, β = |x|

2tA1
, |α| ≤ κ0/2. In the fluid region, |x| = O(1)t, we
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have
∫∫

B2

dη2dη3
∫

Γ(− κ0
2
√

2
,
κ0
2
√

2
, C
tM0

)
e−A1[|η1|2+|η2|2+|η3|2]t+ix·ηO(1)|η|dη1

= e
− |x|2

4A1t

∫∫

B2

dη2dη3
∫

Γ1

e
−A1(η1−i |x|

2A1t
)2−A1(|η2|2+|η3|2)t

O(1)|α + βi|dη1

= e
− |x|2

4A1t

∫∫

B2

dη2dη3
∫ κ0/2

−κ0/2
e−A1α2t−A1((η2)2+(η3)2)tO(1)(|α| + |x|

t
)dα

= O(1)t−3/2t−1/2e
− |x|2

(4A1+ǫ)t . (10.10)

The same works for other terms such as the Huygens waves. This completes

the estimates (1.15) for the remaining terms, and the proof of Main Theorem

II is complete.
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