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Abstract

Consider the equation

dx

dt
+Q(t)G(x(t− σ(t))) = f(t) (∗)

where f, σ,Q ∈ C([0,∞), [0,∞)), G ∈ C(R,R),G(−x) = −G(x), xG(x) > o for x 6= 0, G is

non-decreasing, t > σ(t), σ(t) is decreasing and t − σ(t) → ∞ as t → ∞. Whenf(t) ≡ 0,

a sufficient condition in terms of the constants

k = lim inf
t→∞

∫
t

t−σ(t)

Q(s)ds

and

L = lim sup
t→∞

∫
t

t−σ(t)

Q(s)ds

is established for all solutions of (∗) to be oscillatory.The present results improve the earlier

results of the literature by both weakening the conditions and considering a general non

linear and non-homogeneous differential equation.
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1. Introduction

In this paper the first order forced delay differential equation of the form

dx

dt
+Q(t)G(x(t− σ(t))) = f(t) (1.1)

is considered, where Q, f, σ and G satisfy

Q, f, σ ∈ C([0,∞), [0,∞)) (1.2)

G ∈ C(R,R), G is non-decreasing (1.3)

xG(x) > 0 for x 6= 0, σ(t) < t, t− σ(t) → ∞ as t → ∞ and σ′(t) ≤ 0. (1.4)

The literature on oscillatory/non oscillatory and asymptotic behaviour

of solutions of associated homogeneous equation.

dy

dt
+Q(t)G(y(t − σ(t))) = 0, (1.5)

is relatively rich. There are thousands of papers on Eq.(1.5) establishing

sufficient conditions for oscillation of all its solutions. The conditions are

generally formulated in terms of the parameters Q,G and σ. Separate cases

of G are dealt where it is linear, sublinear or superlinear.

The work on Eq (1.1) is not satisfactory. Obviously,there are many

papers dealing with oscillatory/nonoscillatory and asymptotic behaviour of

solutions of (1.1) among which some papers establish the existence of a

non-oscillatory solutions.

The following definitions of linear, sub-linear and super-linear are used

throughout the paper.

Following Shreve [28], equations (1.1) or (1.5) is called sub-linear or

super-linear accordingly respectively as G satisfies

lim
θ→0

G(θ)

θ
= ∞

or

lim
θ→0

G(θ)

θ
= M

where M is some positive real constant. When M = 1 it is said to be linear.
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The above definitions of sub-linear or super-linear or linear include the

commonly used sub-linear,super-linear and linear cases where G(θ) = θα, α

is a ratio of odd positive integers satisfying 0 < α < 1 and 1 < α < ∞ and

α = 1 respectively.

By a solution of (1.1) we mean a continuously differentiable function x(t)

defined on [T0 − σ(T0),∞) for some T0 ≥ 0 and such that (1.1) is satisfied

for t ≥ T0 As usual, a non-trivial solution x(t) of (1.1) is called oscillatory

if the set of zeros of x in (0,∞) is unbounded. Otherwise, x(t) is called

non-oscillatory.

The motivation of this work may be viewed as follows:

From the literature it appears that the authors in [10], [11] and [27]

have surveyed the results for (1.5) G(x) = x and according to them the

development in chronological order is as follows : Myshkis [25] in 1950 proved

that every solution of

dy

dt
+Q(t)y(t− σ(t)) = 0 (1.6)

oscillates if

lim sup
t→∞

σ(t) < ∞

lim inf
t→∞

σ(t) lim inf
t→∞

Q(t) >
1

e

In 1972, Ladas et al. [21] established the same conclusion replacing the above

by

L = lim sup
t→∞

∫ t

t−σ(t)
Q(s)ds > 1 (1.7)

In 1979, Ladas [16] and in 1982 Koplatadze and Chanturija [13] established

it under the criterion

k = lim inf
t→∞

∫ t

t−σ(t)
Q(s)ds >

1

e
(1.8)

which was a weaker condition than that of Myshkis [25] and independent of

(1.7) Concerning the lower bound 1/e in (1.8), it needs to be pointed out
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that if
∫ t

t−σ(t)
Q(s)ds ≤ 1

e
(1.9)

for large t, then according to a result of [13], (1.6) admits a non-oscillatory

solution. The obvious gap between (1.7), (1.8) and (1.9) is transparent when

lim
t→∞

∫ t

t−σ(t)
Q(s)ds

does not exist. What happens when

0 < k ≤ 1

e
and

1

e
< L ≤ 1

is a question which needs to be settled.

In 1988, Erbe and Zhang [8] established a new oscillation criterion in

terms of the constants k and L showing that

L > 1− k2

4
(1.10)

implies that every solution of Eq.(1.6) oscillates.In 1991, Jian Chao [2] im-

proved (1.10) to

L > 1− k2

2(1− k)
(1.11)

and in 1992, Yu and Wang [30], Yu, Wang , Zhang and Qian [31] established

the same conclusion replacing (1.11) by

L > 1− (1− k)−
√
1− 2k − k2

2
(1.12)

In 1992 ,Elbert and Stavroulakis [6],using different techniques, improved

(1.7) to

L > 1−
(

1− 1√
λ1

)2

, (1.13)

where λ1 is the smaller real root of the equation

F (λ) = ekλ − λ = 0 (1.14)
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In 1991 Kwong [15] improved (1.7) to

L >
lnλ1 + 1

λ1
(1.15)

The improvement follows immediately from the fact that

max
x>0

lnx+ 1

x
= 1 (1.16)

In 1994, Koplatadze and Kvinikadze[14] improved (1.12) while in 1998 Philos

and Sficas[26],in 1999 Jaros and Stavroulakis [10] and in 2000 Kon,Sficas and

Stavroulakis [11] derived the following conditions

L > 1− k2

2(1 − k)
− k2

2
λ1 (1.17)

L >
lnλ1 + 1

λ1
− (1− k)−

√
1− 2k − k2

2
(1.18)

and

L > 2k +
2

λ1
− 1

respectively.

In 2003, Sficas and Stavroulakis[27] established the oscillation condition

L >
lnλ1 − 1 +

√
5− 2λ1 + 2kλ1

λ1
(1.19)

which might have given the lowest lower bound for L when k = 1/e. In 2003,

Das et al. [3] proved the oscillation of all solutions of (1.6) if

lim sup
t→∞

[ ∫
t

t−σ(t)

Q(s)ds+

( ∫
t

t−
1

2
σ(t)

Q(s)ds

)( ∫
t+ 1

2
σ(t)

t

Q(s)ds

)]

>
1 + lnλ1

λ1
(1.20)

whose methods of proof were different from the earlier ones.The purpose of

this paper is to improve (1.19) for nonlinear equations. In particular, for

linear equations the present condition reduces to

lim sup
t→∞

{
∫ t

t−σ(t)
Q(s)ds +

[
∫ t

t− 1
2
σ(t)

Q(s)ds

][
∫ t+ 1

2
σ(t)

t

Q(s)ds

]

×
[

1−
∫ t+ 1

2
σ(t)

t

Q(s)ds

]

−1}

>
1 + lnλ1

λ1
(1.21)
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where λ1 is as discussed earlier. The present result improves (1.7), (1.15) and

(1.20). The merit of this result is that the condition (1.21) is easily verifiable.

Further, the conditions (1.10), (1.11), (1.12), (1.13), (1.15), (1.17), (1.18)

reduce to (1.7) as k → 0 except (1.19) , (1.20) and (1.21).

2. Main Results

Theorem 2.1. Suppose (1.2) to (1.4) hold ,0 < k ≤ 1
Me

< L ≤ 1
M

and

lim
y→0

G(y)

y
= M (2.1)

for some M ∈ (0,∞).Set

p(t) =

∫ t+ 1
2
σ(t)

t

Q(s)ds (2.2)

and

q(t) =

∫ t

t− 1
2
σ(t)

Q(s)ds (2.3)

for large t and

lim sup
t→∞

{
∫ t

t−σ(t)
Q(s)ds +

Mp(t)q(t)

1−Mp(t)

}

>
M2 + lnλ1

Mλ1
, (2.4)

where λ1 is the smaller root of

F (λ) = eMkλ − λ = 0 (2.5)

then every solution of (1.5) oscillates.

Proof. It is clear that F (1) > 0 and F (e) < 0 and hence 1 < λ1 < e and

consequently,

M2 + lnλ1

Mλ1
>

M

λ1
>

M

e
(2.6)

From (2.4) and (2.6) it follows that

∫

∞

0
Q(s)ds = ∞ (2.7)
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Indeed, otherwise, the functions
∫ t

t−σ(t) Q(s)ds, p(t) and q(t) tend to zero

as t → ∞. Thus the term on the left hand side of (2.4) approaches zero

as t → ∞, is a contradiction to (2.4) and (2.6). If possible, suppose y(t)is

a non-oscillatory solution of (1.5) .Without loss of generality, assume that

y(t) > 0, y(t−σ(t)) > 0 for t ≥ t0.From (1.5) , it follows that y′(t) < 0, t ≥ t0.

It can be shown that

lim
t→∞

y(t) = 0 (2.8)

Indeed, otherwise integrating (1.5) from t0 to t and using (2.7) in the resul-

tant integral, it leads to y(t) → −∞ as t → ∞, is a contradiction. Now set

w(t) =
y(t− σ(t))

y(t))
(2.9)

Dividing Eq.(1.5) throughout by y(t) then integrating it from t− σ(t) to t,

it yields

w(t) = exp

(
∫ t

t−σ(t)
Q(s)

G(y(s − σ(s)))

y(s− σ(s))
w(s)ds

)

(2.10)

Denoting

lim
t→∞

w(t) = α, (2.11)

from (2.10) it follows that α satisfies

α ≥ exp(Mkα), (2.12)

where k is given in (1.8).That is ‘α‘ lies between the real roots of (2.5).If λ1

and λ2 (λ1 < λ2) are the real roots of (2.5) then

λ1 < α < λ2 (2.13)

The first inequality in (2.13) becomes an equality if Mk = 1/e and in that

case α = e. From (2.13) it follows that for sufficiently small ǫ (0 < ǫ < λ1−1)

there exists T0 ≥ to such that

y(t− σ(t))

y(t)
> λ1 − ǫ (2.14)
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and

M − ǫ <
G(y(t− σ(t)))

y(t− σ(t))
< M + ǫ (2.15)

Obviously, the function

g(s, t) =
y(t− σ(t))

y(s)

satisfies g(t− σ(t), t) = 1 < λ1 − ǫ , g(t, t) > λ1 − ǫ and hence by continuity

of g, there exists σ∗(t) such that t−σ(t) ≤ σ∗(t) ≤ t and g(σ∗(t), t) = λ1− ǫ.

That is,

y(t− σ(t))

y(σ∗(t))
= λ1 − ǫ (2.16)

Dividing (1.5) throughout by y(t), integrating it from t− σ(t) to σ∗(t) and

using (2.14) in it we obtain for some t ≥ T1 ≥ t0,

∫ σ∗(t)

t−σ(t)
Q(s)

G(y(s − σ(s)))

y(s− σ(s))
.
y(s− σ(s))

y(s)
ds = −

∫ σ∗(t)

t−σ(t)

y′(s)

y(s)
ds

That is,

(M − ǫ)(λ1 − ǫ)

∫ σ∗(t)

t−σ(t)
Q(s)ds ≤ ln

(

y(t− σ(t))

y(σ∗(t))

)

= ln(λ1 − ǫ)

This inequality gives

∫ σ∗(t)

t−σ(t)
Q(s)ds ≤ ln(λ1 − ǫ)

(M − ǫ)(λ1 − ǫ)
(2.17)

Integrating (1.5) from σ∗(t) to t and using (2.14) and (2.15) we get

∫ t

σ∗(t)
Q(s)ds ≤ y(σ∗(t))

G(y(t− σ(t)))
− y(t)

G(y(t− σ(t)))

≤ 1

(M − ǫ)(λ1 − ǫ)
− y(t)

G(y(t− σ(t)))
(2.18)
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Adding (2.17) and (2.18), we have

∫ t

t−σ(t)
Q(s)ds ≤ ln(λ1 − ǫ)

(M − ǫ)(λ1 − ǫ)
+

1

(M − ǫ)(λ1 − ǫ)
− y(t)

G(y(t− σ(t)))
(2.19)

Now, integrating (1.5) from t to t+ σ(t)/2 for t ≥ T1 we obtain

y(t+ σ(t)/2) − y(t) +G(y(t− σ(t)/2))p(t) ≤ 0

That is,

y(t) ≥ (M − ǫ)y(t− σ(t)/2)p(t) (2.20)

Similarly, integrating (1.5) from t− σ(t)/2 to t ,we get

y(t)− y(t− σ(t)/2) +G(y(t− σ(t)))q(t) ≤ 0.

That is,

y(t− σ(t)/2) ≥ y(t) +G(y(t− σ(t)))q(t) (2.21)

Using (2.21) in (2.20) we get

y(t) ≥ (M − ǫ)p(t)

{

y(t) +G(y(t− σ(t)))q(t)

}

This gives

y(t)

G(y(t− σ(t)))
≥ (M − ǫ)p(t)q(t)

[

1− (M − ǫ)p(t)

]

Since ǫ is arbitrary, using the above inequality in (2.19) and taking limit

superior of both sides we obtain.

lim sup
t→∞

{
∫ t

t−σ(t)
Q(s)ds+

Mp(t)q(t)

1−Mp(t)

}

≤ lnλ1

Mλ1
+

1

Mλ1
,

a contradiction to our assumption. This completes the proof. �

Note: Condition (1.21) follows from (2.4) for the linear equations where

G(y) = y. ���

Theorem 2.2. Suppose that Q,f ∈ C([0,∞), R+),σ(t) = σ ∈ (0,∞),G ∈



106 PITAMBAR DAS AND P. K. PANDA [March

(R,R) such that xG(x) > 0 for x 6= 0 and G is nondecreasing. Further, if

∫

∞

0
Q(s)ds = ∞ (2.22)

lim
x→0

x

G(x)
= M0 ∈ (0,∞), G(−x) = −G(x) (2.23)

and for µ > 0

lim inf
t→∞

∫ t

t−σ

{

µf(s) +
Q(s)

M0

}

ds >
1

e
, (2.24)

then a nontrival solution x(t) of (1.1) is either oscillatory or satisfies

0 ≤ x(t) ≤
∫ t

0
f(s)ds (2.25)

for large t.

Proof. Let x(t) be a solution of (1.1). If x(t) is oscillatory, then there is

nothing to prove. Assume that x(t) is non-oscillatory. By definition, there

exists a t0 > 0 such that either

x(t) > 0, t ≥ t0 (2.26)

or

x(t) < 0, t ≥ t0 (2.27)

Suppose that x(t) > 0 for t ≥ t0. Set

w(t) =

∫ t

0
f(s)ds (2.28)

and

z(t) = x(t)− w(t) (2.29)

From (1.1) and (2.29) it follows that

z′(t) +Q(t)G(x(t− σ)) = 0 (2.30)

The above gives z′(t) < 0, t ≥ t0 + σ. Thus, there exists t1 ≥ t0 + σ such

that either

z(t) > 0, t ≥ t1 (2.31)
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or

z(t) < 0, t ≥ t1 (2.32)

Suppose that z(t) > 0, for t ≥ t1. From (2.29) it follows that

x(t) > w(t), t ≥ t1 (2.33)

From (2.30) and (2.33) we obtain

z′(t) +Q(t)G(w(t − σ)) ≤ 0, t ≥ t1. (2.34)

Integrating (2.34) from t1 to t , using (2.33) and the fact that G and w are

non-decreasing in (0,∞) ,we obtain

z(t)− z(t1) ≤ −
∫ t

t1

Q(s)G(w(s− σ))ds ≤ −G(w(t1 − σ))

∫ t

t1

Q(s)ds (2.35)

Taking limit t → ∞ in (2.35) with the use of (2.22) we see that z(t) → −∞
as t → ∞. This is a contradiction to our assumption. Hence z(t) < 0, t ≥ t1.

That is x(t) < w(t),t ≥ t1 This gives finally

0 < x(t) <

∫ t

0
f(s)ds , t ≥ t1

Next, suppose that

x(t) < 0, t ≥ t0 (2.36)

From (1.1) it follows that

x′(t) ≥ 0, t ≥ t0 + σ.

and

lim
t→∞

x(t) = λ ∈ (−∞, 0] (2.37)

Here we claim that λ = 0. If possible, let λ ∈ (−∞, 0). By definition there

exists t1 ≥ t0+σ such that G(x(s−σ)) > G(λ/2). Integrating (1.1) from t1

to t we get

x(t)− x(t1) =

∫ t

t1

f(s)ds−
∫ t

t1

Q(s)G(x(s − σ))ds
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≥ −G(λ/2)

∫ t

t1

Q(s)ds (2.38)

Taking limit as t → ∞ in (2.38) and using (2.22) we see that x(t) → ∞ as

t → ∞. This contradicts to (2.36). Hence

lim
t→∞

x(t) = 0 (2.39)

From (2.24), it follows that there exists t∗ ∈ (t− σ, t) such that

∫ t∗

t−σ

{

µf(s) +
Q(s)

M0

}

ds >
1

2e
(2.40)

and
∫ t

t∗

{

µf(s) +
Q(s)

M0

}

ds >
1

2e
(2.41)

From (2.23) and (2.39) it follows that for every ǫ > 0, there exists Tǫ > 0

such that

M0 − ǫ ≤ x(t)

G(x(t))
≤ M0 + ǫ, t ≥ Tǫ (2.42)

Now, integrating (1.1) from t∗ to t (t > Tǫ + σ) we obtain

x(t)− x(t∗) =

∫ t

t∗

{

f(s)−Q(s)G(x(s − σ))

}

ds

=

∫ t

t∗
−x(t− σ)

{

f(s)

−x(s− σ)
−Q(s)

G(x(s − σ))

−x(s− σ)

}

ds

≥ −x(t− σ)

∫ t

t∗

{

f(s)

−x(s− σ)
+

Q(s)

M0 + ǫ

}

ds (2.43)

Integrating, similarly, from t− σ to t∗ we get

x(t∗)− x(t− σ) =

∫ t∗

t−σ

{

f(s)−Q(s)G(x(s − σ))

}

ds

≥
∫ t∗

t−σ

−x(s− σ)

{

f(s)

−x(s− σ)
−Q(s)

G(x(s − σ))

−x(s− σ)

}

ds

≥ −x(t∗ − σ)

∫ t∗

t−σ

{

f(s)

−x(s− σ)
−Q(s)

G(x(s − σ))

−x(s− σ)

}

ds

≥ −x(t∗ − σ)

∫ t∗

t−σ

{

f(s)

−x(s− σ)
+

Q(s)

M0 + ǫ

}

ds (2.44)
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From (2.39), (2.43) and (2.40) it follows that for large t,

x(t)− x(t∗) ≥ −x(t− σ)
1

2e
(2.45)

and similarly from (2.39), (2.44) and (2.41),

x(t− σ) ≤ x(t∗ − σ)
1

2e
(2.46)

Combining (2.45) and (2.46) it reduces to

x(t∗) ≤ x(t∗ − σ)

(

1

2e

)2

(2.47)

since x(t∗) is negative , from (2.47) we get

x(t∗ − σ)

x(t∗)
≤ 4e2 (2.48)

Since x(t) is negative and increasing, let us set

w(t) =
x(t− σ)

x(t)
(2.49)

and

lim inf
t→∞

w(t) = β (2.50)

From the above, it clearly follows that w(t) > 0 and β is finite. Dividing

(1.1) throughout by x(t) then integrating the resultant fromt−σ to t we get

ln
x(t)

x(t− σ)
=

∫ t

t−σ

{

f(s)

x(s)
−Q(s)

G(x(s − σ))

x(s)

}

ds

that is,

lnw(t) =

∫ t

t−σ

{

f(s)

−x(s− σ)
+Q(s)

G(x(s − σ))

x(s− σ)

}

w(s)ds

With the use of the mean value theorem,there exists T1 ≥ Tǫ such that

lnw(t) ≥ w(θ)

∫ t

t−σ

{

µf(s) +Q(s)
G(x(s − σ))

x(s − σ)

}

ds (2.51)
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for t ≥ T1,where t − σ < θ < t and for every µ > 0. Taking limit infirm of

both sides of (2.51) we obtain

lnβ ≥ β lim inf
t→∞

∫ t

t−σ

{

µf(s) +
Q(s)

M0

}

ds

That is,

lnβ

β
≥ lim inf

t→∞

∫ t

t−σ

{

µf(s) +
Q(s)

M0

}

ds (2.52)

However, it is known that

max
β>0

lnβ

β
=

1

e
(2.53)

Combining (2.52) and (2.53) ,we reach

lim inf
t→∞

∫ t

t−σ

{

µf(s) +
Q(s)

M0

}

ds ≤ 1

e
,

which is a contradiction. This completes the proof. ���

Example 1. Consider the equation

dx

dt
+

(

1

e
+ e2t

)

x(t− 1) = et+1

This equation satisfies the hypotheses of Theorem 2.2 and hence every solu-

tion is either oscillatory or satisfies (2.25). One of such solutions is x(t) =

e−t.

Example 2. Consider the non-linear equation

dx

dt
+ e2t

(

x(t− 1) + x3(t− 1)

)

= e9−7t + e3−t − 3e−3t

This equation satisfies the hypotheses of Theorem 2.2 and hence every solu-

tion is either oscillatory or satisfies (2.25). One of such solutions is x(t) =

e−3t.

Corollary 1. Supposethat Q ∈ C([0,∞), R+),σ(t) = σ ∈ (0,∞), G ∈
C(R,R) such that xG(x) > 0 for x 6= 0, G is nondecreasing and G(-x)=-
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G(x), further if

lim
x→0

x

G(x)
= M0 ∈ (0,∞) (2.54)

and

lim inf
t→∞

∫ t

t−σ

Q(s)ds >
M0

e
(2.55)

then every solution of (1.1) with f(t) ≡ 0, oscillates.

Proof. The proof follows directly from Theorem 2.2, because a non-trivial

solution does not satisfy (2.25),when f(t) ≡ 0. ���

Remark. Corollary 1 extends the main result of [16] for super-linear equa-

tions and Theorem 2.2 extends it for non homogeneous differential equations.
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